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Abstract

Bacteriophage lambda is a classic system for the study of cellular decision making. Both experiments and mathematical
models have demonstrated the importance of viral concentration in the lysis-lysogeny decision outcome in lambda phage.
However, a recent experimental study using single cell and single phage resolution reported that cells with the same viral
concentrations but different numbers of infecting phage (multiplicity of infection) can have markedly different rates of
lysogeny. Thus the decision depends on not only viral concentration, but also directly on the number of infecting phage.
Here, we attempt to provide a mechanistic explanation of these results using a simple stochastic model of the lambda
phage genetic network. Several potential factors including intrinsic gene expression noise, spatial dynamics and cell-cycle
effects are investigated. We find that interplay between the level of intrinsic noise and viral protein decision threshold is a
major factor that produces dependence on multiplicity of infection. However, simulations suggest spatial segregation of
phage particles does not play a significant role. Cellular image processing is used to re-analyse the original time-lapse
movies from the recent study and it is found that higher numbers of infecting phage reduce the cell elongation rate. This
could also contribute to the observed phenomena as cellular growth rate can affect transcription rates. Our model further
predicts that rate of lysogeny is dependent on bacterial growth rate, which can be experimentally tested. Our study
provides new insight on the mechanisms of individual phage decision making. More generally, our results are relevant for
the understanding of gene-dosage compensation in cellular systems.
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Introduction

Bacteriophage Lambda is a temperate virus that infects the

bacteria Escherichia coli. Upon infection, the cell undergoes one of

two fates. In the lytic fate, the phage replicate quickly and kill the

cell, whereas in the lysogenic fate the phage become dormant,

replicating slowly along with the bacterial replication. The

lysogenic state is very stable [1–3] but under specific induction

conditions the phage can re-enter the lytic pathway. It is thought

that the lysis-lysogeny decision is a response to prevent extinction

by lying dormant in malnourished cells or when there is an

overabundance of phage [4]. The genetic circuit controlling this

decision making process is long studied and serves as a paradigm

for the study of genetic regulation and biological switches [5–8].

Although we do not yet have a complete understanding of lambda

phage developmental decision making and stability, mathematical

modelling has been quite influential in producing mechanistic

insight [1,7–15].

Biochemical reaction networks are stochastic due to low copy

number of participating biomolecules and the fluctuations in the

cellular environment [16]. The stochastic dynamics will inevitably

influence the decision making processes in cellular systems [17,18].

One of the earliest mathematical studies of stochastic dynamics in

genetic networks focused on the probabilistic nature of the lambda

phage switch and showed that clonal cells in similar environments

can still exhibit different fates due to gene expression noise [11].

Game theoretic arguments suggest probabilistic cell fate determi-

nation may minimise the chance of phage extinction [19].

The probabilistic choice between lysis and lysogeny can be

affected by multiple factors. Classic experiments by Kourilsky

showed that physiological state of the cell, such as starvation can

significantly affect the probability of lysogeny [20]. In particular

the number of phage simultaneously infecting the bacteria, the so

called multiplicity of infection (MOI), increases the probability of

lysogeny [20–22]. It has also been observed that an increase in cell

volume (V ) at the time of infection results in significant decrease in

the probability of lysogeny [23]. Analysis of simple deterministic

models of the lysis-lysogeny genetic circuit shows that in fact the

outcome of the decision should depend on the concentration of

viral genes, which is related to MOI divided by V [12], unifying

the experimental observations mentioned above. However, a more

recent study used single phage resolution and time-lapse imaging

to follow the fate of individual bacteria as it is infected at different

MOI and showed that the decision depends not only on the viral

concentration (VC) but also directly on MOI [24]. This

observation can be interpreted as evidence for independent

decision making by individual phage [24]. An alternative

interpretation of the observed results is the existence of partial

PLOS ONE | www.plosone.org 1 August 2014 | Volume 9 | Issue 8 | e103636

http://creativecommons.org/licenses/by/4.0/
http://www.nerc.ac.uk/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0103636&domain=pdf


gene dose compensation in the phage-bacteria system [14].

However, neither of these interpretations provide a mechanistic

explanation of direct dependence of the outcome of decision on

MOI.

In this study, we set out to investigate possible biophysical

mechanisms that underlie the specific dependence of probability of

lysogeny on MOI observed recently [24]. We use stochastic

simulation of a simple model of the lambda phage genetic switch

[12] to study the lysis-lysogeny decision process. We reveal an

interplay between the decision making threshold and molecular

noise that can provide an explanation for the results. We also

investigate possible contributions of spatial and cell cycle effects.

We conclude by discussing other possible contributing factors,

experimentally testable predictions and the broader relevance of

our results.

Results

To address the role of multiplicity of infection (MOI) in cellular

decision making, we employ a relatively simple model of the

lambda phage genetic circuit [12] (Fig. 1A and Methods). The

gene regulatory network is composed of interlocked positive and

negative feedback loops involving three early viral genes CI, Cro

and CII (Figure 1B). There are multiple factors involved in the

decision making process, but it is believed that the CII protein has

an important role [8,12]. High levels of CII promotes production

of CI and lysogeny, whereas low levels of CII promotes production

of Cro and bacterial lysis.

Zeng et al. [24] observe that the probability of lysogeny can be

well described by the phenomenological function

f (M,h,J,V )Cell~
(M=V)h

Jhz(M=V )h

 !M

where M is the MOI, V is the cell volume, J~1:17 is the half

saturation constant and h~2:07 is the Hill number. In Figure 1C,

we have plotted probability of lysogeny as a function of viral

concentration (VC), for different MOIs. It is evident that the

probability of lysogeny at a given VC could be quite different

depending on MOI; a small cell with MOI~1 can have

significantly larger probability of lysogeny than a cell with double

the volume and MOI~2, even though both have the same VC. In

the following, we will use the above mentioned case to investigate

mechanisms that can explain the direct dependence of probability

of lysogeny on MOI [24]. We note that the observation of weak

dependence of the probability of lysogeny on MOI at fixed cell

volumes as seen in Figure 1D can also be attributed to the

existence of a partial dose-compensation mechanism [14]. We also

note that the specific form of this phenomenological relation does

not necessarily have mechanistic origin.

To determine the outcome of infection in silico, we use

stochastic simulations of our model to produce stochastic

realisations of the early viral gene expression using the Gillespie

algorithm [25]. To quantify the cell fate decision, we need to

choose a criterion which we can use to classify whether an

individual simulation undergoes lysis or lysogeny. The lambda

phage decision is complex and could depend on transient or

steady-state dynamics of multiple factors [11]. To unravel the

basic mechanisms at work, we simply assume that the decision can

be determined from the transient dynamics of a single gene, CII

(Fig. 2A). As illustrated in Figure 2B, we assume if the time-

averaged levels of CII up to a time point t (S½CII �Tt) is below

(above) a certain threshold W the cell fate is lysis (lysogeny).

Observing CII levels at a single time point instead of time

averaging to determine cell fate, produces very similar results

(results not shown).

Figure 1. Decision Making in lambda phage. A: The role of the Prm=Pr and Pre promoters involved in lambda phage decision. Dashed lines
denote transcriptional events that require no activation while solid lines denote transcriptional events that require activation. B: Schematic of the core
genetic network involved in lysis-lysogeny decision. CI gene promotes itself and represses the other genes. Cro represses everything, while CII
promotes CI. C: Rate of lysogeny as observed from experimental observations in Zeng et al. [24] as a function of viral concentration for different MOI.
D: Rate of lysogeny as a function of MOI for different volumes. Bacterial volumes and viral concentrations are expressed in arbitrary units using the
normalized cell lengths following Zeng et al. [24].
doi:10.1371/journal.pone.0103636.g001
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Decision threshold and intrinsic noise
In order to obtain insights to the role of MOI on the decision

making process, we focus initially on the difference between cells

with MOI~1 and MOI~2 at VC~1 (V~1|10{15L). Figure 3

A and B show traces of a single stochastic trajectory and of the

average [CII] based on n~5000 stochastic simulations. We find

similar mean [CII] for both case of MOI~1, V~1

(S½CII �T60~18:61, se~6:14|10{2) and MOI~2, V~2

(S½CII �T60~18:85, se~4:41|10{2). However, as shown in

Figure 3 variation in the MOI~1 case is significantly larger than

for MOI~2, since it has more intrinsic noise due to having lower

copy numbers of genes and other biomolecules. This is demon-

strated further in Figure 3C. The rate of lysogeny is determined by

the specific choice of the decision threshold W and time point t.

We choose t~60 minutes, which is a reasonable choice given the

timescales in which decisions occur as observed in [24]. However,

our results are not sensitive to specific choice of t (results not

shown). If we choose W^S½CII �T60 we find similar probabilities of

lysogeny for the two cases. Interestingly, we find that for

WwS½CII �T60 the rate of lysogeny is higher for MOI~1 than

for MOI~2, whereas for WvS½CII �T60 the rate of lysogeny is

higher for MOI~2 than for MOI~1 (Figure 4A). Since the

average CII is similar for the MOI~1 and MOI~2 cases, the

observed difference in the rate of lysogeny should be due to

different levels of noise in CII. With larger noise a higher (lower)

threshold than the average is exceeded more (less) frequently, as

illustrated in Figure 3C.

To illustrate the role of molecular noise in the decision making

process, we perform a simple analytical estimate based on a more

simple decision criteria which uses a single time point observation.

If we assume a Gaussian distribution for ½CII � at time t (½CII �(t))
with mean m and standard deviation s, then

P(½CII �(t)wW)~
1

2
1{erf

W{mffiffiffiffiffiffiffi
2s2
p
� �� �

.

This inverse cumulative function is equivalent to the rate of

lysogeny in this case. The error function (erf ) changes sign with

that of its argument W{m. This accounts for the change in

observed dependence on W in relation to the mean CII. The size of

this difference is then dictated by s, which is a measure of noise in

CII. Therefore, it can be seen that an increase in MOI at constant

VC, while it does not change DW{mD, it decreases the denominator

(s) which affects the rate of lysogeny. The dashed line in Figure 4A

shows the rate of lysogeny calculated from the above relation,

which is very close to the result obtained in the simulations by

using the WwS½CII �T60 as a decision.

In order to further investigate the interplay between the decision

threshold W and the amount of noise in CII, independent of MOI

and volume, we adjust the parameters to make the system more or

less noisy. We therefore look only at the case where MOI~1,

V~1, but specifically increase (decrease) noise by increasing

(decreasing) translation and mRNA degradation rates, changing

the burstiness of the gene expression [26] (Figure 4B). It is seen

again that for higher levels of noise we see higher rates of lysogeny

for WwS½CII �T60 and lower rates of lysogeny for WvS½CII �T60 in

accordance with the above reasoning. A similar trend is observed if

we change the noise in CII by adding extrinsic noise via

introduction of fluctuations in the kinetic rates [16] (results are

not shown).

Based on the above argument, it follows that the trend in rate of

lysogeny should be even stronger for higher MOI’s at the same

viral concentration. We therefore perform additional simulations

for MOI~3,4,5 at VC~1. We find that the observed trend

indeed holds for higher MOI’s (Figure 4C). The reduction in noise

at larger MOI is due to the increase in copy numbers for mRNA

and proteins. The case of high threshold exhibits a trend similar to

what is observed experimentally. Comparing these results with the

phenomenological function f (M,h,J,V )Cell [24] suggests the

decrease in gene expression noise at higher MOI could explain

about half of the observed dependence of rate of lysogeny on

MOI.

The proposed role of intrinsic noise in decision making is

general and does not depend on the specific choice of model

assumptions and parameters. To explicitly demonstrate the

general validity of our results, we have performed additional

analysis including parameter sensitivity analysis and modifying

some of our modelling assumptions. Firstly, our model assumes

CII is a dimer for simplicity, while it is known that CII is in fact

tetrameric [27]. We therefore look at the effect of allowing CII

dimers to bind and form tetramers, and tetramers to bind to the

promoter and controlling gene expression. Secondly, there is

evidence that upon infection phages replicate in the cells doubling

their number every 2–3 minutes for the first 15 minutes [28].

Including phage replication in our model has the effect of

increasing the mean [CII]. While CI can undergo self repression at

higher concentrations of the dimer [11]. We attempted to include

all of these assumptions in the model, and the results are shown in

Figure 5A. It can be seen that adding these features, despite a

change in the mean [CII], we observe similar qualitative results.

We also tried including each of modifications individually,

observing again that our conclusions still hold (results not shown).

Figure 2. Decision Criteria. (A) Illustration of a stochastic trajectory
of CII proteins from time of infection to decision. We consider the
decision criteria as to whether the area under the curve of CII (light blue
area) is above Wt, or equivalently average Dt is above W over a
particular length of time t. This criteria is outlined in flow diagram B.
doi:10.1371/journal.pone.0103636.g002
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Finally, to test the effect of model parameters, we performed a

global parameter sensitivity analysis on our system by varying all

model parameters randomly within a factor of two or ten below

and above their nominal values. For almost all parameter sets

tested, using a high decision threshold (greater than mean ½CII � for

that parameter set), we observed a lower rate of lysogeny for the

case MOI = 1, V~1 compared to the case MOI = 2, V~2
(Figure 5B), which is consistent with what is observed for the

original parameter set (Figure 4C).

Spatial Effects
Phage can infect bacteria at any position along the cell surface,

although recent research suggests that phage prefers the poles

[24,29]. Thus, it is likely that multiple phage are spatially

separated in the bacteria. Delay caused by the diffusion of

biomolecules from one phage to another could affect the rate of

lysogeny, particularly when diffusion is slow or the infecting

phages are far apart. To investigate possible spatial effects on rate

of lysogeny, we use a particle-based approach that tracks

individual molecules as they diffuse and react inside the cell

[30]. We compare the case where there is one infecting phage

positioned at the centre of a small cell with the case where two

phage arranged in 3 different ways infect a cell with double the

volume, therefore keeping viral concentration the same. In these

cases two phages will be positioned either at the centre, at a

quarter and three quarter of the cell length or at the cell poles

(Figure 6A–D). The results were also compared with the non-

spatial stochastic simulations outlined in the previous section. Due

to the computational time required to do these simulations we

perform a lower number in comparison to the non-spatial case

(n~200), still the standard error is relatively low. It can be seen in

Figure 6A–D that the effect of phage positioning and diffusion rate

on the mean [CII] is small. These results are also close to the non-

spatial and deterministic models.

It can be seen in Figure 6E that there are some effects on rate of

lysogeny due to phage positioning. Specifically the rate is lower

(higher) for the case when phages are at the cell poles for

WwS½CII �T60 WvS½CII �T60

� �
. While the rate is highest (lowest)

for cells with phages at the centre when WwS½CII �T60 Wvð
S½CII �T60Þ. The reason for this could be the small difference in

mean [CII] observed. The case where phages are equally spaced is

in general an intermediate of the other results and follows the non-

spatial results the closest. In comparison with the non-spatial

results the effects of phage positioning are not as important as

intrinsic noise. In most cases the spatial results are not significantly

different from their non-spatial counterparts. It should also be

noted that if we were to average the 3 cases when MOI~2, then

the rates are very close to the non-spatial case. Therefore, this is

only likely to be of any noticeable effect if there were any bias in

the positioning of the phage. While experiments [24,31] have

displayed some infection site bias to the cell pole, it it unlikely to be

enough to solely explain the observed difference in rate of

lysogeny.

Cell Growth Effects
MOI could affect the decision making process by influencing

the general physiology of the bacteria. To investigate this issue, we

reanalysed the original movie data from [24] (courtesy of Lanying

Zeng and Ido Golding). Specifically, we looked at the effect of

MOI on growth rate (elongation rate) of the cell. Figure 7A

illustrates how we have estimated the cell cycle time. Cells were

observed from time of infection until a decision event or first cell

division. It is observed that cells with higher MOI have lower

growth rate (Figure 7B). In [24], it was found that cells with higher

Figure 3. Average Stochastic Trajectories of [CII] over time interval t for stochastic non-spatial model. Mean trajectories shown (blue
line) + standard deviations (cream shaded region), alongside the deterministic trajectory (turquoise line). One stochastic trajectory from the data is
also shown in green. (A) MOI = 1, V = 1 (S½CII �T60~18:61,se~6:14|10{2). (B) MOI = 2, V = 2 (S½CII �T60~18:85, se~4:41|10{2). Results calculated
based on n~5000 simulations. (C) Distribution of v½CII �w60 showing a low threshold (purple dashed line), threshold at mean (brown dashed line)
and high threshold (yellow dashed line). This illustrates that the area under the curve exceeding the threshold is larger for MOI = 2, V = 2 for the low
threshold, equal areas for the threshold at the mean and larger area for MOI = 1, V = 1 for the high threshold.
doi:10.1371/journal.pone.0103636.g003
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MOI had a larger proportion of non-growing cells, which is

consistent with our results. We note that in estimating the growth

rate of cells we have removed all non-growing cells from our

analysis.

This information on growth dependency at different MOI is

then incorporated into our model. We therefore accordingly adjust

the dilution rates [32] to mimic a cell growing at different rates.

We compare the results with those of the non-growing cells and

also growing cells with no effect of MOI on growth rate. It can be

seen in Figure 7C that accounting for the growth effects observed

experimentally by only modulating dilution rate actually goes

against the dependence on MOI observed experimentally. This is

likely due to the increased relative volume in accordance with the

dependence of rate of lysogeny on volume [23].

It is known that cell growth rate controls other gene expression

parameters in addition to dilution rate [33] for example by

regulating the rate of mRNA transcription [34,35]. We therefore

looked at the effect of coupling the rates of mRNA transcription to

the growth rates on the decision making process. It can be seen

that this increases the average protein concentration and therefore

affects the rate of lysogeny (Figure 7D). Specifically, since the

growth rate for cells with MOI~1 is higher than those with

MOI~2, then S½CII �T would be larger in the case where

MOI~1 due to the increased mRNA transcription. Thus this

increases the rate of lysogeny and the difference in rates concurs

with the experimental results on MOI dependence of rate of

lysogeny. Therefore, if the transcription rate increases sufficiently

at higher growth rates then cell growth modulation by MOI could

also be a contributing factor.

Growth media can modulate bacterial growth rate (elongation

rate) and cell cycle time [33]. Since, we observed MOI modulation

of growth rate affects rates of lysogeny, we argued growth

modulation by growth media should have similar effects. To

investigate this phenomenon using our model, we assume

modulation of cellular growth rate does not reduce cell cycle time

below 60 minutes over which we estimate the rate of lysogeny.

This is a reasonable assumption since in the analysis of

experimental movies from [24], we observe that phage infection

delays division time (in the generation of cells that are infected) for

cells that undergo lysogeny (Figure 8A). We use growth rate

modulation of transcription rate and dilution to estimate rate of

lysogeny for the MOI~1 and MOI~2 in a cell of the same size

(Figure 8B). Note that the rate of lysogeny is higher for MOI~2
due to the higher viral concentration. The model predicts that a

decrease in growth rate will lead to sharp increase in rate of

lysogeny. We also observe that apart from the extreme points,

where the rate of lysogeny is close to 0 or 1, that the observed

difference between MOI~1 and MOI~2 is largely preserved

(Figure 8B).

Discussion

Recent experimental results suggest the rate of lysogeny in

lambda phage infection depends not only on VC but also on the

MOI directly [24]. Using a simple model of genetic networks

controlling this fate decision, we have demonstrated that intrinsic

noise is a determining factor of the rate of lysogeny in lambda

phage. Viral gene dynamics are more noisy for small MOI due to

low copy number of viral promoters. A viral protein with higher

fluctuating dynamics reaches a high decision threshold more

frequently, producing a direct dependence to MOI and its

associated intrinsic noise. Although we observed some effect due

to spatial segregation of the multiple infecting phage, this is not

sufficient to solely explain the observed dependence on MOI. New

analysis of the existing experimental movies revealed cell growth

dependence on MOI potentially affecting the decision making

process. Including the growth rate dependence and its effect on

transcription rates in our model suggest another possible

contribution to the observed MOI dependence. We conclude that

a combination of the proposed mechanisms contribute to the

explanation of the observed dependence of decision rate on MOI

in the lambda phage system.

Figure 4. How the Relationship Between Noise and Threshold Level Affect the Decision. (A) Rate of lysogeny across different threshold
values for basic model. Blue line: MOI = 1, V = 1; Green line: MOI = 2, V = 2; Orange dashed line: S½CII �T60; Pink and yellow dashed lines: Theoretical
approximations for the rate for MOI = 1, V = 1 and MOI = 2, V = 2 respectively. (B) How changing the level of noise for same MOI affects the outcome at
a high threshold (green line, 25% above the mean), threshold at S½CII �T60 (yellow line) and low threshold (blue line, 25% below the mean). (C) How
the MOI affects the rate of lysogeny at a high threshold (green line, 10% above the mean), threshold at S½CII �T60 (yellow line) and low threshold (blue
line, 10% below the mean). The phenomenological rate f (M,h,J,V ) is shown for a typical unit cell volume using l~1:11. (orange dashed line).
doi:10.1371/journal.pone.0103636.g004
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The model we use is simple, but captures the essential features

of the lambda phage system [13]. The model does not accurately

reflect the CII levels on the time scale considered here.

Experimental observations suggest that CII levels fall dramatically

by 60 minutes after infection but they remain high in our

simulations due to the simplicity of the model and parameters

used. Also, our choice of a single decision threshold is crude.

However, our results agree qualitatively with work that use more

complex criteria [14]. Our main result on the role of intrinsic noise

in the decision making process is quite general and is not

Figure 5. Robustness of our results with respect to variations in model assumptions and parameters. (A) Rate of lysogeny across
different threshold values for model with CII tetramers instead of dimers, phage replication (deterministically doubling every 3 minutes for the first 15
minutes) and CI self repression. Blue line: MOI~1, V~1; green line: MOI~2, V~2. (B) Global sensitivity analysis using 200 different parameter sets
chosen by randomly varying all parameters within a factor of 2 or 10 of their nominal values. Rate of lysogeny for MOI~1, V~1 against MOI~2, V~2
are plotted with blue dots for changes by a factor of 2 and green dots for changes by a factor of 10. The orange dashed line represents the point
where rate for MOI~1, V~1 is equal to MOI~2, V~2. The rate of lysogeny for each parameter set is estimated using 500 stochastic simulations with
a decision threshold set at 25% above the mean ½CII � value for that parameter set.
doi:10.1371/journal.pone.0103636.g005

Figure 6. The Role of Spatial Effects. Average CII concentrations for different rates of diffusion. (A) MOI = 1, V = 1, phage at centre
(S½CII �T60~19:02,se~0:316); (B) MOI = 2, V = 2, phage at centre (S½CII �T60~19:35,se~0:222); (C) MOI = 2, V = 2, phages at a quarter and three
quarter of the cell length (S½CII �T60~18:91,se~0:220); (D) MOI = 2, V = 2, phage at cell poles (S½CII �T60~18:72,se~0:202). Average [CII] with for non-
spatial model (blue line) shown alongside spatial model (yellow lines). Results based on n~200 simulations. (E) Rate of lysogeny across different
threshold values for spatial model with original diffusion rates (solid lines). Results are shown alongside the non-spatial results (dashed lines).
doi:10.1371/journal.pone.0103636.g006

Stochastic Decision Making in Lambda Phage
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dependent on the specific choice of the genetic model assumptions,

model parameters or decision criteria. We show that modifying

model parameters or some of the model assumptions does not

affect our conclusions. In general, any non-linear decision making

process should depend on both the average dynamics of the viral

genes and their fluctuations. While the average behaviour is

mainly controlled by the viral concentration (VC), the fluctuations

are dependent on the absolute copy number of biomolecules and

therefore the number of infecting phage (i.e. MOI). The role of

gene expression noise on the cell fate decision making process has

been investigated in other systems [36–41]. Our results add to the

growing body of work that suggest stochastic effects have

significant influence in the decision making process [17,18].

We used a particle-based spatial Monte Carlo approach to

investigate the effect of spatial segregation and diffusion on the

decision making process. We find that spatial segregation

introduces small but non-zero effects on the rate of lysogeny.

This is because the mean level of viral protein CII is dependent on

the spatial arrangement of the phage particles inside the cell.

Based on the physiological diffusion coefficients we have used

(Table 1), viral mRNAs travel across a typical sized cell in about

10 minutes and it takes only few seconds for viral proteins, while

the time-scale of decision making is much longer set at 60 minutes

in this study. Of course, presence of diffusion barriers can

significantly increase the effect of spatial segregation on the phages

inside the cell. We note that diffusion could have subtle effects on

gene expression noise [42] and this in turn could also affect the

decision probabilities as discussed above.

Image analysis of the original movies from the study by Zeng

et al. [24] reveals that the cell growth rate decreases at higher

MOI. This is probably due to the additional strain on the cellular

resources needed to support multiple phage. It would be

interesting to investigate if there are similar effects of MOI on

the growth rate of lysogens and possible repercussions for the

stability of the genetic switch. We observe that including the MOI

dependence of cellular growth rate combined with growth rate

regulation of transcription in our model can produce a contribu-

tion to MOI dependence of rate of lysogeny.

In addition to what is described above, we have investigated

other potential influencing factors that could provide explanations

for the observed results. While experimentally, infections were

synchronised by a method of temperature change (described in

[24]), we analysed the effect of a small difference in infection times

for multiple phages. When comparing a cell of MOI~2 with

phage infecting at the same time against a cell with a small

difference in the timing of the infecting phage, we observed a small

difference in mean ½CII � but no significant difference in the

proportion choosing lysogeny. Another possible factor could be the

crude estimation of the cell volume based on cell length since due

to curved ending of E. coli, double the length will not be exactly

Figure 7. The Role of Cell Cycle Effects. (A) Method for determining cell growth rate. Measurements are taken at 2 time points, the first frame
and final frame. The final frame is determined by the event. For an uninfected cell (grey) this is the point at which the cell divides. For an infected cell
it is the point at which a decision of lysis (green) or lysogeny (red) has been made. The growth rate was calculated using log L2

L1

� ��
T where T is the

time between the first frame and the final frame. (B) Observed growth rates at different MOI. (C) Effect of cell growth on rate of lysogeny by
considering dilution only. Fast rate ~0:007min{1 and slow rate ~0:0055min{1 . (D) Effect of growth rate on rate of lysogeny when also considering
possible changes in transcription rates. Growth rate modulation of transcription rate are similar to the study by Klumpp et al. [33], with a two fold
enhancement in the slower transcription rate case.
doi:10.1371/journal.pone.0103636.g007
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double the volume. Performing simulations comparing cells that

accounted for this small offset in volume, only slight differences in

mean ½CII � were observed and it was clear that noise was still the

dominating factor on the outcome.

To experimentally test if the proposed mechanisms in this study

can explain the MOI dependence of rate of lysogeny as observed

by Zeng et al. [24], we propose the following experiments. Our

model predicts that larger viral gene expression noise increases

rate of lysogeny (Figure 4B). To test the role of noise in lambda

phage decision making, firstly one needs to measure cell-to-cell

variability in viral gene expression noise. In addition, re-

engineering lamda phage for example by modifying promoter

strength or mRNA stability to modify gene expression noise can

validate the role of intrinsic noise in lysis-lysogeny decision

making. To test the role of cellular growth on phage decisions,

quantifying rate of lysogeny in infected bacteria growing in

different growth media can validate our prediction of strong

dependence of decision outcome to cellular growth as shown in

Figure 8B. Together, these experiments can elucidate the propor-

tional contribution of the proposed mechanisms underlying the

observed MOI dependence of phage decision making.

Partial gene dosage compensation is a widely observed

phenomena in cellular systems, however a complete understanding

of the underlying mechanisms is lacking [43–46]. Previous studies

have suggested that volume changes [43], nonlinear biochemical

interactions [46] and network structure [45] may contribute to this

compensating effect. As proposed by Joh and Weitz [14], gene

dosage compensation can provide an explanation for the observed

MOI dependence of rate of lysogeny. Thus, the factors that we

have investigated influencing the phage decision also provide

potential general mechanisms for gene dosage compensation.

Intrinsic gene expression noise is dependent on gene dosage and

therefore, if coupled to nonlinear dynamics has the potential to

play a part in all forms of gene dosage effects. Spatial segregation

of genes and diffusion can also contribute to a gene dosage

dependent phenomenon particularly in larger cells. Finally, any

effect of gene dosage on cellular growth rate can be the basis of

gene dosage dependent phenomenon [43]. It is likely that a

combination of these factors can contribute towards partial gene

dosage compensation in biological systems.

It is thought that the lysogenic state is a form of defence

mechanism to prevent extinction [4]. It is not clear why the form

of MOI dependence observed in [24] is beneficial for the phage in

this context. Our exploration on this issue thus far has revealed

ecological dynamics under fixed resource conditions does not show

clear benefit for this specific form of decision over a constant rate

of lysogeny that does not depend on the physiological state of the

cell. It is possible that the advantage of this form of decision

making is only seen in fluctuating environments [47], and this

could be an interesting avenue for future research.

Methods

Model
The model that is used in this study focuses on the dynamics of

early viral genes. This representation of the system originally

appeared in [12]. It includes the CI, CII and Cro genes which are

important in determining the outcome of the lysis-lysogeny

decision. These are generated by the PRM=PR and PRE

promoters. The equations are shown below

CIzCI '

kz
CI

k{
CI

CI2

CrozCro '

kz
Cro

k{
Cro

Cro2

CIIzCII '

kz
CII

k{
CII

CII2

Figure 8. The Effect of Growth Media on Rate of Lysogeny. (A) Division time for cells infected with lambda phage. For MOI~0 this is the
division time of the cell, for MOIw0 this is the division time for infected cells that choose lysogeny. (B) Effect of growth rate on rate of lysogeny in
different growth media. Here, simulations compared the rate of lysogeny in cells of the same size with different MOI. Growth rate modulation of
transcription rate are similar to the study by Klumpp et al. [33].
doi:10.1371/journal.pone.0103636.g008
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CI
ªCI 6 0

Cro
ªCro 6 0

CII
ªCII 6 0

PRM=R,0zCI2 '

kz
CI

k{
CI

PRM=R,CI

PRM=R,0zCro2 '

kz
Cro

k{
Cro

PRM=R,Cro

PRE,0zCII2 '

kz
CII

k{
CII

PRE,CII

PRM=R,CI

bCI
PRM=R,CIzmCI

PRE,CII

dCI
PRE,CIIzmCI

PRM=R,0

aCro
PRM=R,0zmCro

PRM=R,0

aCII
PRM=R,0zmCII

mCI

ªm 6 0

Table 1. Model Parameters.

Parameter Description Value

k{
CI Backward dimerisation rate of CI k{

CI ~0:1MOL2min{1

kz
CI

Dimerisation rate of CI kz
CI ~1|106MOLmin{1

k{
Cro Backward dimerisation rate of Cro k{

Cro~0:1MOL2min{1

kz
Cro

Dimerisation rate of Cro kz
Cro~1|106MOLmin{1

k{
CII Backward dimerisation rate of CII k{

CII ~0:1MOL2min{1

kz
CII

Dimerisation rate of CII kz
CII ~1|106MOLmin{1

ªCI Decay Rate of CI ªCI ~0:04min{1

ªCro Decay Rate of Cro ªCro~0:05min{1

ªCII Decay Rate of CII ªCII ~0:12min{1

k{
CI Protein Unbinding Rate of CI k{

CI ~0:1MOL2min{1

kz
CI

Protein Binding Rate of CI kz
CI ~1|106MOLmin{1

k{
Cro Protein Unbinding Rate of Cro k{

Cro~0:1MOL2min{1

kz
Cro

Protein Binding Rate of Cro kz
Cro~1|106MOLmin{1

k{
CII Protein Unbinding Rate of CII k{

CII ~0:1MOL2min{1

kz
CII

Protein Binding Rate of CII kz
CII ~1|106MOLmin{1

bCI Transcription rate of mRNA for CI from promoter 1 bCI ~1:6min{1

dCI Transcription rate of mRNA for CI from promoter 2 dCI ~1:2min{1

aCro Transcription rate of mRNA for Cro aCro~0:8min{1

aCII Transcription rate of mRNA for CII aCII ~0:8min{1

s Translation rate s~0:5min{1

Time step (Spatial Simulations) 1|10{5

Protein Diffusion Coefficient 6|108nm2min{1

mRNA Diffusion Coefficient 3|106nm2min{1

Binding Radius (Spatial Simulations) *1nm

Cell Width (Spatial Simulations) 250nm

doi:10.1371/journal.pone.0103636.t001
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mCro

ªm 6 0

mCII

ªm 6 0

mCI

s
mCIzCI

mCro

s
mCrozCro

mCII

s
mCIIzCII

where CI2, Cro2 and CII2 represent the dimers of CI , Cro and

CII respectively, while mCI , mCro and mCII represent their

corresponding mRNA. The unbound promoters are represented

by PRM=R,0 and PRE,0, and PRM=R,CI , PRM=R,Cro and PRE,CII

denote the bound configurations of the promoters. The param-

eters used are shown in Table 1 and are the same as originally

used in [12]. Dimerisation rates are given by kz
CI , kz

Cro and kz
CII

while the corresponding separation rates are given by k{
CI , k{

Cro

and k{
CII . Transcription rate of CI from PRM=R is given by bCI

and from PRE it is given by dCI . Transcription rates of Cro and

CII are given by aCro and aCII respectively. The decay rates of the

proteins are given by cCI , cCro and cCII respectively. Translation

rates of all proteins are given by s. The binding rates of dimers to

promoters are given by kz
CI , kz

Cro and kz
CII while their unbinding

rates are given by k{
CI , k{

Cro and k{
CII . In contrast to the original

deterministic analysis of this model [12], we simulate this model

stochastically using Facile [48] and Easystoch [49]. The approach

used the Gibson-Bruck [50] implementation of the Gillespie

algorithm. Spatial modelling was carried using a Monte Carlo

particle-based tool, Smoldyn [30]. The diffusion constants used

were found using Bionumbers [51] and are shown in Table 1. For

both spatial and non-spatial simulations, data points were output

at every 0:1 minutes. The analysis of the generated data was

carried out in Matlab (version R2012a). The means protein

numbers were calculated over all output times between t~0 and

t~60 minutes. The concentrations were calculated by dividing the

protein numbers by the standardised cell volumes where V~1

corresponds with a volume of 1|10{15L. The mean concentra-

tion of each run of the system was then compared to a threshold

level W to determine whether the outcome was lysis or lysogeny.

Cell Image Analysis
Time lapse cell imaging analysis, and subsequent statistical

analysis was performed in Schintzcell (courtesy of Michael Elowitz,

[52]) and Matlab respectively. For details of the time lapse

microscopy and other experimental details, see Zeng et al. [24].

Cell length was measured in the first frame and when they were

deemed to have made a lysis or lysogeny decision. This decision

point was determined by the a threshold level or YFP (lysis) or

mCherry (lysogeny) which, once crossed meant the cells were

committed to the chosen outcome. The number of infecting phage

were counted in the first frame stack using ImageJ (http://rsbweb.

nih.gov/ij/).
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