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Abstract

C-function MADS-box transcription factors belong to the AGAMOUS (AG) lineage and specify both stamen and carpel
identity and floral meristem determinacy. In core eudicots, the AG lineage is further divided into two branches, the euAG
and PLE lineages. Functional analyses across flowering plants strongly support the idea that duplicated AG lineage genes
have different degrees of subfunctionalization of the C-function. The legume Medicago truncatula contains three C-lineage
genes in its genome: two euAG genes (MtAGa and MtAGb) and one PLENA-like gene (MtSHP). This species is therefore a
good experimental system to study the effects of gene duplication within the AG subfamily. We have studied the respective
functions of each euAG genes in M. truncatula employing expression analyses and reverse genetic approaches. Our results
show that the M. truncatula euAG- and PLENA-like genes are an example of subfunctionalization as a result of a change in
expression pattern. MtAGa and MtAGb are the only genes showing a full C-function activity, concomitant with their
ancestral expression profile, early in the floral meristem, and in the third and fourth floral whorls during floral development.
In contrast, MtSHP expression appears late during floral development suggesting it does not contribute significantly to the
C-function. Furthermore, the redundant MtAGa and MtAGb paralogs have been retained which provides the overall dosage
required to specify the C-function in M. truncatula.
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Introduction

Genetic regulation of flower development has been subject of

study over the last decades, particularly in the model species

Arabidopsis thaliana and Antirrhinum majus. These studies

provided a general understanding of floral organ development in

higher plants and led to the proposal of the ABCDE model, which

postulates that floral organ identity in each whorl is defined by five

functions named A, B, C, D and E (for review [1,2,3,4]). In

particular, C-function is required to promote stamen and carpel

identity, to establish the determinate nature of the floral meristem

[5] and also to repress A-function in the third and fourth whorls

[6]. Cloning of ABCDE organ identity genes in Arabidopsis
showed that most of them encode MADS-box transcription

factors. Studies of MADS-box genes in higher eudicotyledoneous

flowering plants show that they are key regulators of flower

development.

In Arabidopsis and Antirrhinum, the C-function is essentially

represented by a single gene respectively, AGAMOUS (AG) [5,7]

and PLENA (PLE) [8]. Additional C-function genes have been

identified: SHATTERPROOF1 (SHP1) and SHATTER-
PROOF2 (SHP2) [9,10] genes in Arabidopsis and FARINELLI
(FAR) [11] in Antirrhinum.

Phylogenetic studies using a large data set of AG-like sequences

show that AG and PLE actually represent paralogous lineages

derived from a duplication in a common ancestor early in the

history of the core eudicots. This duplication gave rise to the euAG
lineage which includes AG and FAR, and the PLENA lineage

(PLE), where SHP1/SHP2 and PLENA are placed

[12,13,14,15]. An even more ancient duplication occurred before

PLOS ONE | www.plosone.org 1 August 2014 | Volume 9 | Issue 8 | e103770

http://creativecommons.org/licenses/by/4.0/
http://www.ncbi.nlm.nih.gov/genbank
http://www.ncbi.nlm.nih.gov/genbank
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0103770&domain=pdf


the radiation of extant angiosperms, producing the C lineage (AG
lineage) and the ovule-specific D lineage (AGL11 lineage) [12,15].

AG, FAR and PLE all display very similar expression patterns

during the developing male and female reproductive organs

[5,8,11]. Mutations of AG and PLENA in their respective species

produce identical phenotypes characterized by developing flowers

with petals in whorl 3 instead of stamens, and sepals in whorl 4

instead of carpels. In addition, the floral meristem is not

determinate [7,8]. However, far mutation only affects male

reproductive organs, causing partial male sterility [11]. Mean-

while, SHP genes are only expressed in the ovules, in the

developing pistil and show almost identical expression patterns in

developing Arabidopsis fruit [16,17,18]. They function redundant-

ly in style and stigma development, notably in the fusion of the

carpel [19], and in seedpod shattering [10]. SHP and FAR genes

do not contribute significantly to the C-function although FAR is

expressed at early stages of flower development.

These studies showed a random evolutionary trajectory for gene

functions after a duplication event. AG and PLE, different

members of a duplicated gene pair, retained the primary homeotic

functions in different lineages. Their respective orthologs have

taken completely new roles in fruit dehiscence, as the case of

SHP1/SHP2 genes, or contribute redundantly in male repro-

ductive development, as the case of FAR. Representatives of both

euAG and PLE lineages have been identified in different core

eudicot species and several functional analyses are available for the

paralogs from petunia, tomato, and Nicotiana benthamiana
[20,21,22,23].

In addition to the ancient duplication events observed in the

AGAMOUS subfamily, more recent duplication events appear to

have occurred in the euAG lineage [12,15,24]. There have been

reported two members of the euAG lineage in some species, as for

example Populus trichocarpa [25], Cucumis sativus [26], Gerbera
hybrida [27], and in the legume species Lotus japonicus [28],

Pisum sativum and Medicago truncatula (this study). However, in

most cases, functional analyses are lacking. Both phylogenetic and

functional data of gene lineages are very important to understand

the evolution of gene families [12,29].

Medicago truncatula (Mt) has three C-lineage genes: two euAG
genes (MtAGa and MtAGb) and one PLENA-like gene (MtSHP;

[30]). To gain insight into the specific contribution of the euAG
and PLE-like paralogous genes in the control of the C-function,

we compared the expression patterns of the three C-lineage genes

during flower development. We have also characterized MtAGa
and MtAGb loss-of-function mutants and plants where both genes

have been simultaneously silenced. The particular capacity of

these two genes to promote reproductive organ identity has been

tested by ectopically expressing them in Arabidopsis. Our results

indicate that the members of euAG and PLE lineages in M.
truncatula are subfunctionalized, where the C-function is only

promoted by the euAG paralogs. They largely overlap in function

but the overall dosage of both gene products is critical to promote

complete stamen and carpel identity and floral meristem

determinacy in M. truncatula.

Material and Methods

Plant material and growth conditions
Medicago truncatula cv. Jemalong lines A17, SA1335 and

R108, and Arabidopsis thaliana cv. Columbia plants were used in

this study. Plants were grown in the greenhouse, at 22uC (day) and

18uC (night) with a 16 h light/8 h dark photoperiod, in soil:sand

(3:1) irrigated with Hoagland No.1 solution supplemented with

oligoelements [31].

The mtaga mutant allele (previously matag-2) was isolated in a

previous screening [32] and homozygous plants were used in this

study.

Identification of Tnt1 insertion sites in MtAGb and co-
segregation test

The M. truncatula population used for the screening of mutants

was described in detail [33,34,35,36] (http://bioinfo4.noble.org/

mutant/). The mtagb allele was identified by PCR screening of a

segregating population of approximately 10,000 independent lines,

using primers annealing to the MtAGb sequence (AGb-F, Table

S2) in combination with primers annealing to the LTR borders of

the Tnt1 retroelement (Tnt1-F; Table S2 and Figure S3). We

identified a line (NF4908) with an insertion of the retroelement

located in the first intron at 277 bp of the starting codon

(Figure 1A). The R1 plants were genotyped by PCR using the

Tnt1-F primer in combination with the gene-specific primers

MtAGb-F and MtAGb-Rgenomic (Table S2 and Figure S3B).

Approximately 70% of the plants showed a mutant phenotype and

co-segregated with the Tnt1 insertion.

Isolation and sequence analysis
MtAGa and MtAGb cDNAs were isolated from a library of M.

truncatula A17 inflorescence apices [37], using the MADS-box

fragment of the M. truncatula PISTILLATA gene as a probe.

Sequence alignments and similarity comparisons of the inferred

proteins were performed using Align and ClustalW tools [38]. The

deduced amino acid sequences were aligned using ClustalW and

further refined by hand. Genomic sequences search was

performed using BLAST [39].

The second intron sequences were obtained by PCR using

genomic DNA and the primers MtAGa-intron-F and MtAGa-

intron-R for MtAGa and MtSHP-intron- F and MtSHP-intron-R

for MtSHP (Table S2). To predict the probability of the presence

of LFY binding sites in the intron sequences, we used the

Morpheus webpage facility (http://biodev.cea.fr/morpheus/

Default.aspx) with the LFY matrix. The score tool permits

localization of the best transcription factor binding sites in DNA

fragments.

Phylogenetic tree
The phylogenetic tree was inferred by Neighbor-Joining using

Poisson-Corrected amino acid distances. Reliability of internal

nodes was assessed using bootstrap with 10000 pseudo-replicates.

Tree inference was conducted using MEGA version 4 [40]. The

data set comprised 28 previously reported C- and D-class genes

obtained from GenBank and the two new sequences that we

isolated (MtAGa and MtAGb). The tree was rooted using the

Arabidopsis D-class gene SEEDSTICK (STK) sequence. All

sequences used in this analysis, with their respective species and

accession numbers, are included in Table S1.

Southern blot hybridization
Plant genomic DNA was extracted from leaves as described by

[41]. Ten micrograms of DNA were digested with restriction

enzymes, separated on 0.7% Tris-borate EDTA 1X agarose gels

overnight at 1V/cm and transferred to a nylon membrane.

Southern blot hybridization was performed by standard methods

at 65uC. A 241 bp fragment of MtAGa cDNA (positions 572-813)

and a 215 bp fragment of the MtAGb cDNA (positions 558-773)

were amplified with the specific primers MtAGadir, MtAGarev,

MtAGbdir and MtAGbrev1 (Table S2) and used as probes.

Duplicated euAG Genes in Medicago truncatula
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Expression analyses
Total RNA was isolated from frozen plant material using the

RNeasy Plant mini Kit (Qiagen, Germany) according to the

manufacturer’s instructions.

For Northern blot analysis total RNA (15 mg) from frozen

leaves, roots, stems, flowers and pollinated ovaries (young fruits)

was used. RNA electrophoresis was carried out in formaldehyde-

agarose gels, transferred to Hybond N+ membranes (Amersham

Figure 1. Two euAGAMOUS genes in Medicago truncatula. (A) Gene structure of MtAGa and MtAGb. Coding sequences are represented as boxes
and introns as dotted lines. Black triangles localize the position of the Tnt1 insertions present in the mutant lines mtaga (NF13380) and mtagb
(NF4908) used in this study. (B) Neighbor-Joining Tree of euAG and PLENA homologs from a selection of diverse species. The numbers next to the
nodes refer to bootstrap values from 10000 pseudo-replicates. (C) Distribution of putative LFY binding sites in the first intron of MtAGa, MtAGb and
MtSHP genes as identified with the use of a position-specific scoring matrix using a cutoff value of 220.
doi:10.1371/journal.pone.0103770.g001
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Biosciences, USA), and hybridized with 32P-labeled probes under

standard conditions. The probes were generated from the same

gene fragments used for Southern blot analysis.

For Real Time RT-PCR analysis total RNA was treated with

rDNaseI of the DNase Treatment and Removal Kit (Ambion, Life

Technologies, USA). For first-strand synthesis, total RNA (1 mg)

was reverse-transcribed in a 20 ml reaction mixture using the

PrimerScript 1st strand cDNA Synthesis Kit (Takara, Japan). One

microliter of RT reaction was used for a Real Time RT-PCR

analysis with 300 nM of each primer mixed with the Power SYBR

Green PCR Master Mix (Applied Biosystems) according to the

manufacturer’s instructions. The reaction was carried out into 96

well-optical reaction plates using an ABI PRISM 7500 Sequence

Detection System and appropriate software (Applied Biosystems).

The relative levels were determined by the 2 –DDCt Method [42].

To normalize the variance among samples, Secret Agent (O-linked
N-acetyl glucosamine transferase: TC77416; [43]) was used as an

endogenous control. All reactions were performed by triplicate

using a biological replicate for each sample. Primers were designed

using PRIMER EXPRESS software (Applied Biosystems, USA)

using default parameters and are listed in Table S2.

RNA in situ hybridization was performed on 8 mM paraffin

sections of M. truncatula inflorescences as described by [16], using

digoxigenin-labelled probes. The RNA sense and antisense probes

were generated from the same gene fragments used for Southern

blot analysis. Both fragments were cloned into the pGEM T-easy

vector (Promega, USA) and the probes were synthesized using SP6

or T7 RNA polymerases.

Virus Induced Gene Silencing in Medicago truncatula
pCAPE1 and pCAPE2 derivatives were used as vectors for gene

silencing [44]. Two DNA fragments from the 39 region of the

MtAGa (310 bp) and MtAGb (338 bp) genes were obtained by

PCR using primers (MtAGaVIGSdir, MtAGbVIGSdir, MtAGa-

VIGS2rev, MtAGbVIGS2rev) that added restriction sites to both

ends of the fragments (Table S2). The amplicons were cloned into

pGEM T-easy (Promega, USA), digested using the appropriated

restriction enzymes and cloned into a similarly digested pCAPE2

vector [44]. The resulting plasmid (pCAPE2-MtAGab) was

confirmed by sequencing before being introduced into Agrobac-
terium tumefaciens strain C58/pMP90. Agrobacterium inoculation

of M. truncatula leaves was performed as described by [44].

Generation of transgenic RNAi plants
Transformation of M. truncatula R108 was performed as

described previously [33]. The 35S::RNAi-MtAG construct was

performed using a 215 bp fragment from MtAGb (positions 557–

772 from the ATG codon), amplified using primers MtAGb-

RNAiD and MtAGb-RNAiR (Table S2) that incorporate two

restriction sites that are used for cloning into the pHANNIBAL

vector [45].

Arabidopsis transformation
MtAGa and MtAGb cDNA fragments were amplified using

AGaSBXdir, AGaSBXrev, AGbSBXdir and AGbSBXrev primers

(Table S2) and cloned into the pBINJIT60 vector [46], a pBIN19

derivative (Clontech, Palo Alto, CA, USA), which placed gene

transcription under the control of a tandem repeat of the CaMV

35S promoter. Arabidopsis plants were transformed by floral

dipping according to standard procedures [47] and selected on

kanamycin.

Photography, microscopy and cryo-SEM
Light photographs were made with a stereomicroscope Leica

MZ16F attached to a DFC300 FX camera (Leica Microsystems,

Germany).

After in situ hybridizations, sections were observed and

photographed with a Nikon Eclipse E-600 microscope equipped

with a digital camera.

For cryo-SEM, samples were frozen in slush nitrogen and

attached to the specimen holder of a CryoTrans 1500 Cryo-

Preparation System (Oxford Instruments, UK) interfaced with a

JEOL JSM-5410 scanning electron microscope. The samples were

then transferred from cryostage to the microscope sample stage,

where the condensed surface water was sublimed by controlled

warming to -85uC. Afterwards, the sample was transferred again

to the cryostage in order to gold coat it by sputtering. Finally the

sample was put back on the microscope sample stage to be viewed

at an accelerating voltage of 15 KeV.

Results

Identification of two euAGAMOUS genes in Medicago
truncatula

To identify MADS-box genes involved in flower development,

we screened a cDNA library of M. truncatula floral apices using a

set of MADS-box fragments from different species as a probe

[48,49]. Among the isolated clones, three corresponded to full-

length sequences that present significant similarity to genes of the

AGAMOUS subfamily. One of these clones presents high

sequence similarity with the Arabidopsis SHP1 and SHP2 genes

[17,18,50] and with the Antirrhinum PLENA gene (PLE; [8]) and

corresponds to the MtSHP gene [30]. The other two clones

isolated present high sequence similarity with the C-lineage genes

AGAMOUS of Arabidopsis [5] and FARINELLI of Antirrhinum
[11] and have been named MtAGa and MtAGb. The MtAGa
clone is 1208 bp long, with an ORF of 780 bp and a deduced

protein of 260 amino acids. The MtAGb clone is 1099 bp long,

with an ORF of 732 bp and the deduced protein has 244 amino

acids. MtAGa shows 81% amino acid identity with MtAGb, being

more similar in the N-terminal domains (98% in the MADS

domain, 76% in the I region and 80% in the K domain) than in

the C-terminal region (68% of identity). MtAGa and MtAGb show

respectively 71 and 68% amino acid identity with the euAG clade

protein FAR and either one 67% amino acid identity with AG

(Figure S1).

The MtAGb genomic sequence was found in two BAC clones:

mth2-30e7 (GenBank AC137837.4) and mth2-76i7 (GenBank

AC153460.24). This gene is organized in seven exons and six

introns (GenBank KJ470634; Figure 1A). The genomic sequence

of the MtAGa gene was not available in the databases and was

obtained in this study (GenBank KJ470633). MtAGa gene is also

organized in seven exons and six introns (Figure 1A). Both genes

are present as single copy in the genome as confirmed by Southern

blot analysis (Figure S2A). Genomic sequences from MtAGa and

MtAGb genes were used as BLASTN queries, and displayed using

the Chromosome Visualization Tool (CViT, http://www.

medicagohapmap.org/tools/blastform). We found that MtAGb
gene is located on chromosome 8 (Figure S2B). However, no

location was obtained for the MtAGa gene.

Phylogenetic analyses showed that MtAGa and MtAGb are

relatively recent paralogs within the euAG subclade (Figure 1B).

Other model legumes such as Pisum, Lotus and Glycine used in

this analyses, also displayed two paralogs in this subclade. In most

of the studied plants, the euAG subclade is represented by one

Duplicated euAG Genes in Medicago truncatula
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single gene, such as AG for Arabidopsis, FAR for Anthirrinum or

TAG1 for tomato.

Genes from the euAG- and PLE-subclades present a well

conserved gene structure and characteristic large introns essential

for their correct expression pattern [51,52]. In M. truncatula, both

MtAG genes show a large first intron (4607 bp in MtAGa and

3007 bp in MtAGb). We searched in these sequences for the

presence of putative LFY binding sites that are characteristic of C-

function genes. We included in this study the MtSHP gene and

then we have sequenced its first intron of 4281 bp (GenBank

KJ470635). We used a bioinformatics tool available at the

Morpheus webpage facility (http://biodev.cea.fr/morpheus/

Default.aspx) which examines the distribution of individual LFY

binding sites. The presence or absence of LFY binding sites

identified by this approach appears to be helpful in predicting to

what extent a C-clade gene acts as a true C-function gene [53].

Our results show different binding site landscapes for the three

genes analysed (Figure 1C). In the case of the MtAGb first intron,

there is a main single binding site of very high score similar to the

profile found for the PLE gene [53]. This site corresponds to two

fully intact CCAAT-boxes. In the first intron of MtAGa, lower

affinity sites are present but the binding seems to be compensated

through the action of several nearby sites as reported for the sites

present in the second intron of AG (Figure 1C). The prediction of

binding sites for LFY in the first intron of MtSHP gave only low

score values (Figure 1C) indicating a low probability to be

regulated by LFY at early stages of floral development.

Globally, these data suggest that the duplicated euAG genes

MtAGa and MtAGb might contribute to C-function specification

in M. truncatula and play a role during early stages of flower

development.

Expression patterns comparison of three M. truncatula
C-lineage genes during floral development

The expression patterns of MtAGa, MtAGb and MtSHP were

analysed by Northern blot in different plant tissues and the three

genes are exclusively expressed in floral and young fruit tissues

(Figure 2). We performed detailed in situ hybridization experi-

ments to show the distribution of MtAGa, MtAGb and MtSHP
mRNAs during floral development (Figure 3). Both MtAGa and

MtAGb transcripts began to accumulate at stage 2 of flower

development. At this stage, MtAGb accumulates in the centre of

the floral primordia while MtAGa signal was detected throughout

the floral meristem (Figure 3F and 3A). At stage 4, MtAGb
transcript was located in the region of the common primordia that

will give rise to the stamens and also in the central part of the floral

apex where the carpel is developing (Figure 3G). However,

MtAGa expression is still observed on the whole floral meristem,

including petal and sepal primordia (Figure 3B). From stage 5,

expression of both paralogs was distributed uniformly in whorls 3

and 4 (Figure 3C-E and 3H-J), although hybridization signal for

MtAGb was stronger on the abaxial region of the carpel. In later

stages, expression of both transcripts was observed in the

developing ovules, in the distal region of the carpel and on the

filament of the anthers (Figure 3E and 3J). In contrast, MtSHP
mRNA began to accumulate late on flower development and can

be detected at stage 6 in the inner cells of the developing carpel

(Figure 3M). Since late stage 7, MtSHP expression is exclusively

detected in the ovules (Figure 3N).

We conclude that the expression of the two M. truncatula euAG
genes remained largely restricted to the developing male and

female organs from early stages and throughout flower develop-

ment. MtAGa and MtAGb showed nearly identical spatial

expression patterns from stage 4 to late developmental stages.

Differences were mainly observed at early stages, where MtAGa
expression appeared to be wider spread in the floral meristem than

MtAGb. Essentially, the duplicated MtAGa and MtAGb genes

showed similar spatial and temporal expression patterns to those

described for C-function genes from the euAG subclade such as

AG and PLE. In contrast, MtSHP was only expressed in the

developing carpel and in the ovules, similar to the pattern

described for Arabidopsis SHP genes that do not significantly

contribute to C-function.

Figure 2. Expression patterns of MtAGa, MtAGb and MtSHP
genes in various plant tissues of M. truncatula. Northern blot
analyses were performed using total RNA prepared from leaves (L),
flowers (Fl), young fruits (Fr), stems (S) and roots (R).
doi:10.1371/journal.pone.0103770.g002
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MtAGa and MtAGb loss-of-function analyses
To investigate the specific contribution of MtAGa and MtAGb

genes in the M. truncatula floral development, we looked for

retrotransposon insertion mutants [32]. These mutants were

available for both genes, each containing a single Tnt1 element

inserted in the N-terminal part of the gene (Figure 1A). mtagb
Tnt1 insertion was identified as described in the experimental

procedures and it was located in the first intron at 277 bp from the

start codon (Figure 1A). mtaga (previously mtag-2), was isolated as

a case study to demonstrate the utility of the reverse genetic

platform in the model legume Medicago truncatula [32]. Using

quantitative RT-PCR we have confirmed that MtAGa or MtAGb
transcripts were nearly undetectable in the corresponding homo-

zygous mutant plants without affecting the expression levels of the

corresponding MtAG paralog (Figure S4). mtaga and mtagb
mutants exhibit very similar floral phenotypes: flowers are wild-

type in appearance, showing only mild developmental defects on

the third and fourth-whorl organs (Figure 4). Incomplete fusion of

the staminal tube was observed and occasionally, some petaloid

prolongation in the anther tip (Figure 4B and 4C). Whorl 4 is

frequently composed by multiple carpels (2-3) or by modified

carpels with stigmatic protuberances and exposed ovules (Fig-

ure 4B and 4C). Flowers were generally sterile, although

occasionally a few seeds were produced.

To investigate the effect of the combined loss-of-function of

MtAGa and MtAGb, we performed virus induced gene silencing

(VIGS) experiments. We used a VIGS vector based on PEBV (Pea
early browning virus) initially developed to induce gene silencing

in Pisum [44]. The silencing efficiency of this vector is lower in M.
truncatula cultivars than in P. sativum [54]. We generated the

pCAPE2-MtAGab construct to simultaneously silence both genes

(see Materials and Methods). Twenty one plants were inoculated

with the pCAPE2-MtAGab construct and we analysed the

phenotype of 150 flowers. 10% of the MtAGab-VIGS flowers

showed homeotic transformations in whorls 3 or 4. Only 1% of the

MtAGab-VIGS flowers showed a near complete loss-of-C-function

phenotype (Figure 4 D). In whorl 3 some anthers are completely

converted into petal-like organs, and in the fourth whorl, sepal-like

structures arise instead of carpels (Figure 4 D). These flowers also

showed indeterminacy of the floral meristem revealed by the

presence of multiple petaloid or sepaloid concentric structures in

the centre (Figure 4D, arrows). This phenotype suggests that both

MtAG genes were strongly down-regulated but, because of floral

tissue limitation, we could not determine the expression levels of

the targeted genes.

In parallel, we also developed transgenic M. truncatula lines in

which MtAG genes were down regulated by RNA interference

(RNAi) and three independent lines were obtained. Only one of

these lines (line 5.7) showed floral phenotypes similar to those of

single mtag mutants (Figure S5). These flowers showed clear

morphological aberrations consisting of mild homeotic transfor-

mation of stamens to petals and multiple carpels with exposed

Figure 3. Expression pattern of MtAGa, MtAGb and MtSHP genes during early floral development. In situ localization of MtAGa (A-E),
MtAGb (F-J) and MtSHP (K-N) transcripts in M. truncatula wild-type flower buds. Developmental stages were defined according to [74]. MtAGa
transcripts are localized in the whole floral meristem at stages 2 (A) and 4 (B). At stage 5 (C) MtAGa mRNA is detected in stamen and carpel primordia.
At stage 7 (D-E) expression locates in stamens, carpel and the developing ovules. MtAGb transcripts are localized in the center of the floral meristem
at stage 2 (F). At stage 4 (G) expression locates in the carpel primordia and the half of the common primordia that will give rise to the stamens. At
stage 5 (H) MtAGb mRNA is detected in stamen and carpel primordia. At stage 7 (I-J) MtAGb mRNA is detected in stamens, carpel and developing
ovules. MtSHP transcripts are not detected at stages 2 (K) and 5 (L). At stage 6 MtSHP transcripts are localized in the inner cells of the developing
carpel (M). At stage 7 (N) expression can be detected in the developing ovules. F: floral meristem; S: sepal; C: carpel; CP: common primordia; St:
stamen; P: petal; Fi: filament; A: anther; Ov: ovule.
doi:10.1371/journal.pone.0103770.g003
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ovules. We analyzed the expression of both MtAGa and MtAGb
genes in the three RNAi lines. These lines showed a different

degree of silencing for each targeted gene (Figure S5J). In silenced

line 1.3, we found MtAGb levels considerably reduced (,15% of

wild-type level), while MtAGa levels are somewhat decreased

(,90% of wild-type level). Strong silencing of one paralogous gene

did not produce homeotic floral defects. However, floral defects in

line 5.7 correlate with simultaneous downregulation of both genes

(,40% of wild-type level) (Figure S5J).

MtAGa and MtAGb gain-of-function analyses
Ectopic expression of AG results in the homeotic conversion of

sepals and petals into carpels and stamens, respectively [55,56].

Other reported phenotypes include early flowering and curling of

leaves. To investigate whether MtAGa and MtAGb proteins differ

in their ability to induce reproductive organ fate we overexpressed

these two genes in Arabidopsis. The coding sequence of these

genes was located under the control of the CaMV 35S constitutive

promoter. We analysed 75 independent primary transgenic (T1)

lines for every construct (35S::MtAGa and 35S::MtAGb plants)

and found plants with different floral phenotypes that we classified

as mild, medium and strong phenotype (Figure 5B-D). Transgenic

plants with mild phenotype showed wax accumulations on the

surface of the sepals (Figure 5I) that are characteristic of the carpel

(Figure 5H). The petals are narrow and asymmetric (Figure 5B

and 5J) with partial homeotic conversions to stamens (Figure 5K).

Flowers with medium phenotypes showed curved sepals (Fig-

ure 5C) with abundant accumulation of wax (Figure 5L). T1

plants with medium and strong phenotypes showed near complete

homeotic transformations of sepals to stamens (Figure 5M and

5N). Finally, flowers with strong phenotype showed thickened and

curved sepals (Figure 5D) that contain carpelloid structures with

ectopic ovules and stigmatic papillae (Figure 5P). Although these

three phenotypical classes were observed for both constructs, we

notice a higher proportion of plants with medium/strong

phenotypes (80.3%) in the MtAGb overexpressing lines (Fig-

ure 5Q). In contrast, 59.5% of MtAGa overexpressing lines

showed mild homeotic transformations.

In summary, constitutive expression of MtAGa and MtAGb in

Arabidopsis are able to cause equivalent homeotic alterations in

the flowers that are essentially identical to those caused by

constitutive expression of other euAG genes [56]. However

MtAGb protein seems to be more efficient than MtAGa to induce

reproductive organ fate when overexpressed in a heterologous

system.

Discussion

The model legume Medicago truncatula harbors two members

of the euAG sub-clade (MtAGa and MtAGb) and one member of

PLENA (MtSHP) [30]. In this study, we report the functional

characterization of the euAG homologs from this species to

achieve a more thorough understanding of the evolution of the

AGAMOUS subfamily in core eudicots.

Two euAG genes in Medicago truncatula
The finding of two euAG duplicated genes (MtAGa and MtAGb)

in M. truncatula, as well as in other legume species (see Figure 1B)

suggests that each pair of paralogs arose by a duplication event

prior to the speciation of legumes. They could have been

originated during the whole-genome duplication (WGD) event

that predated speciation of M. truncatula and other legumes

around 50-60 Mya [57,58]. Gene duplications allowed the

emergence of critical changes in several MADS-box gene lineages

that control floral organ identity. In Medicago, B-function genes

are also duplicated: MtAP3-like genes were originated by an

ancient duplication concomitant with the base of the core eudicot

radiation [49], whereas the two duplicated PI-like genes were

probably originated during the WGD event that also originated

the two MtAG genes ([48]; Roque et al. unpublished). The changes

of these genes after duplication may have played an important role

in the evolution of floral morphology and ontogeny in legumes.

The presence of two euAG genes is not only found in legumes.

Previous phylogenetic studies have revealed the existence of two

members of the euAG-lineage in several core eudicots [12]. This is

the case of the paralogous CUM1 and CUM2 from Cucumis
sativus, PTAG1 and PTAG2 from Populus trichocarpa, and

GAGA1 and GAGA2 from Gerbera hybrida. These studies are

mainly focused on the analyses of their expression patterns and

limited functional information is available. Recently, phylogenetic

analyses using AG protein sequences from several Asteraceae

species, have revealed that some of them, harbor two or three

members within the euAG-lineage [24].

MtAGa and MtAGb proteins conserve characteristic domains

of the C-lineage members, as the presence of an N-terminal

extension preceding the MADS domain [59]. The length of this

sequence in MtAG proteins falls within the range previously

described for other members of this clade (from 13 to 52 amino

acids) [59] (Figure S1). However, regarding to DNA sequence,

both genes possess six introns rather than the typical eight of the

other AG homologs [7,8,11,25,60,61]. This genomic organization

is observed in both angiosperm and gymnosperm genes suggesting

that the presence of eight introns is likely to be primitive in AG
subfamily [12]. The genomic organization of M. truncatula euAG
genes could have taken place during the WGD event that predates

legume speciation followed by gene rearrangement.

Within the highly similar gene structure of AGAMOUS genes, it

has been shown that the first and second introns are essential for

their correct expression [24]. Among the identified enhancers, the

transcription factor LFY is essential for AG activation and binds to

cis-elements located in the second intron [52,62]. The presence of

LFY-binding sites has been reported to be critical to establish early

expression of C-function genes during flower development [63].

We identified high affinity binding sites for LFY in the first intron

of both MtAGa and MtAGb. Although the binding site landscapes

observed for each euAG-paralogous gene are different, experi-

mental analyses have demonstrated that both types of distribution

of LFY binding sites are functionally relevant [53]. In contrast, in

our analyses MtSHP was not found to be a likely LFY target and

accordingly, MtSHP expression is exclusively detected in the

ovules at later stages of floral development. Similarly, SHP or

Figure 4. Floral phenotypes of M. truncatula mtagb and mtaga mutants and MtAGab-VIGS silenced plants. (A) Dissected wild-type M.
truncatula flower showing the four floral whorls (W1 to W4). Floral phenotypes are similar in mtaga. (B) and mtagb (C) mutants. Mutant flowers (left)
were opened to show the inner whorls. In W3 the staminal tubes are unfused and occasionally petaloid structures appear (arrow) replacing the
anthers. Carpels in W4 present stigmatic protuberances (arrow) or multiple unfused carpels and exposed ovules (boxed). (D) MtAGab-VIGS flower with
severe homeotic transformation of stamens into petals and carpels into sepaloid structures (arrows). Bars indicate 1 mm.
doi:10.1371/journal.pone.0103770.g004
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STK, which play late roles in fruit and ovule development, were

not found to be LFY targets in ChIP-seq experiments [53].

Together, our analyses suggest that both MtAG genes have the

same probability to be directly activated by LFY, conferring organ

identity on floral meristems that arise after the transition to

reproductive development.

Figure 5. Overexpression of MtAGa and MtAGb in Arabidopsis thaliana: floral phenotypes. Wild-type Arabidopsis flower (A). Floral
phenotypes observed in Arabidopsis plants overexpressing MtAGa or MtAGb genes have been classified into mild (B), medium (C) and strong (D).
Scanning electron micrographs showing the characteristic cellular types of wild-type sepals (E), petals (F), stamens (G) and carpels (H). Scanning
electron micrographs of sepals from overexpression lines with mild phenotype (I) showing wax accumulation (arrow). Narrow petals from
overexpressing lines (J) showing staminoid cellular types (K). Wax accumulation in sepals (L) of plants with medium and strong phenotypes. Near
complete homeotic conversion of petal into stamen (M) showing characteristic cellular types from anther (N) and filament (O). Flower with strong
phenotype showing ectopic ovules and stigmatic tissue (P) in the first whorl. Relative proportion of phenotypes observed in plants overexpressing
MtAGa or MtAGb genes (Q). Bars indicate: 1mm in A, B, C, and D.
doi:10.1371/journal.pone.0103770.g005
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Two euAG genes control C-function in Medicago
truncatula

A typical C-function knock-out phenotype is described as the

conversion of stamens to petals, and a flower in place of the fourth

whorl, which starts with a whorl of sepals [24]. 1% of MtAGab-

VIGS flowers showed a near complete loss-of-C-function pheno-

type. Stamens were replaced by petals or petal-like organs and the

central carpel was replaced by multiple petaloid or sepaloid

concentric structures. MtAGab-VIGS plants still showed some

reproductive structures probably due to the fact that these lines still

produce some MtAGa and MtAGb transcripts. It would be

desirable to measure the MtAG mRNAs levels in MtAGab-VIGS

flowers to validate this hypothesis, but sufficient plant material was

not available. However, using stable MtAG::RNAi lines we were

able to correlate the amounts of MtAG gene products with partial

loss-of-C-function phenotypes. Only simultaneous down-regula-

tion of both genes (below 40% of the wild-type level) produces

mild aberrations in stamen and carpel development. These results

support the quantitative model of AG activity, which suggests that

the different AG functions vary with respect to the amount of gene

product required [47]. The floral determinacy requires the higher

levels of AG, while low levels of AG are sufficient for carpel and

stamen specification [51]. According to this model, only a strong

reduction of both MtAG transcripts could explain the indetermi-

nacy of the floral meristem in MtAGab-VIGS flowers. In each

single mtaga and mtagb mutants the amount of the remaining

paralog is sufficient to confer almost all the C-function. However,

the discrete mutant phenotypes of these plants suggest that a single

MtAG gene is not sufficient to maintain the overall dosage of these

subcomponents of protein complexes which are needed to specify

the C-function in M. truncatula.
The spatial and temporal expression profile of AGAMOUS

subfamily genes is closely consistent with their conserved function

and subfunctionalization [24]. The expression of AG lineage genes

early in the floral meristem, and in the third and fourth floral

whorls is probably the ancestral expression profile of these genes

[24]. An overlapping conserved expression pattern for both euAG
and PLE-like genes is observed in Petunia, N. benthamiana and

Antirrhinum, at early floral developmental stages. This expression

profile correlates with their functional redundancy to promote the

C-function of these genes in the cited species [4,11,20]. In A.
thaliana, the only C-function factor is AG, because, although the

PLE-like proteins (SHP proteins) fully maintain a similar potential

activity, they are not physically present in the meristem and

primordia cells at the appropriate time. Their functions are rather

restricted to regulate specific tissue types after carpel identity has

been established. It remains possible that SHP genes redundantly

regulate carpel identity with AG because they are expressed in

early carpel primordia. The Arabidopsis AG and SHP genes are a

clear example of subfunctionalization as a result of a change in

expression pattern [64]. M. truncatula could be considered an

illustrative example, where the expression pattern of the members

of euAG or PLENA lineages would be very well correlated with

their function. The two euAG genes (MtAGa and MtAGb) are

expressed early during floral development, having a critical role in

the specification of reproductive organs and floral determinacy.

MtSHP expression appears late during floral development after all

organs have been specified, suggesting it does not contribute

significantly to the different components of the C-function (stamen

and carpel identity, and determinacy). A role for this gene in fruit

morphology and valve margin lignification has been suggested

[30]. However, we cannot exclude a function for MtSHP in ovule

development, associated with its expression in this tissue during

floral development.

It seems that changes in coding sequences are not the main

cause of the functional divergence between the majority of the

euAG and PLENA-like members. In most cases, the ectopic

expression of each sub-clade member gave similar results

[4,23,55,65,66,67]. This demonstrates that both types of proteins

have conserved their biochemical interactions. However, an

exception to the rule has been observed, for example, in

Antirrhinum, where the presence of an additional glutamine in

the K3 helix of FAR protein, causes its inability to induce carpel

identity in the first whorl [68,69]. These data suggest that the

functional diversification of Antirrhinum C-lineage genes largely

relies on changes in the protein ability to interact rather than on

changes in their expression patterns. The ectopic expression of M.
truncatula euAG- and PLENA-like genes (MtAGa, MtAGb and

MtSHP; this work; [20]) in Arabidopsis was able to cause

homeotic alterations in the flowers that are essentially identical

to those caused by the constitutive expression of other euAG- and

PLENA-like genes. However, we noticed that although there are

not qualitative differences in the floral phenotypes between

35S::MtAGa and 35S::MtAGb transgenic plants, they differ

quantitatively, indicating that MtAGb protein could be more

active in Arabidopsis than MtAGa.

Overall, our results show that MtAG genes could have the same

probability to be regulated by LFY at early stages of floral

development, while the prediction of binding sites for LFY in the

first intron of MtSHP indicated a low probability to be regulated

by LFY. Both MtAG genes showed nearly identical spatial

expression patterns, which are similar to those described for C-

function genes from the euAG subclade such as AG and PLE. In

contrast, MtSHP is exclusively detected in the ovules at late stages

of floral development. It is not physically present in the meristem

and primordia cells at the appropriate time to participate in the C-

function. Therefore, in M. truncatula, the C-function is redun-

dantly encoded by the two euAG-genes. Finally, the overexpres-

sion of MtAGa or MtAGb in Arabidopsis, gave similar results to

those observed for the ectopic expression of other euAG-genes. M.
truncatula euAG- and PLENA-like paralogs could have sub-

functionalized concomitantly with the differential spatial and

temporal expression pattern of the ancestral gene lineage.

Furthermore, MtAG paralogs are maintained in the genome

consistent with the gene balance hypothesis, which predicts that

the fate of duplicated genes largely depends on the maintenance of

the stoichiometric balance among members of the macromolec-

ular complex [70,71,72,73].

AG subfamily has been shaped by a complex history of gene

duplications leading to various degrees of redundancy and/or

subfunctionalization of the C-function in individual gene copies.

Despite these differences, the control of the development of

reproductive organs is strongly conserved across eudicots. We

provide insight on the evolution of the AG subfamily in a new core

eudicot species, highlighting the dynamic nature of functional

evolution following gene duplication in this MADS-box gene

subfamily.

Supporting Information

Figure S1 Sequence comparison of MtAGa, MtAGb and
related MADS-box proteins. Identical amino acid residues are

shaded in black, and similar amino acid residues in grey. The

MADS and K domains, and I and C-terminal regions are marked

with arrows. The AG motifs I and II are underlined with

continuous and discontinuous lines, respectively. A dotted line
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before the MADS-box indicates the N-terminal sequence

characteristic to some C-lineage genes.

(TIF)

Figure S2 Southern blot analysis of MtAGa and MtAGb
genes and localization of the MtAGb gene on the M.
truncatula physical map. (A) Southern blot analysis of MtAGa
and MtAGb. The length of the DNA markers (in Kb) is shown on

the left margin. (B) MtAGb sequence is anchored in BAC

AC153460, on the chromosome 8. Pseudochromosomes are

represented by the succession of BACs (vertical, grey thick lines)

separated by gaps (black, horizontal lines). Not all gaps are visible

at this resolution. Unmapped BACs are shown on the right as

MtChr0. MPM1/2: molecular weight markers.

(TIF)

Figure S3 Molecular characterization of Tnt1 insertion
line in the mtagb locus. Genotyping of 20 plants from the Tnt1
insertion population of NF4908 line. (A) PCR results using AGb-

F/Tnt1-F primers. (B) PCR results using AGb-F/AGb-R genomic

primers. Homozygous mutant plants are indicated with bold.

numbers. MPM: molecular weight markers; WT: wild-type

control; H2O: distilled water.

(TIF)

Figure S4 qRT-PCR expression analyses of loss-of-
function plants. Relative expression of MtAGa or MtAGb
genes in flower buds of mtaga and mtagb mutants. The height of

the bars for a given gene indicates differences in relative expression

levels in floral buds. The wild-type expression value was set to

1.00, and lower values are plotted relative to this value.

(TIF)

Figure S5 Floral phenotype and expression analyses of
35S::RNAi-MtAG plants. (A) Wild-type M. truncatula flower.

(B-C) Flowers from 35S::RNAi-MtAG transgenic line 5.7. (D)

Wild-type stamens. (E-F) RNAi lines showing unfused staminal

tubes and mild homeotic transformations (arrow). (G) Wild-type

carpel. (H-I) Multiple unfused carpels showing exposed ovules

(arrow). (J) Relative expression of MtAGa or MtAGb genes in

flower buds of the three transgenic RNAi lines measured by qRT-

PCR. The height of the bars for a given gene indicates differences

in relative expression levels in floral buds. The wild-type

expression value was set to 1.00, and lower values are plotted

relative to this value.

(TIF)

Table S1 Sequences of the C-lineage MADS-box genes
from the different species used in the phylogenetic
analysis. The GenBank accession numbers are indicated.

(DOCX)

Table S2 Primers used in this work.

(DOCX)
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