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Abstract

Background: Exhaled aerosol patterns, also called aerosol fingerprints, provide clues to the health of the lung and can be
used to detect disease-modified airway structures. The key is how to decode the exhaled aerosol fingerprints and retrieve
the lung structural information for a non-invasive identification of respiratory diseases.

Objective and Methods: In this study, a CFD-fractal analysis method was developed to quantify exhaled aerosol fingerprints
and applied it to one benign and three malign conditions: a tracheal carina tumor, a bronchial tumor, and asthma.
Respirations of tracer aerosols of 1 mm at a flow rate of 30 L/min were simulated, with exhaled distributions recorded at the
mouth. Large eddy simulations and a Lagrangian tracking approach were used to simulate respiratory airflows and aerosol
dynamics. Aerosol morphometric measures such as concentration disparity, spatial distributions, and fractal analysis were
applied to distinguish various exhaled aerosol patterns.

Findings: Utilizing physiology-based modeling, we demonstrated substantial differences in exhaled aerosol distributions
among normal and pathological airways, which were suggestive of the disease location and extent. With fractal analysis, we
also demonstrated that exhaled aerosol patterns exhibited fractal behavior in both the entire image and selected regions of
interest. Each exhaled aerosol fingerprint exhibited distinct pattern parameters such as spatial probability, fractal dimension,
lacunarity, and multifractal spectrum. Furthermore, a correlation of the diseased location and exhaled aerosol spatial
distribution was established for asthma.

Conclusion: Aerosol-fingerprint-based breath tests disclose clues about the site and severity of lung diseases and appear to
be sensitive enough to be a practical tool for diagnosis and prognosis of respiratory diseases with structural abnormalities.
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Introduction

Accurate and early diagnosis of lung cancer is crucial to

patients’ survivability. For instance, patients with non-small cell

lung cancer have a cure rate of more than 70% when diagnosed at

Stage I whereas less than 25% if diagnosed at Stage III [1].

Conventional methods of diagnosing lung diseases or cancers

include pulmonary function tests using the chest X-ray for

screening, CT/PET/SPET for examining abnormal structures,

and sputum cytology or lung tissue biopsy for evaluating the type

and extent of the cancer [2]. These diagnosis procedures are

generally reliable, but are costly and require professional

operations. Moreover, some procedures are invasive and pose

radiation risks to patients. Recently, an alternative diagnosis

method using a patient’s exhaled breath has been developed based

on the premise that exhalation contains clues to many diseases [3].

Metabolic changes of growing cancer cells cause changes in the

production of certain chemicals and generate a unique breath

‘‘fingerprint’’, which can be used to determine whether a disease is

present. Studies have reported elevated levels of nitric oxide in

relation with asthma [4], antioxidants with chronic obstructive

pulmonary disease (COPD) [5], chemokines with cystic fibrosis

[6], and isoprene with non-small cell lung cancer (NSCLC) [7].

Reviews on evidence supporting lung cancer diagnosis using

breath tests and related developments of breath devices can be

found in [8,9]. These breath devices are often small in size,

noninvasive, easy to use, less expensive, and hold the promise of

efficient diagnosis of lung cancer and other respiratory diseases.

In spite of these advantages, gas-signature based breath devices

only measure the presence and concentration of exhaled gas
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chemicals. They do not provide information on where these

chemicals are produced (the cancer site) or the level of airway

remodeling, both of which are crucial in cancer treatment

planning. The site and degree of airway remodeling can be

substantially different for different lung cancers (Fig. 1a). Any

alternative that can locate the malignant sites in a safer and less

expensive way would be highly desirable. Currently, this

information can only be obtained with the help of radiological

techniques such as CT or PET. A number of studies have explored

the use of aerosols as a lung diagnostic tool, such as the aerosol

bolus dispersion (ABD) method [10,11,12]. However, the ABD

method does not provide new information about the lung function

compared to existing pulmonary function tests [12]. More

recently, Xi et al. [13] proposed a new aerosol breath test that

has the potential to detect the disease and locate its site. This

method arises from persistent observations of unique deposition

patterns with respect to prescribed geometry and breathing

conditions [14,15,16]. We hypothesize that each airway structure

has a signature aerosol fingerprint (AFP), as opposed to the gas
fingerprint discussed before. Accordingly, any deviation from the

normal pattern may indicate an abnormality inside the airway,

which can be retrieved with an inverse numerical approach

developed by Xi et al. [17]. The subsequent questions are: how

can we quantitate the exhaled AFP patterns from different airway

geometries? Will the exhaled AFPs be sensitive enough to detect

airway structural changes? More importantly, how can we use this

information to predict the presence and location of airway

abnormalities based on samples of exhaled aerosol profiles?

In this study, fractal analysis will be implemented to quantitate

the complex patterns of exhaled aerosol fingerprints. These

patterns, although visually distinguishable, are resistant to

automatic quantitation and comparison. Since its introduction

by Mandelbrot [18], fractal analysis has been shown to be a robust

and powerful tool to measure the subtle changes in biological

morphology [19], vasculature [20], neural networks [21], metal

structures [22,23], landscapes [24], and even the stock market

[25]. Fractal geometry provides a simple model to describe

complex systems with a minimum number of parameters (e.g.,

fractal dimension specifying the degree of irregularity or

complexity). The conducting airways of human lungs are ‘‘space

filling’’ fractal structures [26,27]. Studies of the bronchial tree have

shown that the mean diameter of the airways is exponentially

related to the order of branching [28] with a fractal dimension of

1.57 [29]. Considering that tracer particles sequentially fill and

empty the fractal lung during inhalation and exhalation, it is

conceivable that the exhaled aerosol profiles also exhibit fractal

characteristics and are thus amenable to fractal analysis.

However, fractal analysis has two inherent limitations. First,

fractal dimension describes the complexity of an image by

quantifying how much space is filled by the particles; however, it

does not explain how the space is filled by these particles. To

address this limitation, lacunarity is also evaluated to describe the

spatial pattern of exhaled aerosol fingerprints. Lacunarity is a

measure of heterogeneity that describes the distribution of empty

spaces surrounding the particles. Patterns with high lacunarity are

more heterogeneous while those with low lacunarity are more

homogenous or rotationally invariant. Lacunarity adds signifi-

cantly to the description of an image with a known fractal

dimension, in that it describes the empty spaces in the image, and

thus describes how the particles fill the space. Therefore,

lacunarity can be used to differentiate aerosol patterns with

similar fractal dimensions, which may fill the space differently. The

second limitation of simple fractal analysis is that one single fractal

dimension alone may not adequately describe the complex

patterns of exhaled aerosol fingerprints, which consist of different

scales or details [13]. Considering that airflows within the lungs

result from a multiplicative cascade of non-linear processes [30],

even small variations in the lung morphology could appreciably

alter the exhaled aerosol patterns. Compared to monofractal

dimension analysis, multifractal analysis provides more informa-

tion about the space filling properties and thus will be more

appropriate to quantify the exhaled aerosol profiles. Reviews of

monofractals and multifractals can be found in [31].

The objective of this study is to assess the feasibility of aerosol

breath tests in diagnosing the location and severity of obstructive

lung diseases. We will first evaluate the sensitivity of exhaled AFPs

to airway modifications by computationally testing four lung

models (one benign and three malign conditions). To simulate a

Figure 1. Schematic of lung diseases and airflow dynamics. (a) Lung diseases subtypes: squamous cell cancer (SCC), adenocarcinoma (AC),
large cell cancer (LCC), and small cell lung cancer (SCLC), and asthma. (b) Lung models with healthy and diseased conditions: Model A with normal
airway structure, Model B with an adenocarcinoma at the carina ridge (carina tumor), Model C with a squamous cell carcinoma on a left segmental
bronchus (bronchial tumor), and Model D with constricted segmental bronchi (asthma).
doi:10.1371/journal.pone.0104682.g001
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breath test, aerosols are first inhaled and subsequently exhaled,

with exit aerosol profiles being captured at the mouth. The

exhaled AFPs will then be quantified using fractal and lacunarity

analysis to yield a more compact and simplified representation of

the particle spatial distributions. This will help to better correlate

the aerosol patterns and airway diseases. An automated pipeline of

pattern characterization and classification can also expedite

processing of large amounts of images in the future.

Methods

2.1. Construction of airway models with normal and
malign conditions

To evaluate the sensitivity of exhaled aerosol profiles to

morphology variations of the upper respiratory airway, four

models were considered in this study. The first one, Model A,

extended from the mouth to the bronchial bifurcations G6 and

was originally developed by Xi and Longest [14] based on MRI

images of a healthy adult male. Details of the airway geometry,

including the construction procedures and critical dimensions,

could be found in Xi and Longest [14,32] and were described

briefly as follows. The multi-slice MRI scans of the subject were

segmented using MIMICS (Materialise, Ann Arbor, MI) into a 3-

D model, which was further converted into a set of contours that

defined the airways of interest. Based on these contours, an

internal surface geometry was constructed in Gambit. Surface

smoothing was performed to the least extent to preserve the airway

anatomical details as much as possible. The resulting model was

intended to represent a normal airway and was further modified to

generate the other three models with different abnormalities in the

tracheobronchial (TB) region, as shown in Fig. 1b. Model B had a

10 mm tumor located at the tracheal carina ridge. Model C had a

smaller sized tumor (4 mm) at the segmental bronchi in the left

lower lobe. The tumor-to-airway diameter ratios selected here

were consistent with those adopted by Segal et al. [33], who

studied the impact of tumor size and locations in TB airways.

Model D had two severely constricted segmental bronchi in the left

upper lobe (number 3 and 4 in Fig. 1b), and represented asthmatic

airways. Morphologically, Model B represents a large airway

obstruction, Model C a small airway obstruction, and Model D a

severe flow perturbation. The detailed information of location and

size of the four models was listed in Table 1.

2.2. Numerical breath test protocol
There were two steps in this protocol: image acquisition via

computational modeling and image analysis via fractal and

lacunarity analysis. In light of computational modeling to acquire

exhaled aerosol fingerprints (AFPs), both inhalation and exhala-

tion were simulated in this study, with a bolus of tracer particles

first inhaled slowly and then exhaled. It is assumed that inhaled

ambient air or mainstream smoke will enter the mouth-throat

(MT) geometry with a relatively blunt velocity profile, which can

be defined as

u(r)~1:2244um
R{r

R

� �1=7

ð1Þ

where r is the inlet radial coordinate, um is the mean velocity and

R is the radius of the inlet. This profile is similar to a constant

velocity inlet, but provides a smooth transition to the no-slip wall

condition. A stochastic model was used to generate the inlet

particle profiles with initial particle velocities matching the local

fluid velocities. Five particle inlet profiles were simulated for each

model. During inhalation, atmospheric and vacuum pressures

were assumed at the mouth and bronchial outlets, respectively.

Aerosols were released at the mouth, and recorded at the outlets.

During exhalation, the recorded bronchial particle profiles were

specified as the inlet conditions and were tracked with expiratory

airflow. The exhaled aerosols were collected at the mouth.

The exhaled particle profiles (or AFPs) were then visualized and

analyzed in order to classify the AFP patterns among airway

models with normal and malign conditions. The computationally

predicted results were shown in the form of particle locations,

particle concentration distribution, and relative concentration to

the normal condition. The resultant images were then quantitated

using (1) statistical distribution in translational, radial, and

circumferential directions to describe the spatial pattern of the

AFPs, (2) regional and localized fractal analysis, (3) lacunarity

analysis, and (4) regional and localized multifractal analysis. The

involved algorithms will be explained below.

2.3. Computational fluid-particle transport models
Flows in this study were assumed to be isothermal and

incompressible. Continuous inhalation and normal breathing

conditions were assumed for all simulations. A large eddy

simulation approach LES-WALE model was used to solve the

flow field, which included a resolved part and a sub-grid part. The

Table 1. The location and size of airway models with benign and malign conditions.

Reference Condition Location Size (mm)

Model A Normal *LSB (3rd) 8.0

LSB (4th) 8.4

Model B Large tumor Tracheal carina 10

(35% blockage)

Model C Small tumor LSB (4th) 4.0

(47% blockage)

Model D Asthma

75% constricted LSB (3rd) 2

53% constricted LSB (4th) 4

*LSB: Left segmental bronchus.
doi:10.1371/journal.pone.0104682.t001
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resolved part of the field represented the ‘large’ eddies and were

solved directly, while the sub-grid part of the velocity represented

the ‘small scales’ whose effect on the resolved field was included

through the sub-grid-scale (SGS) model. The LES-WALE model

had been shown to produce almost no eddy-viscosity in wall-

bounded laminar flows and was therefore capable of reproducing

the laminar-to-turbulent transition [34]. A more detailed mathe-

matical description of the LES-WALE model was given in Nicoud

and Ducros [34].

The trajectories of monodispersed particles with a diameter (dp)

were calculated on a Lagrangian basis by directly integrating an

appropriate form of the particle transport equation [14],

dvi

dt
~

f

tpCc

ui{við Þzgi 1{að Þzfi, Brownianzfi, lift ð2Þ

where vi is the particle velocity, ui is the local fluid velocity, and tp

(i.e., rp dp
2/18 m) is the characteristic time required for a particle

to respond to changes in the flow field. The particle residence time

tp is defined as rp dp
2/18 m, with m being the air viscosity and dp

the particle diameter. The drag factor f is based on the expression

of Morsi and Alexander [35]. The Cunningham correction factor

Cc was computed using the expression of Allen and Raabe [36].

The effect of Brownian motion was considered [37] due to the

small particle size in this study. In-house user-defined functions

(UDFs) were implemented that considered the near-wall damping

effect [32] and the finite particle inertial effect [38]. In our

previous studies, the UDF-enhanced Lagrangian model had been

shown to provide close agreement with experimental deposition

data in upper respiratory airways for both submicrometer [39] and

micrometer particles [16,40,41].

The computational meshes of the four airway models were

generated with ANSYS ICEM CFD (Ansys, Inc). Due to the high

complexity of the model geometries, unstructured tetrahedral

meshes were generated with high-resolution prismatic cells in the

near-wall region. A grid sensitivity analysis was conducted by

testing the effects of different mesh densities with approximately

600 k, 1.2 million, 2.0 million and 3.2 million control volumes

while keeping the near-wall cell height constant at 0.05 mm. Since

the changes in both total and sub-regional depositions were less

than 1% when increasing mesh size from 2 million to 3.2 million,

the final grid for reporting flow field and deposition conditions

consisted of approximately 2 million cells with a thin five-layer

pentahedral grid in the near-wall region and a first near-wall cell

height of 0.05 mm.

2.4. Fractal and lacunarity analysis
Box counting fractal dimension (DB). DB was a measure of

increasing details with decreasing resolution scales. It was

calculated as the slope of the regression line of the log-log plot

of box size (or scale,e) and box count Ne, which is the number of

grid boxes containing pixels.

DB~ ln N"= ln " ð3Þ

Lacunarity (L ): As a measure of heterogeneity, lacunarity was

calculated as

L~
X

s=mð Þ2=E ð4Þ

where s is the standard deviation, m is the number of pixels per

box at size e, and E is the total number of box sizes [19,42]. The

sliding box algorithm was implemented to calculate the lacunarity

L [19]. The resulting lacunarity was independent of the DB, and

patterns indistinguishable by their DB were often distinguishable

by L , or vice versa [19].

Multifractal spectrum f(a) , a: The multifractal analysis relies

on the fact that natural systems often possess rich scaling

properties. To calculate the multifractal dimensions, a normalized

measure m i(q, e) was constructed with a family of scaling

exponents, q, to explore different regions of the singularity

measure,

mi(q,")~ Pi(")½ �q=
X

Pi(")½ �q ð5Þ

For q.1, m i(q, e) amplified the more singular measure, while

for q,1, it accentuated the less singular regions. The singularity

strength a (q) and the multifractal spectrum function f(a) with

respect to m i(q, ") were given by

a(q)~ lim
"?0

P
mi(q,") ln Pi(")

ln "
;

f (aq)~ lim
"?0

P
mi(q,") ln mi(q,")

ln "

ð6Þ

The plot f(a),a constituted the multifractal spectrum. To

calculate the lacunarity L and multifractal parameters a and

f(a), ImageJ with FracLac plugin was used [43].

Generalized Fractal Dimension (Dq): The generalized dimen-

sion, Dq, addressed how mass varied with e and provided a direct

measurement of the fractal properties of the image, which was

defined as below:

q=1 : Dq~
1

q{1
lim
"?0

P
m q,"ð Þ log½m q,"ð Þ�

log "
;

q~1 : Dq~ lim
"?0

P
m "ð Þ log½m "ð Þ�

log "

ð7Þ

The plot of Dq,q tended to be a decreasing sigmoidal for

multifractals and horizontal for non- or monofractals.

2.5. Statistical analysis
Exhaled aerosol data are presented as mean 6 standard

deviation (SD) based on the five breath tests for each model. Data

analysis was performed using the SAS statistical package (SAS

Institute, Inc.). A Kruskal-Wallis one-way analysis of variance test

was used to compare the difference in exhaled aerosol patterns of

different models in terms of their fractal dimensions and

lacunarities. A difference was considered statistically significant if

p was,0.05.

Results

3.1. Airflow field
Figure 2 shows the comparison of expiratory airflows among the

four models. The presence of an airway obstruction noticeably

alters the airflow field near the diseased site as shown by the

distorted streamlines and velocity distributions (top panel in

Fig. 2). The variation of the velocity field is further visualized using

the cross-sectional particle distributions (middle panel) close to the

carina (Slice A–A’). The tracer particles have a diameter of 1 mm

and closely follow the airflow. It is observed that both the location

Exhaled Aerosols Disclose Lung Structural Abnormalities
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Figure 2. Comparison of expiratory flow fields among the four models of A (Normal), B (carina tumor), C (bronchial tumor), and D
(asthma). The presence of an airway obstruction disturbs the exhaled airflow field which will further distort the trajectories of entrained particles and
gives rise to different exhaled aerosol profiles. The characteristics of flow distortions depend on the location and size of the airway obstructions.
doi:10.1371/journal.pone.0104682.g002

Figure 3. Visual and quantitative comparison of exhaled aerosol fingerprints (AFPs) among the four models. The first row shows
particle distributions collected at the mouth. The second row shows the particle concentration distributions, and the third shows the concentration
differences relative to the normal condition.
doi:10.1371/journal.pone.0104682.g003
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and size of the airway obstruction influence the exhaled flows,

which give rise to different expiratory particle patterns. The lower

panel of Fig. 2 shows the velocity distributions at Slice A–A’ of the

four models in both horizontal (Z) and transverse (Y) directions.

Compared to the control case (Model A), the most dramatic

difference is noted in Model B (carina tumor) which has the largest

tumor size and is closest to the sampling plane A–A’. In contrast,

Model C (segmental bronchial tumor) gives very similar velocity

profiles due to its smaller tumor size and larger distance from Slice

A–A’. However, this similar airflow does not necessarily imply

similar particle profiles, which depends on both local airflows and

upstream particle histories [44]. The time-integrative nature of the

particle behaviors can be seen clearly by comparing Model A and

C in terms of their similar velocity profiles and different particle

distributions at Slice A–A’ (Fig. 2). Lower velocities are observed

in Model D (Fig. 2) due to the severely constricted segmental

bronchus and associated higher flow resistances. There is a spot

that is devoid of particles in the top right corner of Model D,

which is presumably caused by the two constricted bronchus. The

difference in airflows gradually diminishes as they move towards

the mouth; however, the particle profiles are still different due to

their time-integrative properties.

3.2. 2-D comparison of exhaled aerosol-fingerprints
(AFPs)

The exhaled particles collect into a pattern that is unique to the

lung structure and can be considered the ‘‘fingerprint’’ of that

lung. The first row of Fig. 3 displays particle distributions collected

at the mouth for an aerosol size of 1 mm and a flow rate of 30 L/

min. Overall, each of the four models exhibits a pair of vortexes

Figure 4. Statistical analysis of exhaled particle distributions at different directions: (a) horizontal, (b) vertical, (c) radial, and (d)
circumferential (rose plot). The patterns of exhaled particles among the four models can be distinguished by comparing the spatial distributions
of particles in two mutually orthogonal directions.
doi:10.1371/journal.pone.0104682.g004
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and an asymmetrical aerosol distribution, the latter of which may

stem from the asymmetry of the right and left lungs. However,

discrepancies in aerosol distributions are still apparent among the

four models. Compared to Model A, Model B (tracheal carina

tumor) and C (left segmental bronchial tumor) both exhibit very

different patterns. First, the two vortexes and the central stripe in

Models B and C are much less defined. The left vortex almost

vanishes in Model B. Secondly, for Models B and C with

obstructive tumors, an increased portion of aerosols are trapped in

the airway due to elevated inertia impaction. However, even

though the particle patterns of Models B and C look similar,

careful examinations still reveals discernible differences. The

presence of a carina tumor (Model B) disturbs the aerosol

distribution in both the lower-left and lower-right regions, while

the influence from the left segmental bronchial tumor is mainly

limited to the lower-left region (top panel in Fig. 3). For Model D

with two severely constricted bronchi, the exhaled aerosol profile

resembles that of Model A, except for one crescent-shaped region

at the upper left corner that is devoid of particles. This observation

clearly corroborates the hypothesis that the exhaled aerosol

distribution is the fingerprint of the lung structure, which can be

used to probe structure remodeling by lung tumors and other

respiratory diseases.

Even though the particle distributions look different among the

four models, they may not accurately represent the concentration

distribution due to particle overlapping. The second row of Fig. 3

shows the relative particle concentrations (i.e., the ratio of local

particle concentration to the overall concentration) with red

representing high concentrations. For a given model, the particle

(first row) and concentration (second row) distributions resemble

each other in terms of the overall pattern. However, the

concentration image is able to identify the peak particle

accumulations (red color), which the particle distribution image

is incapable of identifying.

To highlight the variation of AFPs with different model

geometries, the relative concentrations compared to the normal

condition (baseline) are plotted in the third row of Fig. 3. As such,

image A–A (not shown) should have zero concentration every-

where. The other three images (B–A, C–A, D–A) exhibit both

positive and negative values, with the red color representing the

peak concentration of the abnormal case, while the blue color

representing the peak concentration of the baseline case.

Therefore, if two adjacent spots have a similar pattern but in

opposite colors (red vs blue), the shifting between these two spots

can be used to distinguish that disease. Considering the red and

blue spots at the top of D–A image, the constricted bronchi in

Model D caused the blue spot in the control case to shift toward

the top-left (Fig. 3).

3.3. Spatial distribution of exhaled aerosol particles
Even though it is effective to differentiate exhaled AFP patterns

visually, this process can be slow if there are a large number of

images. In order to develop an automated pipeline to quantify

exhaled AFP profiles, we explore multiple analytical approaches to

distinguish the complexity between different exhaled aerosol

profiles. Automated methods that have been tested include spatial

scanning, fractal dimension, lacunarity analysis, and multifractal

spectra.

Figure 5. Fractal analysis of exhaled particle distributions using Box Counting method. Calculation of fractal dimension (FD) of Model A
using regression analysis is exemplified in (a). FDs FDs (6SD, n = 5) for the four models are shown in (b) and (c) for the entire image and selected
region of interest (ROI), respectively. Significance indicated by *(p,0.05) and **(p,0.01). (d) shows the local FD distribution on a normalized caliber
size of 1/661/6. The color code was based on the fractal dimension ratio b(i) = FD(i)/FD(A), i = B, C and D. The color pattern is unique to each airway
abnormality.
doi:10.1371/journal.pone.0104682.g005
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Figure 4 shows the statistical distributions of exhaled particles in

different directions. Taking Fig. 4a as an example, each point

hereof represents the probability that the exhaled particles could

be found at a specified horizontal distance x/X. In this example,

the AFP image has been evenly divided into 50 bins along the

horizontal direction. The number of particles in each bin is

counted and normalized by the total exhaled particle numbers and

the area of the bin, yielding the probability of particle distribution

(%/mm2) at x/X. This is equivalent to scanning the AFP image in x
direction with a scan resolution of D/50, with D being the

diameter of the image. In order to quantify the spatial

characteristics of the exhaled particle patterns, the images are

scanned in four directions: horizontal, vertical, radial, and

circumferential (rose plot). Generally, each airway model consid-

ered in this study exhibits a unique profile of spatial distribution

probabilities, and therefore is applicable to supplement the

classification of airway anomalies. Considering Figs. 4a and 4b,

two spikes are observed for Model D (asthma) at x/X<0.2 (Fig. 4a)

and z/Z<0.65 (Fig. 4b), which collectively point to the hot spot

located at the normalized Cartesian coordinate (0.2, 0.65) as

shown in Fig. 3 (concentration distribution D). The same hot spot

also manifest itself as a spike in Fig. 4c at r/R<0.7, and in Fig. 4d

at h<70u. This indicates that directional particle distribution is a

sensitive index of spatial pattern which could possibly be

quantified with two mutually orthogonal directions.

3.4 Fractal, lacunarity, and multifractal analysis
3.4.1 Fractal dimension analysis. Monofractal analysis of

exhaled aerosols using the box counting method is shown in Fig. 5

for the four models. We consider the fractal dimensions from two

perspectives: in the entire sample image and in the selected region

of interest (ROI), as illustrated in Fig. 5a. The correlation factor of

data linear regression is 0.978 for the entire region, indicating that

the particle distribution exhibits a statistically fractal feature

(Fig. 5a). The local distribution also exhibits a fractal feature

(R2 = 0.964), except that it has a smaller fractal dimension

(FDROI = 1.274) and is less complex than that of the entire region

(FDEntire = 1.4423).

Comparison of FD based on the entire region among the four

models is shown in Fig. 5b. The FD standard deviation for each

model has been calculated from five test cases with stochastically

generated inlet particle profiles (n = 5). Significance is indicated by

*(p,0.05) and **(p,0.01). The deviation of FD from the normal

case is consistent with the level of airway remodeling even though

small in magnitude. Model C (small bronchial tumor) and Model

B (large tumor) cause insignificant variation in FD while Model D

(asthma) causes a larger FD variation (p,0.05). The lower FD

(1.4108) of Model D versus the control case (1.4423) corroborates

the prior report that asthmatic lungs have decreased FD values

compared to non-asthma controls [45]. In part, this decrease

might be explained by the ventilation loss due to airway

constrictions.

Figure 6. Comparison of lacunarity values FDs (±SD, n = 5) among the four models for (a) entire region, and (b) selected region of
interest (ROI). Significance indicated by *(p,0.05) and **(p,0.01).
doi:10.1371/journal.pone.0104682.g006

Figure 7. Spectra of generalized dimensions Dq versus q among the four models for (a) the entire region and (b) the selected region
of interest (ROI).
doi:10.1371/journal.pone.0104682.g007
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Figure 8. Multifractal analysis of exhaled particle concentrations. The 3-D plots of particle concentrations are shown in (a), (b), (c), (d).
Comparison of the multifractal spectra among the four models are shown in (e) for the entire region and in (f) for the selected region of interest (ROI).
doi:10.1371/journal.pone.0104682.g008

Figure 9. Exhaled aerosol fingerprints (AFPs) for asthma with increasing severity. (a): constricted segmental bronchi 3 and 4 with
increasing severities. The constriction levels are shown in (c). The exhaled particle distribution is shown in (b) while the concentration distribution is
shown in (d). Fractal analysis FDs (6SD, n = 5) for the entire image and selected ROI is shown in (e) in terms of fractal dimension, lacunarity, and
multigractal spectra.
doi:10.1371/journal.pone.0104682.g009
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In contrast to the small variations of entire-region-based FDs,

the variation of local FDs is more pronounced. For the region of

interest (ROI) (red square in Fig. 5a), the local FD of Model B is

significantly lower than the control (p,0.01). In view of the

proximity of FD values for Model A, C, and D, it is possible that

this selected ROI is largely affected by the carina tumor and not

by the bronchial tumor (B) or asthmatic bronchi (D). Local FD

distribution on a 666 grid is displayed in Fig. 5d. For each grid,

the color code is based on the FD ratio b(i) = FD(i)/FD(A), i = B, C

and D. Again, the color patterns for the four models are different

from each other, and are unique to each airway abnormality.

3.4.2 Lacunarity analysis. In general, measures of lacunar-

ity correspond to visual impressions of uniformity, where low

lacunarity implies homogeneity and high lacunarity implies

heterogeneity. From Fig. 6a, the differences of lacunarity among

the four models are more pronounced than those of fractal

dimensions for both the entire sample and selected region of

interest (ROI). Specifically, the lacunarity of Model B differs

significantly (P,0.01) from the control case (Model A) even

though their fractal dimensions are similar. As discussed before,

fractal dimension and lacunarity are statistical indexes of

complexity and heterogeneity, respectively, and do not necessarily

correlate to each other. Knowing lacunarity helps to separate

exhaled aerosol images with close fractal dimensions. Comparing

ROI-based images in Fig. 6b, Model B (carinar tumor) has the

largest lacunarity (Fig. 6b) and the smallest fractal dimension

(Fig. 5b) among the four models while the variations among the

other three models are insignificant. This suggests a strong

correlation between the carina tumor to large variations of fractal

dimension and lacunarity in the ROI, which will be further

analyzed using multifractal spectrum analysis in the following

section.

3.4.3 Multifractal analysis. Multifractal patterns are intrin-

sically more complex than monofractals. The visually patchiness of

exhaled aerosol profiles suggests that different scaling properties

may exist. Figure 7 shows the spectra of generalized dimension Dq

versus the scaling exponent q for both the entire region and

selected ROI. In all cases, Dq is a monotonically decreasing

function of q, indicating that the exhaled aerosol patterns exhibit

multifractal features [46] and are more appropriately described by

the multifractal spectra rather than by the box-counting fractal

dimensions alone. In the case of a monofractal, the Dq spectrum

should be a constant line, which is not observed in Fig. 7.

Moreover, the Dq spectra of the ROI cases are flatter than those of

the entire region, suggesting that local patterns are more like

monofractals (even though they are not), while the overall patterns

are more like multifractals.

The multifractal spectra for the gray-sale images of the exhaled

aerosol concentration profiles are shown in Fig. 8. The aerosol

concentration images are first shown as the 3-D plots (Figs. 8a–d),

which exhibit very different patterns among the four models.

Considering the entire-region analysis (Fig. 8e), a small geometric

deviation such as bronchial tumor (Model C) leads to a similar

profile as that of the control case, while large geometric variations

leads to spectra profiles that are much different from the control,

which is consistent with Fig. 5. For the selected ROI, the spectra

are more symmetrical than those of the entire region. The ROI-

based spectra also have a smaller range of f(a) as well as a

narrower range of a compared to those of the entire image

suggesting lower multifractality of the ROI images. Particularly,

the ROI-based spectrum for Model B has the smallest ranges of

f(a) and a (Fig. 8f), which also has the smallest monofractal

dimension (Fig. 5c) and largest lacunarity (Fig. 6b). This is in line

with results in previous studies [20,47] that a pattern with a more

asymmetric spectrum and a narrower range of a generally has

higher density and lower lacunarity. Examples of such patterns

include soils with massive structures and low porosity [47] and

vascular beds with high complexity and lower emptiness [20]. In

this study, the exhaled aerosol profiles of the entire region are

more complex and heterogeneous than that of the ROI. Apparent

differences in the ROI spectra are also observed among the four

models (Fig. 8f), lending further evidence that multifractal analysis

might be adequate in identifying the geometry-associated aerosol

variations.

3.5 AFPs for asthma with varying severity
To test whether the exhaled AFPs are sensitive enough to

distinguish the pathologic states of respiratory diseases, four levels

of airway constrictions (D0, D1, D2, D3) caused by asthma have

been considered, as illustrated in Figs. 9a and 9c. Exhaled particle

distributions are shown in Fig. 9b. It is noted that the crescent-

shaped void at the upper-left corner becomes more obvious with

increasing severities. To further test the sensitivity of the aerosol

voids to the disease severity, particles are released only from the

ROI and their exhaled locations are plotted in red (Fig. 9A). For

the zero-level constriction (D0), red particles are observed

enclosing the region that is otherwise aerosol-void for asthmatic

scenarios (D1–3). With increasing severity, red particle contours

shrink progressively in space (Fig. 9B), with drastically elevated

concentration in certain regions (solid arrow) and decreased

concentration in other regions (hollow arrow) (Fig. 9D), reflecting

the asthma condition at the ROI. As a result, these tagged particles

could not only be used to evaluate the severity of airway

constriction, but also to discover the location of the disease.

Fractal analyses of exhaled AFPs with asthma of varying

severities are shown in Fig. 9E. Again, the standard deviation for

each case has been calculated from five tests with different

stochastically generated inlet particle profiles. For both the entire

region and selected ROI (upper left), there is a progressive decline

in FD for airways with increasing severities. Concerning the ROI,

the FD and lacunarity of each asthma case (D123) are different

from the control D0. In light of the multifractal spectra of the

ROI, increasing airway constriction leads to continuous narrowing

of both a and f(a), which clearly distinguishes the four asthma

states considered in this study.

Discussion

The use of multiple analytical techniques is becoming increas-

ingly pertinent when exploring complex biological systems. In this

study, we demonstrated the feasibility of a coupled CFD-fractal

approach to quantitatively distinguish the exhaled AFP patterns

from healthy and diseased lung models. Physiology-based numer-

ical modeling has been employed to predict the exhaled aerosol

patterns (fingerprints), which revealed notable variations of

exhaled aerosol fingerprints among the four models in both visual

patterns and fractal measures. Compared to our previous study

[13] that was limited to visual patterns and a qualitative manner

only, the current study quantified the exhaled AFP patterns by

exploring multiple analytical approaches, including concentration

disparity, spatial scanning, monofractal, lacunarity, and multi-

fractal analysis. These approaches collectively generated a feature

vector of the AFP pattern, which could be further used for

automated classification of the AFPs and diseases. The concen-

tration disparity provides a more informative comparison than the

particle distribution presented in the previous study [13]. The

spatial scanning can quantify particle distributions in either (x, y)

or (r, q ) directions and is a sensitive index of the spatial pattern. In
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light of the fractal analysis, the ROI-based fractal dimension and

lacunarity can be significantly correlated with the severity of

airway obstruction. In addition, multifractality can identify the

subtle differences in the exhaled aerosol profiles. The capacity to

differentiate not only gross differences but also subtleties among

aerosol fingerprints is highly desirable. It provides a useful tool in

decoding the complexity of such fingerprints and thus can be used

to monitor the pathogenesis of an airway disease or track the

therapeutic outcomes of an intervention protocol. Besides, one

particular advantage of the physiology-based modeling is that the

results will not be confounded by any other factors except the

factor of interest.

The fractal dimensions (FD) of exhaled AFPs are observed to

decrease with increasing disease severities. A decrease in FD

indicates a loss in complexity, which reflects a decrease in space-

filling ability of diseased airways. Airway remodeling is a

consequence of chronic injury and repair, whose site and severity

can vary significantly. The structural variations considered in this

study (Table 1) are small and represent a conservative evaluation

of the performance of the proposed AFP-based breath test. For

example, airway constrictions in some asthma patients are much

more severe than the model D in this study. Fatal asthma can have

44% closure of the whole airway [45]. In this sense, a more

pronounced variation of fractal measures is expected in clinical

practices, which should be even more useful for diagnostic

purposes.

The AFP-based breath test is envisioned to be similar to a

personal air sampling system. The patient inhales tracer particles

and then exhales. The exhaled particles are collected on a fibrous

or pored membrane filter [48] for a prescribed sampling period.

To minimize artifacts due to variations in breathing or body

posture, the breath rate and body posture should be standardized

during the test. Exhaled profiles or fingerprint patterns can be

quantified with different approaches to distinguish normal versus

diseased lungs. This can be achieved via direct image processing,

microscope-based counting, fluorescent intensity measurement, or

chemical quantification [49]. Particle counting with a microscopy

has been used to determine total and local depositions of aerosols

in a bifurcating geometry [50]. The concentration of fluorescent

tracers can be measured with a fluorometer [51]. The other

alternative is to use chemical sensitive tracer particles which

change colors upon contacting the filter and generate a pattern

that is specific to the respiratory structure of concern [52]. Ideally,

tracer aerosols for the breath test should be non-invasive, sensitive,

easy to analyze, disease-specific, and repeatable. Results of this

pilot study suggest that the first three criteria are attainable.

The eventual breath test will consist of two steps to detect and

localize the disease: (1) extraction of image features and (2)

classification between images and diseases. The methodology

presented in this study has focused on feature extraction only,

which will accurately and compactly quantify the image. However,

by itself it is not enough to identify or trace back to the disease site.

This requires a database of image-diseases and a classification

method that correlates the images with their respective diseases.

The extracted feature vector will be used as the input to train the

clarification function f(x) that correlates the image and diseases.

Among the many options of classification methods such as neural

network, machine vision, and support vector machine (SVM), the

SVM algorithm will be selected for future classification studies due

to its accuracy and easy-to-use features [53]. To this aim, the

open-source software package the Library for Support Vector

Machines (LIBSVM) could be adopted for data classification [54].

As a proof-of-concept study, we employed ideal breathing

conditions to assess the feasibility of the proposed breath test, e.g.:

same flow velocities for both normal and pathological lung models.

It is noted that a patient with respiratory distress may breathes

differently, which can alter the exhaled AFP patterns. To

accurately detect an airway abnormality, it is necessary that the

pattern of exhaled AFP persists over a certain range of breathing

conditions even though its pattern details may vary. Practically,

the respiration bias can be minimized by instructing the patient to

inhale steadily and by activating the exhalation sampling only

when the patient breathes within the acceptable range. Future

studies should also be conducted to determine the sensitivity of the

AFP-based breath test under various breathing conditions.

Quantifying the respiration effect will help to determine the

detection sensitivity, the tolerance of breathing deviations, and the

optimal breathing maneuvers for the breath test [55].

Other limitations of this study include the assumption of steady

flows, no humidity, no charge effect, rigid airway walls, and small

sample size. Previous studies have highlighted the significance of

transient breathing [56], hygroscopic growth [57,58], particle

charge effects [59,60], dynamic glottis [61], and intersubjective

variability [62,63]. Generally, structure variations are also

accompanied by tissue property and functional changes, which

are expected to result in a larger magnitude of fractal changes.

Concerning the sample size, the geometry models considered are

from limited subjects and do not account for intersubject

variability. Each of these factors affects the realism of the model

predictions in relation to actual performance of the aerosol breath

test. These limitations should be addressed in order to develop

more physically realistic models. Future numerical studies with

more realistic models and a larger sample size, as well as

complementary in vitro tests, are necessary to advance our

knowledge of the feasibility and efficiency of this new lung

diagnosis protocol.
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