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It is well known that the omega-3 fatty acids (ω3-FAs) contained in fish oils can exert potent 

anti-inflammatory effects 1-4. ω3-FAs are commonly consumed as fish products, dietary 

supplements, and pharmaceuticals and a number of health benefits have been ascribed to 

them, including a reduction in plasma triglyceride levels, amelioration of atherosclerosis, 

and increased insulin sensitivity 5-7. We reported that Gpr120 is the functional receptor/

sensor for these fatty acids and that ω3-FAs produce robust anti-inflammatory, insulin 

sensitizing effects, both in vivo and in vitro in a Gpr120-dependent manner 8. Indeed, human 

genetic variants in the Gpr120 gene had been described which predispose to obesity and 

diabetes 9. However, the amount of fish oils which would have to be consumed to sustain 

chronic agonism of Gpr120 is too high to be practical, and, thus, a high affinity, small 

molecule Gpr120 agonist would be of potential clinical benefit. Accordingly, Gpr120 is a 

widely studied drug discovery target within the pharmaceutical industry. Gpr40 is another 
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lipid sensing GPCR 10, and it has been difficult to identify compounds with a high degree of 

selectivity for Gpr120 vs. Gpr40 11. Here we report that a high affinity, selective, small 

molecule Gpr120 agonist (cpdA), exerts potent anti-inflammatory effects on macrophages in 

vitro, and in obese mice in vivo. Gpr120 agonist treatment of high fat diet (HFD)/obese mice 

causes improved glucose tolerance, decreased hyperinsulinemia, increased insulin sensitivity 

and decreased hepatic steatosis. This suggests that Gpr120 agonists could become new 

insulin sensitizing drugs for the treatment of Type 2 diabetes and other human insulin 

resistant states in the future.

Gpr120 and Gpr40 are 2 lipid sensing G protein-coupled receptors (GPCRs) 10,12, but 

despite limited homology between these two polyunsaturated fatty acid (PUFA) receptors, 

identification of ligands that are highly selective for Gpr120 over Gpr40 has been 

challenging 11,13-15. We have generated a small molecule Gpr120 agonist, compound A 

(cpdA) (Fig. 1a), and have examined its selectivity for Gpr120 compared to Gpr40 using a 

Ca2+ FLIPR assay (Fig. 1b). CpdA was fully selective for Gpr120 (logEC50 (M) = −7.62 ± 

0.11) with negligible activity towards Gpr40 (Fig. 1b). Gpr120 couples to Gαq/11-initiated 

signal transduction pathways, and, as such, we assessed the activity of cpdA in an inositol-1, 

4, 5-triphosphate (IP3) production assay, employing HEK 293 cells that stably express 

human or mouse Gpr120. The Gpr120 agonist produced concentration dependent increases 

in IP3 production from both human and mouse Gpr120 expressing cells (Fig. 1c). In addition 

to promoting signaling via Gαq/11, Gpr120 also directly couples to β-arrestin-2 8,14. 

Therefore, we examined the potency of cpdA in a β-arrestin-2 recruitment assay (Fig. 1d). 

CpdA led to a concentration-dependent response to recruit β-arrestin-2 in both human and 

mouse Gpr120 expressing cells, with EC50s of ~0.35 μM (Fig. 1d). Since Gpr120 is a 

Gαq/11-coupled receptor, it stimulates both PKC and MAP kinase, and both of these 

biologic effects can be detected in an SRE-driven reporter system 8. HEK293 cells were 

transiently transfected with constructs for mouse Gpr120 along with a serum response 

element-luciferase promoter/reporter (SRE-luc). The Gpr120 SRE-luc reporter cells were 

treated with docosahexaenoic acid (DHA) and cpdA. Gpr120 stimulation by cpdA was ~50 

fold more potent than DHA (Fig. 1e). DHA and cpdA were used at 100 μM and 10 μM in all 

subsequent studies to achieve maximal effects.

In our previous studies 8, we showed that Gpr120 stimulation mediated anti-inflammatory 

responses in macrophages. To link these observations to the cpdA compound, we evaluated 

the effect of DHA and cpdA on NFkB-driven reporter genes in WT and Gpr120 KO primary 

macrophages. DHA and cpdA decreased LPS-induced NFkB-reporter gene activity in WT, 

but not in Gpr120 KO primary macrophages (Fig. 1f). To examine Gpr120-mediated anti-

inflammatory properties in a more physiologic context, we treated primary macrophages 

from WT and Gpr120 KO mice with DHA or cpdA for 1 hr, followed by LPS stimulation. 

DHA and cpdA strongly and comparably inhibited LPS-induced phosphorylation of Tak1, 

Ikkβ, and Jnk and blocked IkB degradation (Fig. 1g). LPS-mediated cytokine secretion and 

inflammatory gene expression were also inhibited in WT, but not in Gpr120 KO primary 

macrophages (Supplemental Fig. 1a and b).

Next, we determined whether the synthetic Gpr120 agonist could produce beneficial 

metabolic effects in vivo. WT and Gpr120 KO mice were placed on 60% HFD for 15 weeks. 
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At this point, separate groups of 10 mice each were treated for an additional 5 weeks with 

60% HFD alone, or HFD containing 30 mg kg−1 cpdA. The 5 weeks treatment time point 

was most effective at improving glucose tolerance and lowering insulin concentration 

(Supplemental Fig. 2). Figure 2 shows that treatment with cpdA led to markedly improved 

glucose tolerance (Fig. 2a), insulin tolerance (Fig. 2b), and decreased insulin secretion 

compared to HFD (Fig. 2c) in WT, but not in Gpr120 KO mice, with no change in body 

weight (Supplemental Fig. 3). These metabolic effects of cpdA treatment were comparable 

to dietary ω3-FAs supplementation (Supplemental Fig. 4). Importantly, during 

hyperinsulinemic, euglycemic clamp studies, we found that the cpdA diet caused improved 

insulin sensitivity with increased glucose infusion rates (GIR), enhanced insulin stimulated-

glucose disposal rate (IS-GDR), along with a marked increase in the ability of insulin to 

suppress hepatic glucose production (HGP) only in WT mice (Fig. 2d). This demonstrates 

the in vivo effects of the Gpr120 agonist to produce systemic insulin sensitivity by 

enhancing muscle and liver insulin action. In addition to improving hepatic insulin 

sensitivity, cpdA treatment had beneficial effects on hepatic lipid metabolism, causing 

decreased hepatic steatosis, decreased liver triglycerides, and DAGs, along with reduced 

saturated free fatty acid content (Supplemental Fig. 5). In contrast, cpdA administration was 

without effect to reduce hepatic lipid levels in the Gpr120 KO mice.

Gpr120 can be expressed in enteroendocrine L cells and earlier studies on Gpr120 have 

focused on its potential ability to stimulate Glp-1 secretion 12. Therefore, we measured the 

total and active form of Glp-1 during oral glucose challenge in HFD mice with or without 

cpdA treatment (Supplemental Fig. 6a). The results demonstrated that Gpr120 activation had 

no effect to stimulate Glp-1 secretion at 15 min after oral glucose challenge (Supplemental 

Fig. 6a). Others have also shown a lack of effect of Gpr120 stimulation on Glp-1 

secretion 16,17. We next measured glucose-stimulated insulin secretion (GSIS) in isolated 

islets from WT and Gpr120 KO mice (Supplemental Fig. 6b) and in the mouse β cell line, 

MIN6 cells (Supplemental Fig. 6c). CpdA had a slight, but not statistically significant, effect 

to increase GSIS in WT islets, but was without effect in Gpr120 KO islets. DHA treatment 

had a stronger effect to increase GSIS, which was comparable in both WT and Gpr120 KO 

islets (Supplemental Fig. 6b and 6c), showing that this effect of DHA was Gpr120-

independent, but Gpr40-mediated as previously reported 10,18. This is also consistent with 

the in vivo GTT results showing slightly higher insulin levels and lower glucose levels in 

FOD compared to cpdA treated WT mice (Supplemental Fig. 4). Furthermore, a recent 

paper by Stone et al. 18 showed that Gpr120 is preferentially expressed in mouse islet delta 

cells and not detected in β cells, and that Gpr120 activation inhibits glucose-induced 

somatostatin secretion. Therefore, the slight effect of the Gpr120 agonist on GSIS in isolate 

islets is most likely an indirect effect from inhibition of somatostatin secretion. This 

interpretation is fully consistent with our results showing that cpdA has no effect on GSIS in 

MIN6 cells.

We performed acute insulin response studies by measuring Akt phosphorylation in muscle 

and liver following an injection of insulin into HFD WT or Gpr120 KO mice. Fully 

consistent with the in vivo glucose clamp studies, this biochemical measure of muscle and 

hepatic insulin signaling was increased with cpdA treatment in WT, but not in Gpr120 KO 
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mice (Fig. 2e). Taken together, these results show that the Gpr120 agonist leads to increased 

systemic insulin sensitivity in vivo.

Gpr120 stimulation by ω3-FAs decreases adipose tissue macrophage (ATM) infiltration and 

reduces inflammatory gene expression 8. Consistent with this, we observed that cpdA 

treatment blocked chemotaxis of WT macrophage induced by adipocyte condition medium 

(CM) as effectively as DHA, but both were without effect in Gpr120 KO macrophages (Fig. 

3a). To determine if these in vitro chemotaxis results translated to the in vivo situation, we 

directly measured macrophage migration into adipose tissue using an in vivo macrophage 

tracking technique. With this approach, circulating monocytes were obtained from WT 

donor mice and labeled with fluorescent PKH26 dye ex vivo. The labeled monocytes were 

then injected into recipient HFD WT and Gpr120 KO mice with or without dietary ω3-FAs 

supplementation or HFD+cpdA treatment. As seen in Figure 3b, there was a substantial 

decrease in labeled ATM appearance in both ω3-FA and cpdA treated WT mice, with no 

effect in Gpr120 KO mice. These data were even more revealing when we examined the 

subpopulations of labeled macrophages between the groups. Thus, ATMs expressing Cd11c 

are M1-like and proinflammatory (ATM1) compared to M2-like Cd11c negative ATMs 

(ATM2), which are non-inflammatory. With this analysis, there is an even greater decrease 

in the number of recruited Cd11c positive ATMs. At the same time, there is an increase in 

the Cd11c negative ATM population in the cpdA treated WT mice, with no effect in Gpr120 

KO mice (Fig. 3b). This shows that cpdA led to reduced monocyte migration with less M1-

like Cd11c positive ATMs, and that the labeled monocytes that do become ATMs, favor the 

M2-like Cd11c negative state. Along with in vivo migration results, we also found reduced 

ATM content by immunohistochemistry (F4/80 staining) in adipose tissue sections from 

HFD+cpdA treated compared to HFD mice (Fig. 3c). This was accompanied by decreased 

Cd11c positive ATMs, and increased Cd11c negative ATMs (Fig. 3d and Supplemental Fig. 

7a) by FACS analysis. As before, all of these effects were observed in WT, but not in 

Gpr120 KO mice.

While macrophages are one of the critical immune cells mediating HFD-induced 

inflammation, recent studies show that other immune cell type, such as T cells and B cells, 

can contribute to adipose tissue inflammation 19,20. In particular, Foxp3+ regulatory T 

(Treg) cells 19 and regulatory B (Breg) cells 20 suppress inflammation in adipose tissue and 

can secrete Il-10 (Fig. 3e). Therefore, we measured Treg and Breg cells in HFD WT and 

Gpr120 KO mice with or without cpdA treatment and found increased Treg and Breg cells 

in adipose tissue from cpdA treated WT mice, but not in Gpr120 KO mice (Supplemental 

Fig. 7b and c). Taken together, ratio of proinflammatory M1-like ATMs to anti-

inflammatory M2-like ATMs+Tregs is markedly decreased with cpdA treatment and this 

ability of Gpr120 agonism to boost adipose tissue Treg levels may represent an additional 

therapeutic effect.

We also found decreased expression of a number of proinflammatory genes in epididymal 

adipose tissue, such as Tnf-α, Il6, Mcp1, and Il1β (Fig. 3e upper row). At the same time, an 

increase in anti-inflammatory gene expression, such as Il-10, Clec7a, Mgl1, Ym1 was 

observed (Fig. 3e lower row). Interestingly, adipose tissue levels of the proinflammatory 

arachidonic acid metabolites, leukotriene B4 (LTB4), prostaglandin E2 (PGE2), 5-
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hydroxyeicosatetraenoic acid (5-HETE), and leukotriene A4 (LTA4) were also inhibited by 

both ω3-FA and cpdA treatment (Supplemental Fig. 8). Indicative of systemic inflammation, 

circulating cytokine levels are elevated in obesity, and as seen in Figure 3f. Inflammatory 

cytokine levels were markedly reduced in HFD+cpdA treated HFD WT mice but not in 

HFD Gpr120 KO mice (Fig. 3f). To directly link these observations to inflammatory 

transcriptional output, we performed RNA-seq analyses in primary macrophages from WT 

and Gpr120 KO mice. As illustrated in Supplemental Figure 9a, pretreatment of 

macrophages with DHA or cpdA inhibited LPS-stimulated inflammatory gene expression. 

Information clustering results revealed that highly significant biological processes 

(Bonferroni p-value < 0.01) in LPS-stimulated macrophages pretreated with DHA 

(Supplemental Fig. 9b) or cpdA (Supplemental Fig. 9c) included several inflammation 

related pathways.

It is known that nitric oxide (NO) can attenuate insulin signaling through nitrosylation of 

insulin signaling molecules, including Akt 21. Tissue NO levels represent the balance 

between iNos and Arginase activity. iNos expression was induced in adipose tissue from 

both WT and Gpr120 KO mice by HFD, and this effect was reduced by cpdA treatment in 

WT but not Gpr120 KO mice. HFD also led to increased Arginase expression, and this 

increase was enhanced in WT, but not Gpr120 KO mice, with cpdA treatment. Thus, the 

iNos/Arginase ratio was markedly reduced in WT adipose tissue by HFD+cpdA compared 

to HFD (Fig. 4a). As would be predicted from these gene expression changes, levels of 

adipose tissue NO2, a stable breakdown product of NO, were reduced ~60% in HFD+cpdA 

treated WT mice (Fig. 4b). This decrease was almost completely abrogated in Gpr120 KO 

mice. Consistent with these changes in NO levels, nitrosylation of Akt, was increased on 

HFD in both WT and Gpr120 KO adipose tissue and this was reduced by HFD+cpdA 

treatment only in WT adipose tissue (Fig. 4c). Concomitant with this, insulin-stimulated Akt 

phosphorylation was greater in adipose tissue from HFD+cpdA treated WT mice compared 

to HFD (Fig. 4d).

To further examine the effect of cpdA on insulin signaling, we isolated primary adipocytes 

from WT and Gpr120 KO mice for glucose uptake analyses. Ligand-stimulation of Gpr120 

led to a modest increase in glucose uptake in primary WT adipocytes, but was without effect 

in Gpr120 KO adipocytes (Fig. 4e). As previously described for ω3-FAs, Gpr120 agonist-

mediated glucose uptake was dependent on Gαq/11 signaling and independent of the β-

arrestin-2 pathway (Supplemental Fig. 10; 8 ).

Recently, the ω3-FA sensing GPCR, Gpr120, has received increasing interest as a 

therapeutic target for the treatment of both metabolic and inflammatory diseases. Knockout 

experiments in cells and mice, as well as human genetic studies are consistent with the view 

that Gpr120 plays an important role in anti-inflammation and insulin sensitization 8,9,12. 

Despite this interest, further validation of Gpr120 as a therapeutic target has been hindered 

by the lack of available small molecule agonists. In our current work, we have used a novel 

small molecule agonist for Gpr120, cpdA, to explore the pharmacology and function of 

Gpr120 in vitro and in vivo. Comparison of cpdA with ω3-FAs clearly demonstrated that 

this Gpr120 agonist is a selective, potent activator of both human and mouse Gpr120. Most 

importantly, treatment with this compound in vitro and in vivo, caused anti-inflammatory, 
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insulin sensitizing effects, comparable to ω3-FA administration. Taken together, Gpr120 

agonists could become future insulin sensitizing agents for the treatment of Type 2 diabetes 

and other human insulin resistant states.

Online Methods

Chemicals and reagents

CpdA was provided from Merck & Co., Inc. (Whitehouse Station, NJ) and DHA was from 

Cayman chemical (Ann Arbor, MI). All other chemicals were purchased from Sigma unless 

mentioned otherwise.

Animal care and use

Male C57Bl/6 WT or Gpr120 KO littermates were fed a normal chow (13.5% fat; LabDiet) 

or high-fat diet (60% fat; Research Diet) ad libitum for 15-20 weeks from 8 weeks of age. 

Gpr120 KO mice and WT littermates were initially provided by Taconic Inc. (Hudson, NY) 

and bred further in house, backcrossing with C57Bl/6J mice for > 10 generations. After 15 

weeks on HFD, WT and Gpr120 KO mice were switched to an isocaloric HFD 

supplemented with ω3-FA concentrate 8 or 30 mg kg-1 cpdA and fed for 5 weeks. Mice 

received fresh diet every 3rd day, and food consumption and body weight were monitored. 

Animals were housed in a specific pathogen-free facility and given free access to food and 

water. All procedures were approved by the University of California San Diego animal care 

and use committee. In vivo metabolic studies were performed as described previously 8.

Metabolic studies

We performed GTT, ITT, and hyperinsulinemic euglycemic clamp studies as described 8,22.

Acute insulin response

WT and Gpr120 KO mice on HFD or HFD+cpdA were injected with insulin (0.35 U kg−1) 

after 6 hr fast into the inferior vena cava. Tissue species were harvested as described 23, at 

the indicated time points and flash frozen in liquid N2. We prepared lysates and ran Western 

blots according to standard protocols.

Western blotting and gene expression analyses

Western blotting and quantitative PCR (qPCR) were performed as previously described 8,22. 

All antibodies are from Cell Signaling Technology.

SVCs isolation, and FACS analysis

SVC isolation and FACS analyses were performed as previously described 24. SVCs were 

incubated with Fc Block (BD Biosciences) for 20 min at 4 °C before staining with 

fluorescently labeled primary antibodies or control IgGs for 30 min at 4 °C. We used Aqua 

L-D (Invitrogen) to exclude dead cells. The antibodies used were anti-F4/80-APC (BM8, 

AbD Serotec), Cd11b-FITC (M1/70, BD Biosciences), Cd11c-PE (HL-3, BD Biosciences), 

Cd4 (RM4-5, BD Biosciences), Cd19 (MB19-1, eBioscience), Cd22.2 (CY34.1, BD 

Biosciences), Cd25 (PC61, eBioscience), Cd45R-APC-Cy7 (BD Biosciences), Foxp3 
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(FJK-16s, eBioscience). Unstained, single stained, and fluorescence minus one controls 

were used for setting compensation and gates.

Immunohistochemistry

Liver was fixed and embedded in paraffin and sectioned for H&E staining.

In vitro chemotaxis assay

In vitro chemotaxis assay was performed as previously described 8.

In vivo macrophage tracking

In vivo macrophage tracking was performed as previously described 25. Briefly, blood 

leukocytes from C57BL/6 WT mice were subjected to red blood cell lysis and monocyte 

subsets were enriched with EasySep® mouse monocyte enrichment kit (STEMCELL tech, 

Vancouver, BC) following the manufacture’s instructions. Isolated monocytes (2×106 to 

5×106) were washed once in serum-free medium (RPMI-1640) and suspended in 2 ml of 

Diluent solution C (included in the PKH26 labeling kit). Two ml of PKH26 (Sigma 

Chemical Co. St Louis, MO) at 2×10−3 M in Diluent C was added and mixed, and the cells 

were incubated for 10 min at room temperature in the dark. The staining reaction was 

stopped by addition of an equal volume (2 ml) of medium supplemented with 10% FBS. The 

mixture was centrifuged and the cells were washed once and resuspended in serum 

containing medium. Subsequent to labeling with PKH26, the monocytes were counted and 

~0.2×106 viable cells were suspended in 0.2 ml PBS and injected retroorbitally in each 

group of mice. Five days after injection, the ATMs were isolated from visceral fat tissue and 

analyzed by FACS 25.

Glucose uptake in primary adipocyte and 3T3-L1 adipocyte

Glucose uptake in primary adipocyte and 3T3-L1 adipocyte were measured as previously 

described 8,23.

Intraperitoneal primary macrophage isolation and culture

We harvested primary macrophages from WT and Gpr120 KO mice as described 8. Three 

days after harvest and plating, we pretreated cells with 100 μM DHA or 10 μM cpdA for 1 

hr, followed by LPS (100 ng ml−1) for 15 min prior to protein isolation, 6 hr for collection of 

condition media and RNA isolation for qPCR analyses. For the NFkB-luc reporter assay was 

conducted as described 26 with primary macrophages from WT and Gpr120 KO mice.

Nitrate measurement

Nitrate content in adipose tissue lysate was measured using Griess Reagent System 

(Promega) in accordance with the manufacturer's protocol.

Measurement of protein nitrosylation

S-nitrosylation of Akt was detected using the biotin-switch method (Cayman) according to 

the manufacturer's protocol.
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Lipid measurement

Lipid measurements in mouse liver was performed by Lipomics as described previously 8.

LTB4 measurement

LTB4 measurement in mouse adipose tissue was performed as previously described 27.

Measurement of Insulin Secretory Response from Isolated Islets

Glucose-stimulate insulin secretion from mouse islet was performed as previously 

described 28. For static GSIS assays, ~20 mouse islets were incubated for 2 hr in low 

glucose media at 37 °C, 5% CO2, and then incubated for 60 min or 75 min with 2.8 mM or 

16.7 mM glucose in the same conditions.

RNA library construction and High-throughput sequencing

RNA library construction and Illumina high-throughput sequencing was performed as 

described previously 29.

Processing RNA-seq data for information clustering and heatmap

RNA sequences from Illumina HiSeq were aligned to the mouse transcriptome using the 

Bowtie2 aligner 30. Gene-level count summaries were analyzed for statistically significant 

changes using DESeq 31. Individual p-values were adjusted for multiple testing by 

calculating the q-values. For each gene, the q-value is the smallest false discovery rate at 

which the gene is found significant. For Information clustering and heatmap generation, We 

analyzed biological processes as defined by the Gene Ontology Consortium 32. A typical list 

of significant biological processes usually contains several redundant, closely related gene 

sets with great overlap of member genes. In order to reduce redundancy of reporting, we 

cluster the significant terms using a true distance metric called variation of information 33. 

Qualitatively speaking, variation of information between two sets of genes is smaller (i.e., 

gene sets are closer) when the gene sets share a large fraction of member genes and is larger 

(gene sets are farther apart) when the gene memberships have less overlap. A distance 

matrix thus obtained defines a graph in higher-dimensional Euclidean space in which each 

node is a gene set and the length of every edge is the distance (variation of information) 

between the connected nodes. This graph is then optimally visualized in two dimensions 

using a Principal Coordinates Analysis (multiscaling) function cmdscale of R. For 

presentation purposes, we choose to represent each node (gene set) not just by a point, but a 

circle whose diameter is proportional to the (−log) of the Bonferroni-adjusted P value. This 

way, more significant nodes appear as larger circles to draw attention. Any two circles may 

appear to overlap, but this should not be interpreted in the usual Venn diagram sense. When 

circles overlap, it is because the gene sets they represent were close enough in the 

information sense (had overlapping gene membership) and was significant enough to 

produce large circles. We use this visualization to report the relevant non-redundant 

biological processes.
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Data analysis

Densitometric quantification and normalization were performed using the ImageJ 1.42q 

software. The values presented are expressed as the means±SEM. The statistical significance 

of the differences between various treatments was determined by one-way ANOVA with the 

Bonferroni correction using GraphPad Prism 6.0 (San Diego, CA). p<0.05 was considered 

significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. CpdA is a selective agonist of Gpr120
(a) Chemical structure of cpdA. Dose response data for cpdA are shown in (b) Ca2+ 

mobilization for Gpr120 vs. Gpr40 transfected cells. Dose response data for cpdA are shown 

in (c) IP3 production, and (d) β-arrestin-2 interaction assay with human and mouse Gpr120. 

Results are % activity over basal. (e) Gpr120-mediated SRE-luc activity after treatment with 

DHA and cpdA for 6 hr in HEK 293 cells. (f) NFkB-luc activity after pretreatment with 

DHA and cpdA for 1 hr subjected followed by LPS for 6 hr in primary macrophages from 

WT or Gpr120 KO mice. Results are fold activities over basal. Each data point represents 
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mean±SEM of three independent experiments performed in triplicate. P<0.05 versus LPS 

treatment in WT macrophages. (g) DHA and cpdA inhibits LPS-induced inflammatory 

signaling in primary macrophages from WT, but not Gpr120 KO macrophages. The scanned 

bar graph (right panel) shows fold induction over basal conditions (p-Tak, p-Ikk, and p-Jnk) 

or LPS treatment (IkB degradation). Data are expressed as the mean±SEM. *, P<0.05 versus 

LPS treatment in WT mice to DHA+LPS or cpdA+LPS. n=6 per group. Data is a 

representative image from more than five independent experiments.

Oh et al. Page 12

Nat Med. Author manuscript; available in PMC 2015 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Gpr120 agonist and in vivo metabolic studies
(a) GTT in WT and Gpr120 KO mice on HFD or HFD+cpdA. n=10 per group. (b) ITT in 

WT and Gpr120 KO mice on HFD or HFD+cpdA. n=10 per group. (c) Plasma insulin level 

during GTT at the indicated time points. (d) Hyperinsulinemic/euglycemic clamp studies in 

WT and Gpr120 KO mice on HFD or HFD+cpdA. Glucose infusion rate (GIR), total 

glucose disposal rate (GDR), insulin–stimulated glucose disposal rate (IS-GDR), percent 

suppression of hepatic glucose production. *, p<0.05, compared to HFD. Data are 

represented as mean±SEM. (e) Acute insulin response showing phosphorylation of Akt in 

skeletal muscle and liver from WT and Gpr120 KO mice on HFD or HFD+cpdA using 0.35 

U kg–1 insulin injected via inferior vena cava. Left panel is a representative image from five 

independent experiments, and the scanned bar graph (right panel) shows fold induction over 

basal (before insulin injection) conditions. Data are expressed as the mean±SEM. *, P<0.05 

versus insulin injection in WT mice on HFD. n=6 per group.
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Figure 3. Anti-inflammatory effects of Gpr120 agonism
(a) Effect of Gpr120 agonist on 3T3-L1 adipocyte CM-induced chemotaxis of primary 

macrophage from WT and Gpr120 KO mice. (b) In vivo tracking of PKH26 positive 

monocytes in WT and Gpr120 KO mice on HFD or HFD+ω3-FA (W3) or HFD+cpdA. n=6 

per group. (c) ATM content by F4/80 staining in adipose tissue sections from WT and 

Gpr120 KO mice on HFD or HFD+cpdA. Scale bar indicates 250 μm. (d) FACS analysis of 

ATMs from WT and Gpr120 KO mice on HFD or HFD+cpdA. n=6 per group. (e) Relative 

mRNA level of inflammatory cytokines (upper row) and anti-inflammatory cytokines (lower 

row) in adipose tissue from WT and Gpr120 KO mice from HFD or HFD+cpdA. n= 10 per 

group. (f) Serum Il–6, Mcp–1, Kc, and Pai–1 levels from WT and Gpr120 KO mice on HFD 

or HFD+cpdA. n= 10 per group. Data are expressed as the mean±SEM. *, P<0.05 versus 

WT mice on HFD.
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Figure 4. Production of NO and glucose uptake in adipocytes
(a) mRNA levels of iNos and Arginase in adipose tissue from WT and Gpr120 KO mice on 

HFD or HFD+cpdA. n=10 per group. (b) Nitric oxide level in adipose tissue of WT and 

Gpr120 KO mice on HFD or HFD+cpdA. n=8 per group. (c) HFD-induced nitrosylation of 

Akt in adipose tissue is reduced only in WT on HFD+cpdA. (d) Akt phosphorylation in 

adipose tissue from WT or Gpr120 KO mice on HFD or HFD+cpdA before and after insulin 

injection. Left panel is a representative image from three independent experiments, and the 

scanned bar graph (right panel) shows fold induction over basal. Data are expressed as the 

mean±SEM. *, p<0.05 versus insulin injection in WT mice on HFD. n=6 per group. (e) 
Glucose uptake in primary adipocytes from WT and Gpr120 KO mice and pretreated with 

DHA or cpdA for 30 min and subsequently incubated in the absence and presence of insulin, 

followed by measurement of 2–deoxyglucose (2–DOG) uptake. Data are expressed as the 

mean±SEM from three independent experiments. * indicates significance at P<0.05 over 

basal.
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