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Abstract

Small penetrating brain artery thickening is a major feature of cerebral autosomal dominant

arteriopathy with subcortical infacts and leukoencephalopathy (CADASIL). Though affected

fibrotic arteries of CADASIL have been shown to accumulate collagen, other components that

compose pathological arterial walls remain incompletely characterized. We investigated the

expression of decorin (DCN), the first collagen-binding small leucine rich proteoglycan identified,

in CADASIL. DCN was markedly upregulated in pathologically affected leptomeningeal and

small penetrating arteries in CADASIL and notably weaker in normal arteries from control brains.

DCN protein was localized principally to the media and adventitia and only occasionally

expressed in the intima. Immunoblotting of brain lysates showed a 3-fold increase of DCN in

CADASIL brains (compared to controls). Messenger RNA encoding DCN was 5-fold increased in

CADASIL. We conclude that DCN is the first identified proteoglycan to be identified in

CADASIL arteries and may accumulate through transcriptional mechanisms. Additional studies

are warranted to determine whether DCN localizes broadly to pathological small vessels in other

cerebrovascular disorders.
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Introduction

Cerebral autosomal dominant arteriopathy with subcortical infarcts and

leukoencephalopathy (CADASIL) is caused by mutations in conserved residues of NOTCH3

[1]. Brain arteries affected in CADASIL are markedly thickened and exhibit significant

smooth muscle cell loss and fibrosis in the vascular media [2,3]. The role of protein

pathology in CADASIL is underscored by the striking molecular genetics of CADASIL

mutations (which nearly invariably involve cysteine residues) and marked hyalinization of
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brain arteries that includes complex macromolecules such as NOTCH3 [4], multiple forms

of collagen[5], von Willebrand factor [6], TIMP3 [7], and vitronectin [7]. Staining of

CADASIL brains demonstrates intense periodic acid Schiff (PAS) reactive arteries [3],

suggesting the accumulation of glycosylated molecules within thickened vessel walls.

Although proteoglycans have been implicated in peripheral artery disease, their role in brain

arterial thickening has not been examined.

Decorin (DCN) was the first small leucine rich proteoglycan (SLRP) to be described [8]. It

is known to bind collagen [9–12], and hence can colocalize with areas of fibrosis. In

addition to a potential structural role in tissue, DCN also modulates a wide array of key

signal transduction pathways with relevance to inflammation and fibrosis [13]. Since DCN

binds to collagen and CADASIL features thickened PAS reactive arteries with extensive

collagen deposition, we examined the distribution of DCN in a cohort of genetically

characterized CADASIL brains.

Materials and Methods

Brain histology

Control brains were obtained from the Alzheimers Disease Research Core at the University

of Michigan and the Brain Bank of the National Institute for Developmental and Childhood

Disorders at the University of Maryland. Six rains from CADASIL patients with cysteine-

altering NOTCH3 mutations have been previously described[5,6]. Two additional

CADASIL brains with mutations R141C and R153C in NOTCH3 were also studied. The

average age of CADASIL patients was 66 (n=8, range 46–83). For controls, the average age

was 63 (n=6, range 47–82). Five micron sections from frontal cortex were analyzed by

conventional immunohistochemical staining after antigen retrieval using microwave-assisted

heating in citrate buffer. Sections were counterstained with hematoxylin. Mouse monoclonal

antibody BRIC231 (anti-H; Santa Cruz) was used in parallel experiments to confirm antigen

integrity in sections.

Protein and RNA quantification

Two monoclonal antibodies against DCN were used to detect protein distribution by

immunohistochemistry. 3B3 and 6D6 were used separately at 1:100 dilution for staining.

For Western blotting, electrophoretically separated proteins blotted to nitrocellulose were

probed with 1:100 dilutions of both 3B3 and 6D6. Secondary antibodies labeled with

infrared chromophores were detected using a Licor Odyssey scanner. Expression levels were

normalized to tubulin content assessed on a parallel Western blot.

For mRNA quanitification assays, we analyzed wedges of frozen brain tissue that included

meninges and an equal volume of gray and white matter. We converted RNA purified from

frozen brain tissue by reverse transcription. cDNA was quantified by real time PCR, using

HPRT, as a control to assess target gene regulation; the primer sequences were: Human

DCN sense: 5′-CGGATTAAAAGGTTCCCTGGT-3′ and antisense: 5′-

GACCACTCGAAGATGGCATT-3′. Human HPRT: Sense: 5′-
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TGGCGTCGTGATTAGTGATG-3′ and antisense: 5′-AATCCAGCAGGTCAGCAAAG

-3′.

Statistical analysis

Results are displayed with standard deviations. All experiments were performed three times

with the similar results. T-tests were applied with statistically significant differences

considered for p<0.05.

Results

DCN protein in CADASIL

We localized DCN expression in the brain by immunohistochemistry using two independent

monoclonal antibodies. Eight CADASIL brains from autopsies of individuals with NOTCH3

mutations were examined (Figure 1). Leptomeningeal arteries in CADASIL exhibit strong

DCN reactivity in adventitia and degenerating vascular media. Much less reactivity was seen

in regions of intimal hyperplasia. In penetrating small arteries of the cortical white matter,

we observed intense staining that frequently extended through nearly the entire thickness of

the artery, sparing the endothelium in most cases.

In control brains, DCN was largely confined to the adventitia around leptomeningeal

vessels. Penetrating vessels of the white matter were lightly stained in the adventitia.

Finally, similar to CADASIL, there was light, sporadic capillary staining.

Western blot analysis was used to assess DCN protein levels in CADASIL brains compared

to controls. DCN was significantly increased in CADASIL brain lysates compared to

controls (Figure 2A and B). A parallel increase in COL4A protein was found on analysis of

the same samples (Figure 2A and C). DCN mRNA was quantified using real time RT-PCR

in samples examined in Figure 3. We found a significant increase in DCN mRNA in

CADASIL brain compared to controls.

Discussion

CADASIL is the most common and well-investigated hereditable cause of small vessel

disease [14], but the identity of molecules expressed in arteries is still evolving. In

particular, proteoglycans, a class of glycoproteins suspected to contribute to tissue

hyalinosis, have not been examined in CADASIL. We report here that DCN, the first small

leucine rich proteoglycan to be described, accumulates in the media and adventitia of

CADASIL arteries.

What stimulates the accumulation of DCN in cerebral vessels in CADASIL? The regulation

of DCN has not been defined in the vasculature. In this study, we identify activation of DCN

mRNA, which makes it likely that transcriptional regulation plays at least a partial role in

activating DCN expression. Additional studies may shed light on whether DCN activation

could result from transcriptional programs that are known to increase DCN transcript levels

in diverse cell types [15–19]. Prior studies have suggested a complex mode of positive

regulation of DCN transcripts, including an IL-1 responsive promoter element and post-
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transcriptional stabilization of DCN mRNA [20,21]. Until now, transcriptional activation

mechanisms have not been implicated as a cause of protein accumulation in CADASIL.

A second, non-mutually exclusive mechanism of protein accumulation could be post-

translational. DCN was first described as a collagen binding protein, and it is certainly

feasible that anchoring of the protein stabilizes it and prevents normal clearance. The

collagen expression patterns in CADASIL have been systematically studied, and the staining

pattern of type VI collagen [5] most resembles that of DCN, which exhibits an “outside in”

gradient of deposition; in contrast, the basement membrane predominant type IV collagen

follows an “inside out” pattern [5]. In penetrating vessels, a number of collagen subtypes

could bind to DCN, including types IV, VI, and XVIII collagen [5,22]. Of additional

interest, LRP1 has been demonstrated as a receptor for DCN [23]. An interaction between

NOTCH3 (which accumulate in CADASIL) and LRP1 has also been demonstrated [24]. The

known function of LRP1 as a clearance receptor could implicate protein clearance deficits in

DCN accumulation in diseased vessels.

What is the potential role of DCN in CADASIL? Previous studies imply that a potential role

of DCN could include homeostatic downregulation of fibrosis. Prior studies in other tissues

demonstrate a potent anti-fibrotic function of DCN via sequestration and inactivation of

TGF-beta. Small vessel disease from TGF-beta inhibiting pathway mutations has recently

been described. Therefore, if DCN binds to TGF-beta in arteries, it could serve a stabilizing

role within the vessel. Furthermore, DCN has been shown to regulate pathways that

participate in angiogenesis and vascular remodeling, including the generalized inhibition of

receptor tyrosine kinases, IGF1, and integrin signaling [25–28]. DCN inhibition of HGF/Met

signaling has been shown to increase expression of TIMP3, which has been shown to

accumulate in CADASIL vessels. A structural role of DCN in CADASIL could also involve

alterations of fibril formation within vessels. Multiple previous studies have demonstrated

and DCN binds to collagen [10] and alters collagen properties both in vitro [12] and in vivo

[29].

In summary, we demonstrate for the first time that DCN, a small leucine rich proteoglycan,

localizes to subregions of pathologically thickened arteries affected by CADASIL. We have

not addressed whether DCN is a general feature of small vessel disease or is specific for

CADASIL. Miners et al has demonstrated transmural deposition of DCN in amyloid

angiopathy of Alzheimers disease [30], suggesting that DCN could be a common core

component of small vessel pathology. As a factor that is regulated at the mRNA level in

CADASIL, DCN may provide a toe-hold to discovering transcriptional mechanisms in

cerebral arteriopathy, including sporadic and hypertensive small vessel disease.
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List of Abbreviations and Acronyms

DCN decorin

mRNA messenger ribonucleic acid

CADASIL cerebral autosomal dominant arteriopathy with subcortical infarcts and

leukoencephalopathy
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Figure 1.
Localization of DCN in CADASIL and control brain. Representative images of frontal lobe

sections from a CADASIL brain (A, C) and control brain (B, D) stained with the 6D6

monoclonal antibody against DCN. Leptomeningeal arteries (A, B) and small penetrating

arteries from the white matter (C, D) were photographed and demonstrate upregulated

deposition of DCN. Images were taken at 400x magnification. Staining patterns using the

independent antibody 3B3 was nearly identical (not shown).
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Figure 2.
DCN protein levels in CADASIL and control brain. (A) Cortical protein lysates from frontal

lobes of CADASIL and control brains were analyzed by immunoblotting for the indicated

proteins. Band intensities for DCN (B) and COL4A (C) were normalized to tubulin content

and displayed. For DCN, we show quantification for the top band (approximately 160kDa.)

A significant difference between groups is marked (*p=0.04 and p=0.02, respectively).
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Figure 3.
DCN mRNA levels in CADASIL and control brain. RNA prepared from CADASIL and

control brain samples (frontal lobe sections) were analyzed by quantitative reverse

transcriptase PCR. Ct-Ct analysis, using the HPRT as a reference, was employed to calculate

relative mRNA expression levels. A significant difference between groups is marked

(*p=0.001).
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