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Individuals with antisocial behavior place a great physical and economic burden on society. Deficits in emotional processing have been recognized as a
fundamental cause of antisocial behavior. Emerging evidence also highlights a significant contribution of attention allocation deficits to such behavior. A
comprehensive literature search identified 12 studies that were eligible for inclusion in the meta-analysis, which compared 291 individuals with
antisocial problems and 247 controls. Signed Differential Mapping revealed that compared with controls, gray matter volume (GMV) in subjects with
antisocial behavior was reduced in the right lentiform nucleus (P < 0.0001), left insula (P¼0.0002) and left frontopolar cortex (FPC) (P¼0.0006), and
was increased in the right fusiform gyrus (P < 0.0001), right inferior parietal lobule (P¼0.0003), right superior parietal lobule (P¼0.0004), right
cingulate gyrus (P¼0.0004) and the right postcentral gyrus (P¼0.0004). Given the well-known contributions of limbic and paralimbic areas to emo-
tional processing, the observed reductions in GMV in these regions might represent neural correlates of disturbance in emotional processing underlying
antisocial behavior. Previous studies have suggested an FPC role in attention allocation during emotional processing. Therefore, GMV deviations in this
area may constitute a neural basis of deficits in attention allocation linked with antisocial behavior.
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INTRODUCTION

Individuals with antisocial behavior, such as conduct disorder (CD),

antisocial personality disorder (ASPD) and callous-unemotional traits

or psychopathy, place a great physical and economic burden on society

(Moffitt, 1993; Kratzer and Hodgins, 1997; Loeber and Stouthamer-

Loeber, 1998). People with such disorders have symptoms of

emotional detachment and a propensity for disinhibited, impulsive

behavior combined with a general callousness and lack of insight for

the impact that such behavior has on others (Cleckley, 1941; Anderson

and Kiehl, 2012). Though not all children with CD have life-

course persistent symptoms, genetic studies have suggested that

continuous antisocial behavior is heritable (Moffitt, 2005) and chil-

dren with CD or callous-unemotional traits frequently develop an

ASPD or psychopathy in adulthood (Frick and Viding, 2009).

Neurodevelopmental theories also suggest that brain abnormalities

in early life are associated with lifelong antisocial behavior (Frick

and Viding, 2009; Gao et al., 2009), indicating that individuals with

CD, callous-unemotional traits, ASPD and psychopathy share a

common neural basis.

Whether antisocial behavior is characterized by fundamental deficits

in attention or emotion is a long-standing debate (Sadeh and Verona,

2012). Although numerous studies have confirmed that deficits in

emotional processing are involved in the pathophysiology of antisocial

behavior (Blair, 2007; Sadeh and Verona, 2012), individuals with anti-

social behavior also perform abnormally on emotionally neutral tasks

(Jutai and Hare, 1983; Blair et al., 2006; Vitale et al., 2007; Zeier et al.,

2009; Sadeh et al., 2013). Thus, the pathophysiology model of

abnormal emotional processing cannot fully account for such deficits

in emotionally neutral information processing. Based on psychological

experiments in which appropriate emotional responses were reported

when attention was focused on emotional stimuli (Glass and Newman,

2006; Newman et al., 2010; Baskin-Sommers et al., 2011), it is hypothe-

sized that it is not only emotional processing deficits but also attention

deficits, especially attention allocation and maintenance during emo-

tional processing, that contributes to the pathophysiology of antisocial

behavior (Sadeh and Verona, 2012).

Neuroimaging studies have investigated the neural bases of the

pathophysiology of antisocial behavior. The amygdala, one of the cen-

ters of emotional processing (Phelps and LeDoux, 2005), is the region

most commonly implicated in functional and structural abnormalities

of the brain in individuals who display antisocial behavior (Blair et al.,

2006; Yang et al., 2009). In addition to the amygdala, the paralimbic

system is also recognized as a center of emotional processing and has

often been investigated in antisocial behavior research (Blair et al.,

2006; Blair, 2007; Raine et al., 2010; Finger et al., 2012; Ly et al.,

2012). Among the paralimbic regions, the orbitofrontal cortex

(OFC) and ventromedial prefrontal cortex (vmPFC) are those most

commonly studied in the field of antisocial behavior, and a number of

structural magnetic resonance imaging (MRI) studies have reported

abnormalities in these regions in people with antisocial behavior

(Boccardi et al., 2011; Hyatt et al., 2012). Functional MRI (fMRI)

studies have consistently revealed abnormal activity in the

OFC/vmPFC in individuals with antisocial problems during tasks

related to emotional processing in value-oriented or social situation,

such as making judgments about legal actions (Marsh et al., 2011),

social cooperation tasks (Rilling et al., 2002, 2007) and gambling tasks

(Mitchell et al., 2002; Blair, 2003). Thus, dysfunction of the amygdala

and paralimbic regions has been proposed as fundamental to the

pathophysiology of abnormal emotional processing in people with

antisocial behavior (Koenigs, 2012).
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Neuroimaging studies with healthy volunteers indicate that the FPC

is associated with allocating and maintaining attention on emotional

stimuli (Koechlin et al., 1999; Burgess et al., 2007; Tsujimoto et al.,

2011). Given that the FPC is a potential neural correlate of attention

allocation deficits during emotional processing in individuals with

antisocial behavior, we hypothesized that structural abnormalities

would be observed in the FPC of such individuals.

A number of whole-brain voxel-based morphometry (VBM) studies

of people with antisocial problems have reported various regional gray

matter volume (GMV) abnormalities. Some have reported abnormal-

ities in the FPC but results are inconsistent (Tiihonen et al., 2008;

Gregory et al., 2012). A contributing factor to the inconsistency of

results may be each study’s insufficient sample size. Therefore, integra-

tion of these results with a statistically conservative threshold would

address our hypothesis. To clarify whether VBM studies demonstrate

abnormality in the areas related to attention allocation deficit, we con-

ducted a systematic review and meta-analysis of unbiased VBM

studies.

METHOD

Study selection

A comprehensive literature search of VBM studies published in peer-

reviewed journals between 2001 (the date of the first VBM study in

subjects with antisocial behavior) and April 2013 that compared indi-

viduals with ASPD, CD, callous-unemotional trait, disruptive behavior

disorder and psychopathy with healthy subjects was conducted using

the MEDLINE, Embase and Web of Knowledge databases. The search

keywords were ‘antisocial’, ‘conduct’, ‘disruptive’, ‘oppositional defi-

ant’, ‘callous-unemotional’, ‘psychopathy’ or ‘psychopath’, plus

‘morphometry’, ‘voxel-based’, ‘VBM’ or ‘voxel-wise’. The titles and

abstracts of the studies were examined to determine whether or not

they should be included. The reference lists of the included articles

were also examined to search for additional relevant studies to be

included. We defined the individuals with ASPD, CD, disruptive be-

havior disorder, callous-unemotional trait and psychopathy as individ-

uals with antisocial behavior.

Selection of studies

Studies were included in our database if (i) they reported a voxel-wise

comparison between patients with antisocial behavior and controls for

GMV; and similar to previous studies (Radua and Mataix-Cols, 2009;

Radua et al., 2010), (ii) they reported whole-brain results in stereotac-

tic coordinates and used thresholds for significance corrected for mul-

tiple comparisons, or uncorrected with spatial extent thresholds. The

literature search was performed without language restriction. If the

study did not provide sufficient data, we emailed the corresponding

author to obtain more data. In cases where the author did not respond,

we excluded the study. Two of the authors (Y.A. and R.I.) independ-

ently screened the studies.

Comparison of regional GMVs

For coordinate-based meta-analysis, we used Signed Differential

Mapping (SDM) software (www.sdmproject.com/software/) (Radua

and Mataix-Cols, 2009; Radua et al., 2010, 2011; Bora et al., 2011;

Nakao et al., 2011) to analyze GM abnormalities in patients with anti-

social behavior. Briefly, a map of GMV differences, comprising the

reported stereotactic coordinates for each significant group difference,

was generated for each study. In SDM, unlike in other coordinate-

based, meta-analytic methods, both positive and negative differences

are reconstructed in the same map, which prevents a particular voxel

from appearing significant in opposite directions. Importantly, when

using SDM, the effects of negative studies are also included in the

meta-analysis. Meta-analytic statistical maps were subsequently ob-

tained by calculating the corresponding statistics from the study

maps, weighted by the square root of the sample size of each study,

to enable studies with large sample sizes to contribute proportionally

more. A random effect model is applied to integrate the effect sizes of

the studies (Radua et al., 2012). The statistical significance of each

voxel was determined using randomization tests (P < 0.001) as in pre-

vious studies (Radua and Mataix-Cols, 2009; Radua et al., 2010; Bora

et al., 2011).

Data extraction

We extracted the number of participants of both groups, and the

coordinates and effect sizes of peak voxels. When different types of

statistical values were reported, such as z-values, they were converted

to t-values, accounting for the number of participants in both groups

and the number of covariates. In addition, we extracted the mean age

of participants.

In one study, which reported peak coordinates and threshold with-

out statistical values of the coordinates, we determined the threshold

value as the effect size of the coordinates (Fahim et al., 2011). The

uncorrected statistical thresholds were set at P < 0.001 based on previ-

ous literature (Radua and Mataix-Cols, 2009; Radua et al., 2010; Bora

et al., 2011).

RESULTS

Study selection for database

The literature search produced 23 potential candidates for the meta-

analysis. Three studies were excluded because they did not involve

healthy control comparisons (Ermer et al., 2012, 2013; Cope et al.,

2012). Four studies were discarded because they did not adopt

voxel-wise comparison or did not report peak coordinate (Yang

et al., 2005; McAlonan et al., 2007; Schiffer et al., 2011; Sato et al.,

2011). One study was discarded because it did not ensure any diagnosis

of antisocial behavior we defined above in all the participants (Dalwani

et al., 2011). One study was excluded because it did not directly com-

pare individuals with antisocial behavior and healthy individuals

(Sasayama et al., 2010). One study was discarded because it focused

on only white matter (Wu et al., 2011). One study was not included

because it was a review article with unpublished data (Vloet et al.,

2008) (Figure 1).

Demographic characteristics

A comprehensive literature search identified 12 independent studies

which were eligible for inclusion in the meta-analysis (Sterzer et al.,

2007; de Oliveira-Souza et al., 2008; Huebner et al., 2008; Müller et al.,

2008; Tiihonen et al., 2008; De Brito et al., 2009; Fahim et al., 2011;

Fairchild et al., 2011, 2013; Gregory et al., 2012; Stevens and Haney-

Caron, 2012; Bertsch et al., in press) (Table 1). In total, these 12 studies

compared 291 individuals with antisocial problems and 247 control

subjects. Nine studies included only male subjects (Sterzer et al., 2007;

Huebner et al., 2008; Müller et al., 2008; Tiihonen et al., 2008; De Brito

et al., 2009; Fahim et al., 2011; Fairchild et al., 2011; Gregory et al.,

2012; Bertsch et al., in press), while one study recruited only female

subjects (Fairchild et al., 2013). Seven reports involved children with

antisocial problems; among these seven, five studied children with CD

(Sterzer et al., 2007; Huebner et al., 2008; Fairchild et al., 2011, 2013;

Stevens and Haney-Caron, 2012), one studied conduct problems (De

Brito et al., 2009) and one studied disruptive behavioral disorder

(Fahim et al., 2011). Five studies recruited adults, two included indi-

viduals with ASPD with psychopathy (Tiihonen et al., 2008; Gregory

et al., 2012), one involved psychopathy (de Oliveira-Souza et al., 2008)

and two recruited individuals with ASPD (Müller et al., 2008; Bertsch
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et al., in press). All the studies in the meta-analysis had excluded in-

dividuals with mental retardation.

Regional differences in GMV

A meta-analysis revealed that individuals with antisocial behavior had

significantly smaller-than-normal GMV in the left superior frontal

gyrus in its frontopolar portion (Talairach coordinates: x¼�10,

y¼ 62, z¼ 26; SDM value¼�2.261, P¼ 0.0006; 16 voxels) (Table 2

and Figure 2a), in the left anterior insula (Talairach coordinates:

x¼�40, y¼ 8, z¼ 10; SDM value¼�2.389, P¼ 0.0002; 53 voxels)

(Table 2 and Figure 2b) and in the right lentiform nucleus

(Talairach coordinates: x¼ 18, y¼ 6, z¼�4; SDM value¼�2.541,

P < 0.0001; 110 voxels) (Table 2 and Figure 2c). Although the meta-

analysis demonstrated a tendency of smaller-than-normal GMV in the

amygdala in individuals with antisocial behavior, it did not reach stat-

istical significance (Talairach coordinates: x¼�28, y¼ 2, z¼�16;

SDM value¼�1.957, P¼ 0.0049).

Furthermore, the analysis also showed a significant increase in GMV

in the right fusiform gyrus (Talairach coordinates: x¼ 46, y¼�22,

z¼�24; SDM value¼ 1.385, P < 0.0001; 60 voxels) (Table 2 and

Figure 2d), in the right inferior parietal lobule (Talairach coordinates:

x¼ 38, y¼�30, z¼ 42; SDM value¼ 1.040, P¼ 0.0003; 39 voxels)

(Table 2 and Figure 3a), in the left superior parietal lobule

(Talairach coordinates: x¼ �36, y¼�68, z¼ 44; SDM

value¼ 1.002, P¼ 0.0004; 41 voxels) (Table 2 and Figure 3b), in the

right cingulate gyrus (Talairach coordinates: x¼ 12, y¼ 8, z¼ 44; SDM

value¼ 1.001, P¼ 0.0004; 41 voxels) (Table 2 and Figure 3c) and right

postcentral gyrus (Talairach coordinates: x¼ 58, y¼�20, z¼ 30; SDM

value¼ 1.001, P¼ 0.0004; 43 voxels) (Table 2 and Figure 3d) in sub-

jects with antisocial behavior, compared with control subjects. The

statistical conclusions for differences in regional brain volumes were

preserved after controlling for the effect of age.

DISCUSSION

To the best of our knowledge, this is the first meta-analysis of studies

integrating VBM in individuals with antisocial behavior. The analysis

identified a significant regional GMV reduction in the left FPC as well

as in the paralimbic region, such as the anterior insula, in individuals

with antisocial behaviors compared with healthy controls, supporting

our hypothesis. The current analysis also found significantly increased

GMV in the right fusiform gyrus and the right inferior parietal lobule.

Although the function of the FPC is yet to be elucidated (Tsujimoto

et al., 2011), it is thought to be responsible for holding in mind a goal

while exploring and processing secondary goals, a process generally

required in planning and reasoning, which integrates working

memory and attentional resource allocation (Koechlin et al., 1999;

Burgess et al., 2007). The FPC is also recognized to be responsible

for cognitive branching�the maintenance of pending information

related to a previous behavioral episode during an ongoing behavioral

episode for future use (Koechlin and Hyafil, 2007; Charron and

Koechlin, 2010). Recently, Boorman et al. (2009, 2011) showed that

the FPC not only represents pending information or intentions for

future use but also encodes the reward-based evidence favoring the

best counterfactual option for future decisions. These results indicate

that the FPC is not simply involved in attention allocation but also

plays an important role in complex social decision based on its fun-

damental role. This notion is supported by results of a number of fMRI

studies that have reported that the FPC is responsible for guiding

complex social decisions such as moral judgment (Greene et al.,

2001; Moll et al., 2002) or charitable donation (Moll et al., 2006). In

addition, one study with transcranial direct current stimulation (tDCS)

showed that inhibiting the excitability of the FPC with cathodal tDCS

did not lead to impairment, but rather to a significant within-subject

improvement of deceptive behavior (Karim et al., 2007). These previ-

ous studies have strongly indicated the possibility that abnormality in

the FPC results in antisocial behavior.

Previous studies in individuals with antisocial behavior have identi-

fied an association between the impulsive trait and working memory

deficit (Carlson et al., 2009; Venables et al., 2011). It is also thought

that the FPC is associated with keeping information in working

memory (Koechlin et al., 1999; Charron and Koechlin 2010).

Therefore, a reduction in GMV in the FPC may relate to impulsivity.

Interestingly, one study describing two case reports of individuals who

sustained injury to the FPC reported that damage in this region re-

sulted in impulsive antisocial behavior (Anderson et al., 1999).

The current analysis showed GMV reduction in the anterior insula

that consists of the paralimbic regions. The anterior insula has a strong

connection with the amygdala (Naqvi and Bechara, 2009; Meyer-

Lindenberg and Tost, 2012; Sescousse et al., 2013) and is involved in

emotional processing and empathy (Vogt, 2005; de Vignemont and

Singer, 2006; Fan et al., 2011; Morita et al., in press; Ponz et al., in

press). The previous studies demonstrated abnormal activation of the

anterior insula during empathy or emotional processing tasks in indi-

viduals with antisocial behavior (Herpertz et al., 2008; Sadeh et al.,

2013). In addition, the previous study reported a thinner-than-normal

cortex in the anterior insula in individuals with psychopathy (Ly et al.,

Fig. 1 Process of study selection.
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2012). Although we have predicted abnormality in the amygdala as a

potential neural correlate of abnormal emotional processing in indi-

viduals with antisocial behavior, the current meta-analysis suggested

that abnormality in the anterior insula may also be responsible for

abnormal emotional processing among them.

The analysis identified significantly smaller-than-normal GMV in

the lentiform nucleus, mainly the putamen. Neuroimaging studies

have repeatedly reported that the putamen is involved in reward-

based learning (O’Doherty et al., 2004, 2006; Samejima et al., 2005;

Liu et al., 2011, Wunderlich et al., 2012). Furthermore, it was also

demonstrated that the putamen, along with the insula, is involved in

judgment of distribution of justice (Hsu et al., 2008). As reward-based

learning is disturbed in individuals with antisocial behavior (Finger

et al., 2011), abnormality in these structures is suggested to be a po-

tential pathophysiology of antisocial behavior (Glenn and Yang, 2012).

However, the current finding should be interpreted with caution, be-

cause of comorbid attention deficit personality disorder (ADHD).

ADHD is a frequent comorbidity in individuals with antisocial behav-

ior clinically and sub-clinically, and some of the included studies in the

current meta-analysis recruited individuals with comorbid diagnosis of

ADHD (Sterzer et al., 2007; Fairchild et al., 2013). As it has been shown

that there is a smaller-than-normal GMV in the right lentiform nucleus

in individuals with ADHD (Nakao et al., 2011), comorbid ADHD may

have influenced the results.

The meta-analysis further identified a GMV increase in the fusiform

gyrus as a potential neural basis of antisocial behavior. Although we

could not statistically test relationship between symptoms of antisocial

behavior and abnormality of GMV in the fusiform gyrus, previous

fMRI studies suggest how abnormal GMV in the fusiform gyrus attri-

butes to antisocial behavior. The fusiform gyrus is thought to be dir-

ectly involved in the process of social categorization via top-down

modulation of social and face perception (Sabatinelli et al., 2011;

Schwarz et al., 2013; Shkurko, in press) and emotions of guilt and

shame (Takahashi et al., 2004; Michl et al., in press). It is also thought

that the right fusiform gyrus is a center of rapid learning regarding the

moral status of others (Singer et al., 2004). In addition, individuals

with Klinefelter syndrome, a chromosomal condition (XXY) whose

phenotype is high risk for antisocial behavior, displayed less activation

of the fusiform gyrus during judgment of faces with regard to trust-

worthiness (van Rijn et al., 2012). These evidence suggest that abnor-

mal GMV in the fusiform gyrus is related to deviated face recognition

(Dolan and Fullam, 2006) and sense of guilt and shame (Tangney et al.,

2011) in individuals with antisocial behavior.

The analysis also identified an increase in GMV in the inferior par-

ietal lobule as a potential neural correlate of antisocial behavior. This

area has been suggested to contain mirror neurons (Molenberghs et al.,

2012), indicating that disturbance in this region results in various

social dysfunctions. For example, the inferior parietal lobule is

involved in gaze processing (Pelphrey et al., 2003, 2004), action per-

ception in understanding intentions (Gallese et al., 2004), compre-

hending impressions of others (Mende-Siedlecki et al., in press),

predicting the actions of from their gaze (Ramsey et al., 2012) and

risk-taking action (Tamura et al., 2012). Based on previous fMRI stu-

dies, increased GMV in the inferior parietal lobule may reflect inappro-

priate eye gazing of individuals with antisocial behavior (Dadds et al.,

2008). The analysis also demonstrated larger-than-normal GMV in the

left superior parietal lobule. The superior parietal lobule, which is often

activated together with the inferior parietal lobule (Culham et al.,

1998), is involved in spatial attention (Molenberghs et al., 2007) and

is reported to be abnormally activated for fearful congruent in indi-

viduals with antisocial behavior (White et al., 2012). The current ana-

lysis also demonstrated larger-than-normal GMV in the postcentral

gyrus of subjects with antisocial behavior. Recent studies suggestedTa
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that the right postcentral gyrus was associated with emotional process-

ing and empathy (Bernhardt and Singer, 2012; Morelli et al., in press;

Sarkheil et al., in press). Thus, this abnormality may relate to a dis-

turbance of emotional processing and empathy in individuals with

antisocial behavior. The cingulate gyrus is also demonstrated to be

larger-than-normal in individuals with antisocial behavior. As a

number of previous fMRI studies reported abnormal activation of

the BOLD signal during moral- or shame-related tasks (Raine and

Fig. 2 Regions of decreases (blue) or increases (red) in regional gray matter volume in individuals with antisocial behavior, compared with controls voxel threshold P <0.001. (a) Left frontopolar cortex; (b) left
insula; (c) lentiform nucleus; (d) right fusiform.

Table 2 Results of meta-analysis of VBM studies comparing individuals with antisocial behavior and controls

Anatomical location Maximum Cluster

Talairach coordinate SDM value P-value (uncorrected) Total cluster size Breakdown Sub-cluster size

Smaller gray matter volume (individuals with antisocial behavior < controls)
Right lentiform nucleus 18, 6, �4 �2.541 <0.0001 110 rt. putamen 69

rt. lateral globus pallidus 21
rt. caudate head 18
Other sub-lobar region 2

Left insula �40, 8, 10 �2.389 0.0002 53 lt. insula 46
lt. precentral gyrus 7

Left superior frontal gyrus �10, 62, 26 �2.261 0.0006 16 lt. superior frontal gyrus 16

Larger gray matter volume (individuals with antisocial behavior > controls)
Right fusiform gyrus 46, �22, �24 1.385 <0.0001 60 rt. fusiform gyrus 33

rt. inferior temporal gyrus 27
Right inferior parietal lobule 38, �30, 42 1.040 0.0003 39 rt. inferior parietal lobule 37

rt. postcentral gyrus 2
Left superior parietal lobule �36, �68, 44 1.002 0.0004 41 lt. superior parietal lobule 35

lt. inferior parietal lobule 5
lt. precuneus 1

Right cingulate gyrus 12, 8, 44 1.001 0.0004 63 rt. cingulate gyrus 15
rt. medial frontal gyrus 40
rt. superior frontal gyrus 8

Right postcentral gyrus 58, �20, 30 1.001 0.0004 43 rt. postcentral gyrus 38
rt. inferior parietal lobule 5

SDM, signed differential mapping.
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Yang, 2006; Christensen et al., in press; Michl et al., in press), the

structural abnormality may contribute to these dysfunctions.

As a number of functional neuroimaging studies of individuals

with antisocial behavior have repeatedly shown functional abnormal-

ity in the amygdala and OFC/vmPFC (Phelps and LeDoux, 2005;

Blair, 2007; Yang et al., 2009; Hyatt et al., 2012), we have predicted

GMV reduction in these regions. But contrary to the prediction, the

analysis did not show significant GMV reduction in the amygdala

and OFC/vmPFC. This dissociation between functional and struc-

tural alteration is surprising. A possible explanation for this negative

result is the heterogeneity of the participants. We integrated people

with several different disorders into the analysis, because all were at

higher risk of antisocial behavior. Further, it is thought that people

with these disorders share a common neural basis of antisocial be-

havior. However, some participants with CD and ASPD had a dual

diagnosis of psychopathy. The diagnosis of CD and ASPD has also

been criticized for over-emphasizing behavioral outcomes (such as

criminality) and neglecting core psychological features (Blair, 2007).

With this in mind, it is possible that we have integrated individuals

with similar behavioral phenotypes but with partially different

neural correlates. Another explanation is that functional abnormality

derives from abnormality in the white matter instead of the gray

matter. As abnormal connectivity between the amygdala and the

OFC/vmPFC has been reported in individuals with antisocial behav-

ior (Passamonti et al., 2012), white matter abnormality without

GMV reduction may contribute to their well-established functional

abnormality.

Limitations

There are some methodological considerations in the reported meta-

analysis. First, although we have integrated only whole-brain VBM

studies in individuals with antisocial behavior, there is considerable

heterogeneity between studies, in terms of participants and methodol-

ogies. For example, as we discussed above, we may have included

studies with individuals with similar phenotypes but different neural

or psychological bases for their symptoms. In addition, there is signifi-

cant diversity in the methodology of imaging between the studies we

included, such as smoothing function used and strength of magnetic

field. Further, the studies adopted different statistical analyses. Thus,

although we used a conservative threshold in our analysis to minimize

study heterogeneity, the results should nevertheless be treated with

caution. Second, the majority of participants within the integrated

studies had psychiatric comorbidity, such as substance abuse or sub-

clinical features of other psychiatric disorders, including depression,

anxiety disorder, autism, and attention deficit hyperactivity disorder. It

is known that these comorbid conditions have an impact on structure

of the frontotemporal cortex (Yamasue et al., 2003, 2004; Aoki et al,

2012a,b,c; Lucantonio et al., 2012). Therefore, it is possible that the

abnormal GMV was an artifact of the comorbid psychiatric disorders.

In addition, differences in the subjects’ behavioral and emotional traits

may also affect GMV (Takeuchi et al., 2011; Morishima et al., 2012;

Takeuchi et al., in press). We could not conduct sensitivity analysis or

meta-regression due to an insufficient number of studies, although our

conservative meta-analysis of unbiased studies demonstrated signifi-

cant abnormalities in GMV. Thus, although we robustly found GMV

abnormalities, the functions of which may relate to a psychological

trait of individuals with antisocial behavior, we could not directly ad-

dress the relationship between abnormalities in brain structure and

behavior. Third, as non-significant data have a higher possibility of

not being published, there exists strong publication bias. In addition,

although SDM reconstructs both positive and negative differences in

the same map (signed map) (Radua and Mataix-Cols, 2009; Radua

Fig. 3 Regions of decreases (blue) or increases (red) in regional gray matter volume in individuals with antisocial behavior, compared with controls voxel threshold P <0.001. (a) Right inferior parietal lobule;
(b) left superior parietal lobule; (c) right cingulate gyurs; (d) right postcentral gyrus.
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et al., 2010), peak-based meta-analyses are based on highly significant

data (i.e. P < 0.001 uncorrected) rather than raw statistical brain maps,

and this approach may result in less accurate results.

CONCLUSION

In conclusion, the meta-analysis of unbiased whole-brain VBM studies

of individuals with antisocial behavior demonstrated significantly ab-

normal GMV reductions in the FPC and parahippocampal gyrus,

including the amygdala, and GMV increases in the right fusiform

gyrus and the right inferior parietal lobule. These abnormalities may

correspond to deficits in keeping information in the working memory

during allocation of attention, emotional processing and inappropriate

face information processing in social context. The current analysis

emphasized that attention deficit is also an important factor in the

pathophysiology of individuals with antisocial behavior.
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