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Abstract

Next generation sequencing technologies make directly testing rare variant associations possible.

However, the development of powerful statistical methods for rare variant association studies is

still underway. Most of existing methods are burden and quadratic tests. Recent studies show that

the performance of each of burden and quadratic tests depends strongly upon the underlying

assumption and no test demonstrates consistently acceptable power. Thus, combined tests by

combining information from the burden and quadratic tests have been proposed recently.

However, results from recent studies (including this study) show that there exist tests that can

outperform both burden and quadratic tests. In this article, we propose three classes of tests that

include tests outperforming both burden and quadratic tests. Then, we propose the optimal

combination of single-variant tests (OCST) by combining information from tests of the three

classes. We use extensive simulation studies to compare the performance of OCST with that of

burden, quadratic and optimal single-variant tests. Our results show that OCST either is the most

powerful test or has similar power with the most powerful test. We also compare the performance

of OCST with that of the two existing combined tests. Our results show that OCST has better

power than the two combined tests.
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Introduction

Recent studies show that complex diseases are caused by both common and rare variants

[Pritchard, 2001; Pritchard and Cox, 2002; Walsh and King, 2007; Stratton and Rahman,

2008; Bodmer and Bonilia, 2008; Ng et al., 2009; Teer and Mullikin, 2010]. To detect

disease associated common variants, indirect mapping methods based on tagging SNPs can

be used. However, to detect disease associated rare variants, direct association mapping

methods in which all variants must be identified should be used because rare variants are

essentially independent of other variants. Next-generation sequencing technology allows

sequencing of the whole genome of large groups of individuals, and thus makes direct

association mapping feasible [Andre’s et al., 2007; Metzker, 2010].
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Statistical methods for common variant association studies have been well developed.

However, the variant by variant methods for common variant association studies may not be

optimal for rare variant association studies due to allelic heterogeneity as well as the

extreme rarity of individual variants [Li and Leal, 2008]. Recently, statistical methods for

rare variant association studies by summarizing genotype information from multiple variants

have been developed. These methods can be roughly divided into three groups: burden tests,

quadratic tests, and combined tests.

Burden tests include the cohort allelic sums test (CAST) [Morgenthaler and Thilly, 2007],

the combined multivariate and collapsing (CMC) method [Li and Leal, 2008], the weighted

sum (WS) method [Madsen and Browning, 2009], the variable minor allele frequency

threshold (VT) method [Price et al., 2010], and the cumulative minor-allele test (CMAT)

[Zawistowski et al., 2010], among others. Burden tests collapse rare variants in a genomic

region into a single burden variable and then regress the phenotype on the burden variable to

test for the cumulative effects of rare variants in the region [Lee et al., 2012]. Let xim denote

the genotype (number of minor alleles) of the ith individual at the mth variant. As shown by

Sha et al. [2012], the burden variables of the aforementioned methods are all the weighted

combination of variants, Σmwmxim, or its function with different ways to model the weights

wm. Let sm denote the score test statistic from a linear model or a logistic model for the mth

variant. Linear test statistics with the form ΣmWmsm are also based on the burden variable

Σmwmxim. Thus, from the way of collapsing genotypes, burden tests and linear tests are

equivalent. So, burden tests are also called linear tests [Derkach et al., 2012].

Quadratic tests with test statistics in the form  include C-alpha test [Neale et al.,

2011], sequence kernel association test (SKAT) [Wu et al., 2011], and the test for testing the

effects of the optimally weighted combination of variants TOW [Sha et al., 2012]. Recently

developed adaptive weighting methods for rare variant association studies [Han and Pan,

2010; Hoffmann et al., 2010; Lin and Tang, 2011; Yi and Zhi, 2011; Sha et al., 2013], as

pointed out by Derkach et al., [2012], are operationally similar to quadratic tests. Combined

tests include the test using Fisher’s method to combine information from the linear and

quadratic statistics (Fisher-CT) [Derkach et al., 2012] and the optimal linear combination of

the burden test and SKAT (SKAT-O) [Lee et al., 2012].

Burden tests and quadratic tests perform quite differently. Burden tests or linear tests

implicitly assume that all the rare variants are causal and directions of effects are all the

same. If these assumptions are true, burden tests can outperform quadratic tests; otherwise,

burden tests can perform poorly and quadratic tests can outperform burden tests [Wu et al.,

2011; Lee et al., 2012; Sha et al., 2012; Derkach et al., 2012]. Ladouceur et al. [2012]

showed that the performance of each of burden and quadratic tests depends strongly upon

the underlying assumption and no test demonstrates consistently acceptable power despite

the large sample size. To increase the robustness of the test, both SKAT-O and Fisher-CT

combine a burden and a quadratic test aiming to have advantages of both burden and

quadratic tests. However, burden and quadratic tests cannot cover all situations. Kinnamon

et al. [2012] demonstrated that the single-variant test with statistic  can outperform

both burden and quadratic tests when there are a large number of neutral variants and small
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number of causal variants. Results of this study show that the tests with statistics

 can outperform both

burden and quadratic tests in some situations.

In this article, through the optimal combination of single-variant tests under different

criteria, we first obtain three classes of tests that are well beyond burden and quadratic tests.

Then, we propose the optimal combination of single-variant tests (OCST) by combining

information from tests of the three classes. Using extensive simulation studies, we compare

the performance of OCST with that of the burden, quadratic, and the optimal single-variant

tests. Our results show that, in a wide range of scenarios, OCST either is the most powerful

test or has similar power with the most powerful test. We also compare power of OCST with

that of the two existing combined tests: Fisher-CT and SKAT-O. We are able to demonstrate

that OCST has better power than both Fisher-CT and SKAT-O.

Method

Consider a sample of n individuals. Each individual has been genotyped at M variants in a

genomic region (a gene or a pathway). Denote yi as the trait value of the ith individual for

either a quantitative trait or a qualitative trait (1 for cases and 0 for controls for a qualitative

trait) and denote xim as the genotypic score of the ith individual at the mth variant, where

xim∈{0,1,2} is the number of minor alleles. If there are no covariates, we use the generalized

linear model [Nelder and Wedderburn, 1972]

to model the relationship between trait values and genotypes at the mth variant, where g() is

a monotone “link” function. Under the generalized linear model, the score test statistic to

test the null hypothesis H0:β1 = 0 is given by [Sha et al., 2011]

(1)

where .

The statistic sm asymptotically follows the standard normal distribution. If there are

covariates, we use the method proposed by Sha et al. [2012] to adjust the effect of the

covariates. Let (zi1,…,zip)T denote covariates of the ith individual. We adjust both trait value

yi and genotypic score xim for the covariates by applying linear regressions. That is,

(2)

Let ỹi and x̃im denote the residuals of yi and xim, respectively. With covariates, we replace yi

and xim by ỹi and x̃im in sm.

Let . Current quadratic tests for rare variant association studies are combinations of

Sm. The statistic of TOW [Sha et al., 2012]  and the statistic of SKAT [Wu
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et al., 2011] , where wm = VmWm and Wm is the weight used by SKAT.

Since , where  is

asymptotically equivalent to the weights used by Weighted Sum (WS) method [Madsen and

Browning, 2009],  is a burden test and is similar to WS method. These observations

motivate us to consider combinations of Sm and combinations of sm.

First, we consider the optimal combinations of S1,…,SM under different criteria, that is,

 under the condition  for p∈(1,∞). By solving the

maximization problem, we have . The class of tests

 is equivalent to {Ta(z):z∈(1,∞)}, where . We further

extend {Ta(z):z∈(1,∞)} to Aa = {Ta(z):z∈(1,∞)}, where we define

. Each test in Aa can be more

powerful than other tests in Aa in some scenarios. No test can be consistently more powerful

than other tests in Aa (see Figures S1 and S2). Note that TOW (Ta(2)) belongs to Aa. In most

cases, there is another test in Aa that is more powerful than TOW (Figures S1 and S2).

All tests in Aa are robust to the directions of the effects of causal variants. From the

literature [Sha et al., 2012; Wu et al., 2011], we learn that tests being robust to directions of

the effects of causal variants are less powerful than burden tests when directions of the

effects of causal variants are all the same and there are not many neutral variants. This

observation leads us to consider the optimal combination of s1,…,sM besides the class of

tests Aa. To consider the optimal combination of s1,…,sM, we propose to use either

 under the condition  and wm≥0 for m = 1,…,M or

 under the condition  and wm≤0 for m = 1,…,M.

Using the same argument for Aa, we have that  lead to the class of tests Ab={Tb(z):z∈

[1,∞]}, where  lead to the class of tests

Ac={Tc(z):z∈[1,∞]}, where .

Each of the three test classes Aa, Ab, and Ac has its own favorite scenario. The favorite

scenario of Aa is that both risk and protective variants are present. The favorite scenario of

Ab is that all causal variants are risk variants while the favorite scenario of Ac is that all

causal variants are protective variants (see Figures S3 and S4). Let Pa(z), Pb(z), and Pc(z)

denote the p-values of Ta(z), Tb(z) and Tc(z), respectively. Our proposed Optimal

Combination of Single-variant Tests (OCST) is defined as
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TOCST can be obtained by a simple grid search across a range of z. For a given grid 1≤z1<…

<zk≤∞ , the test statistic .

We use a permutation test to evaluate the p-value of OCST. In each permutation, we

randomly shuffle the trait values. Suppose that we perform B times of permutations. Let 

denote the values of sm based on the bth permuted data, where b=0 represents the original

data. Based on , we can calculate  for s = a, b, or c. Then, we

transfer  by

Let . Then, the p-value of OCST is given by

For a simulation study with R replicates, the above procedure will be rather computationally

expensive. In our simulation studies, we use the pooling permutation method proposed by

Guo and Lin [2009] to evaluate p-values. In the pooling permutation method, permuted

samples from all the replicates are pooled together to form a joint sample from the null

distribution. Suppose that we have R replicates and we perform B permutations for each

replicate. Let  denote the value of Ts(zk) based on the bth permuted data in the rth

replicate for s=a,b, or c, where b=0 represents original data. Then, we transfer  to

the corresponding p-value  by

Let . Then, the p-value of OCST in the

rth replicate is given by
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Since the permutation samples are pooled across all replicates to form a sample from the

null, B can be set to be much smaller than the situation when only one sample is analyzed.

Comparison of Tests

We compare the performance of the proposed test with that of (1) the weighted sum (WS)

method [Madsen and Browning, 2009], (2) the sequence kernel association test (SKAT)

[Wu et al., 2011], (3)  that is called maximum single-variant test

(MAXST), and (4)  that is the same as TOW [Sha et al., 2012]. The rank

sum test used by WS is replaced with the score test based on residuals ỹi and x̃im. We also

compare the performance of the proposed method with two combined tests: Fisher-CT and

SKAT-O [Derkach et al., 2012; Lee et al., 2012].

Simulation

The empirical Mini-Exome genotype data provided by the 17th genetic analysis workshops

(GAW17) are used for simulation studies. This dataset contains genotypes of 697 unrelated

individuals on 3205 genes. We choose six genes: AHNAK (gene1), AKAP13 (gene2),

COL6A3 (gene3), FREM2 (gene4), MDN1 (gene5), and TG (gene6) with 231, 163, 187,

143, 187, and 146 variants, respectively. We merge the six genes to form a super gene

(Sgene) with 1057 variants. We use Sgene because the distributions of the minor allele

frequencies (MAFs) in the 1057 variants in the Sgene and in the 24487 variants in all the

3205 genes are very similar (Figure S5). In our simulation studies, we generate genotypes

based on the genotypes of 697 individuals in the Sgene. The genotypes of the GAW17 data

set are extracted from the sequence alignment files provided by the 1000 Genomes Project

for their pilot3 study (http://www.1000genomes.org). We use the program fastPHASE

[Scheet and Stephens, 2006] to infer haplotypic phase for the 697 individuals and calculate

haplotype frequencies. To generate the genotype of an individual, we generate two

haplotypes according to the haplotype frequencies. To generate a qualitative disease

affection status, we use a liability threshold model based on a continuous phenotype

(quantitative trait). An individual is defined to be affected if the individual’s phenotype is at

least one standard deviation larger than the phenotypic mean. This yields a prevalence of

16% for the simulated disease in the general population. In the following, we describe how

to generate a quantitative trait.

To evaluate type I error, we generate trait values independent of genotypes by using the

model:

(3)

where X1 is a continuous covariate generated from a standard normal distribution, X2 is a

binary covariate taking values 0 and 1 with a probability of 0.5, and ε follows a standard

normal distribution.

To evaluate power, we assume that there are M variants in total and there are ncau causal

variants, where M is determined by ncau and the percentage of neutral variants. When M and
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ncau are given, we randomly choose M variants from 1057 variants of Sgene as total variants

and randomly choose ncau rare variants (MAF<0.01) from M variants as causal variants.

Denote nr and np as the number of risk variants and protective variants, respectively, where

nr + np = ncau. For an individual, let  and  denote the genotypic scores of the ith risk

variant and the jth protective variant, respectively. The disease model is given by

where X1, X2, and ε are the same as those in equation (3);  and  are constants and their

values depend on the heritability of each causal variant. We have two models to determine

the heritability of each causal variant. Let hi denote the heritability of the ith causal variant

and let  denote the total heritability. In Model 1, let r1,…,rncasu be random

numbers between 0 and 1, then, . In model 2,

h1=0.5hT. Let r2,…,rncasu be random numbers between 0 and 1, then,

. Under Model 1, all causal variants have the

same expected heritability. Under Model 2, the heritability of one of the causal variants is

much larger than that of other causal variants.

Results

In simulation studies, p-values are estimated using a pooling permutation method [Guo and

Lin, 2009] in which permuted samples from all the replicates are pooled together to form a

joint sample from the null distribution. In each replicate, we perform 20 permutations. Type

I error rates are evaluated using 10,000 replicated samples, while powers are evaluated using

1,000 replicated samples.

For type I error evaluation, we consider different kinds of traits, different haplotype

structures (different genes), and different significance levels. For 10,000 replicated samples,

the 95% confidence intervals (CIs) for type I error rates of nominal levels 0.05, 0.01, and

0.001 are (0.046, 0.054), (0.008, 0.012), and (0.0004, 0.0016), respectively. The estimated

type I error rates of the five tests are summarized in Table 1. As shown in this table, more

than 95% estimated type I error rates are within the 95% CIs, which indicates that the

estimated type I error rates are not significantly different from the nominal levels. Thus, all

the five tests are valid tests.

For power comparisons, we conduct two sets of simulations. In simulation set 1, we

compare the power of OCST with that of burden (WS), quadratic (SKAT and TOW), and

optimal single-variant (MAXST) tests. In simulation set 2, we compare the power of OCST

with that of two combined tests (SKAT-O and Fisher-CT). For simulation set 1, we compare

the power of the five tests for power as a function of the percentage of neutral variants

(Figures 1, 2, S6, S7) and as a function of the percentage of protective variants (Figures 3,

S8). The power of TOW and the power of SKAT have similar patterns in all the simulation
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scenarios, but TOW is consistently more powerful than SKAT. In the following discussion

of power comparisons, we omit SKAT.

As shown by the power comparisons for power as a function of the percentage of neutral

variants (Figures 1, 2), in all the cases, OCST either is the most powerful test or has similar

power with the most powerful test. WS is the most powerful test and OCST has similar

power with WS when there are no protective variants and the percentage of neutral variants

is small; TOW is the most powerful test and OCST has similar power with TOW under

model 1 when both protective and risk variants are present; MAXST is the most powerful

test and OCST has similar power with MAXST under model 2 when both protective and risk

variants are present and the percentage of neutral variants is large; OCST is the most

powerful test otherwise. With the increase of neutral variants, power of all the tests

decreases while the power of WS decreases the fastest and power of MAXST decreases the

slowest. With the decrease of number of causal variants, power of all the tests increases

while the power of WS increase the slowest and power of MAXST increases the fastest. The

reason that the power of MAXST decreases the slowest with the increase of neutral variants

and increases the fastest with the decrease of causal variants is that MAXST essentially only

depends on the variant with the largest heritability. This reason can also explain why the

power of MAXST is higher under model 2 than that under model 1.

The power comparisons for power as a function of the percentage of protective variants are

given in figure 3. As shown by figure 3, again, OCST either is the most powerful test or has

similar power with the most powerful test. TOW is the most powerful test and OCST has

similar power with TOW when the percentage of neutral variants is small; MAXST is the

most powerful test and OCST has similar power with MAXST under model 2 when the

percentage of neutral variants is large; OCST is the most powerful test otherwise. When

both protective and risk variants are present, the power of WS decreases dramatically, while

the power of OCST decreases slightly and the power of TOW and MAXST doesn’t decrease

at all.

Power comparisons based on a qualitative trait have similar patterns to those based on a

quantitative trait (Figures S6-S8). However, the power of TOW and MAXST decreases in

the presence of both risk and protective variants, although decreases not as fast as that of

WS (Figure S8). As pointed out by Wu et al. [2011] and Sha et al. [2012], decrease in power

of TOW and MAXST in the presence of both risk and protective variants is due to the fact

that protective variants lower MAFs in cases and thus make observing rare variants in cases

more difficult.

In simulation set 2, we compare the power of OCST, Fisher-CT, and SKAT-O for power as

a function of percentage of protective variants. Results are summarized in Figure 4. This

figure shows that OCST is consistently more powerful than Fisher-CT and Fisher-CT is

consistently more powerful than SKAT-O. Power simulation results based on a qualitative

trait yield the same conclusions, but differences in power between the three tests are smaller

than those based on a quantitative trait (Figure S9).
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We also perform simulation studies to compare the power of the proposed test (OCST) with

the Adaptive Weighting test (AW2) proposed by Sha et al. [2013]. The power comparisons

of these two tests for power as a function of the heritability for quantitative traits are given

in Figure 5. This figure shows that OCST is consistently more powerful than AW2.

Discussion

There is increasing interest to detect associations between rare variants and complex traits.

Reasons are that (1) the common variants identified through genome-wide association

studies (GWAS) account for only a small portion of the presumed phenotypic variation and

(2) the development of next-generation sequencing technology has made directly testing all

rare variants feasible. Several statistical methods for rare variant association studies have

been developed recently. However, recent studies show that the performance of each of

these methods depends strongly upon the underlying assumption and no method

demonstrates consistently acceptable power [Ladouceur et al. 2012]. More recently,

Derkach et al., [2012] and Lee et al., [2012] proposed combined tests by combining

information from the burden and quadratic tests. However, results from this study and from

Kinnamon et al. [2012] show that there exist tests that can outperform both burden and

quadratic tests in some situations. In this article, we propose a novel combined test OCST by

combining information from tests of the three classes that are well beyond burden and

quadratic tests. Our results show that, comparing with burden and quadratic tests, OCST

either is the most powerful test or has similar power with the most powerful test. Our results

also show that OCST has better power than the two combined tests: Fisher-CT and SKAT-

O.

All the existing methods discussed in this article are for unrelated individuals only.

Although our proposed method is also described using unrelated individuals, our method can

be applied to family-based data as long as there is a single-variant test. As an example, we

consider the within-family test TWFT and admixture between-family test TadBFT proposed by

Fang et al. [2012] for family-based rare variant association studies. We can use either TWFT

or TadBFT as the single-variant test sm and then our method can be applied to family-based

data through this sm.

Using formula (2) to adjust for the effect of covariates for binary traits may look strange.

Previous researches showed that using formula (2) to adjust for the effect of covariates for

binary traits works well. To control for population stratification, Price et al. [2006] used

formula (2) to adjust for the effect of covariates (eigenvectors) for binary traits and they

showed that this method works fine. In rare variant association studies, Sha et al. [2012]

used formula (2) to adjust for the effect of covariates for binary traits and their results also

showed that this method works very well.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Power comparisons of the five tests for power as a function of the percentage of neutral

variants under model 1 for quantitative traits. ncau represents the number of causal variants.

pp represents the percentage of protective variants. In this set of simulations, sample size is

1000; significance level is 0.001; total heritability is 0.05. Tn=ncau/(1−pn), where Tn

represents the total number of variants and pn represents the percentage of neutral variants,

and the Tn variants are randomly chosen from the 1057 variants of Sgene.
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Figure 2.
Power comparisons of the five tests for power as a function of the percentage of neutral

variants under model 2 for quantitative traits. ncau represents the number of causal variants.

pp represents the percentage of protective variants. In this set of simulations, sample size is

1000; significance level is 0.001; total heritability is 0.05. Tn=ncau/(1−pn), where Tn

represents the total number of variants and pn represents the percentage of neutral variants,

and the Tn variants are randomly chosen from the 1057 variants of Sgene.
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Figure 3.
Power comparisons of five tests for power as a function of the percentage of protective

variants for quantitative traits. The number of causal variants is 20. pn represents the

percentage of neutral variants. In this set of simulations, sample size is 1000; significance

level is 0.001; total heritability is 0.05. Tn=ncau/(1−pn), where Tn represents the total

number of variants and ncau represents the number of causal variants, and the Tn variants

are randomly chosen from the 1057 variants of Sgene.

Sha and Zhang Page 14

Genet Epidemiol. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4.
Power comparisons of three tests (OCST, Fisher-CT, and SKAT-O) for power as a function

of the percentage of protective variants for quantitative traits. The number of causal variants

is 20. pn represents the percentage of neutral variants. In this set of simulations, sample size

is 1000; significance level is 0.001; total heritability is 0.05. Tn=ncau/(1−pn), where Tn

represents the total number of variants and ncau represents the number of causal variants,

and the Tn variants are randomly chosen from the 1057 variants of Sgene.
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Figure 5.
Power comparisons of the proposed test (OCST) and AW2 proposed by Sha et al. [2013] for

power as a function of the heritability for quantitative traits. The number of causal variants

is 30. nprot represents the percentage of protective variants. pcau represents the percentage

of causal variants. In this set of simulations, sample size is 1000; significance level is 0.001.
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