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Abstract

Adopting a network perspective, the structural connectome reveals the large-scale white matter

connectivity of the human brain, yielding insights into cerebral organization otherwise

inaccessible to researchers and clinicians. Connectomics has great potential for elucidating

abnormal connectivity in congenital brain malformations, especially axonal pathfinding disorders.

Agenesis of the corpus callosum (AgCC) is one of the most common brain malformations and can

also be considered a prototypical genetic disorder of axonal guidance in humans. In this

exploratory study, the structural connectome of AgCC is mapped and compared to that of the

normal human brain. Multiple levels of granularity of the AgCC connectome are investigated,

including summary network metrics, modularity analysis, and network consistency measures, with

comparison to the normal structural connectome after simulated removal of all callosal

connections (“virtual callostomy”). These investigations reveal four major findings. First, global

connectivity is abnormally reduced in AgCC, but local connectivity is increased. Second, the

network topology of AgCC is more variable than that of the normal human connectome,

contradicting the predictions of the virtual callosotomy model. Third, modularity analysis reveals

that many of the tracts that comprise the structural core of the cerebral cortex have relatively weak

connectivity in AgCC, especially the cingulate bundles bilaterally. Finally, virtual lesions of the

Probst bundles in the AgCC connectome demonstrate that there is consistency across subjects in

many of the connections generated by these ectopic white matter tracts, and that they are a mixture

of cortical and subcortical fibers. These results go beyond prior diffusion tractography studies to

provide a systems-level perspective on anomalous connectivity in AgCC. Furthermore, this work
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offers a proof of principle for the utility of the connectome framework in neurodevelopmental

disorders.
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brain development

Introduction

Recent advances in imaging technology, computational power and mathematical tools for

network analysis have enabled the investigation of brain organization at the systems level,

creating a new field of neuroscience known as “MR connectomics”. The structural

connectome framework in particular provides a potent method for assessing the global white

matter connectivity of the human brain (Sporns et al., 2005). The application of

connectomics to healthy volunteers has elucidated the large-scale topology of the normal

adult brain (Bullmore and Sporns, 2009; Gong et al., 2009; Hagmann et al, 2007; Hagmann

et al., 2010; van den Heuvel and Sporns, 2011; Iturria-Medina et al., 2007; Li et al., 2012a,b;

Sporns 2011). There are consistent findings across these publications, including the presence

of highly connected brain regions, referred to as hubs. Building on this initial success,

structural connectomics is now being applied to human brain development (Fan et al., 2011;

Hagmann et al., 2012; Tymofiyeva et al., 2012; Yan et al., 2011; Yap et al., 2011) and to

neurological and psychiatric disorders (Alscott et al., 2009; Irimia et al., 2012; Shu et al.,

2009; Verstraete et al., 2011). Borrowing techniques from graph theory, summary metrics

can be calculated to quantify key characteristics of the networks (Rubinov and Sporns,

2010). Community detection or modularity analysis has also been applied to the structural

connectome to find groups of nodes that are strongly interconnected and therefore likely to

be functionally integrated as well (Hagmann et al., 2008). These analysis methods reduce

the dimensionality of the human connectome and enable statistical inferences to be more

specific and better powered (Meskaldji et al., 2011).

The connectome framework is ideal for studying congenital brain malformations, especially

disorders of axonal pathfinding leading to aberrant structural connectivity (Engle et al.,

2010; Nugent et al., 2012, Wahl et al., 2010). Agenesis of the corpus callosum (AgCC) is

one of the most common human brain malformations, occurring in at least 1 in 4000 live

births (Glass et al., 2008; Wang et al., 2004) and in 3–5% of individuals assessed for

neurodevelopmental disorders (Bodensteiner et al., 1994; Jeret et al., 1985). AgCC can also

be considered a prototypical human disorder of axon guidance, one in which fibers that

would normally have crossed the midline as part of the corpus callosum instead form Probst

bundles, large white matter tracts that course anterior-posterior parallel to the

interhemispheric fissure within each cerebral hemisphere (Paul et al., 2007; Paul et al.,

2011). These gross anatomical abnormalities are easily diagnosed with conventional MRI,

but macrostructural images may only scratch the surface of the extensive white matter

reorganization in axonal pathfinding disorders. Diffusion MR tractography studies have

shown some alterations of white matter connectivity in AgCC (Lee et al., 2004; Lee et al.,
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2005; Tovar-Moll et al., 2007; Wahl et al., 2009; Nakata et al., 2009), but, to our knowledge,

there has not been a systems-level investigation of connectivity in the acallosal brain. MR

connectomics applied to AgCC may better characterize white matter abnormalities and

potentially discover new anatomically subtle but functionally significant disruptions of

connectivity that accompany this radiologically emblematic malformation. This could also

serve as proof of principle for the utility of connectomics in more common

neurodevelopmental disorders in which the underlying pathophysiological mechanism is

also thought to be a “connectopathy”, such as autism, dyslexia and schizophrenia (Seung

2012).

In this paper, multiple levels of granularity of the connectome are investigated. The most

granular level is analyzing the individual edges of the graphs. Next, sets of edges or modules

are tested for consistency and for statistical differences in connection strengths within the

modules between the AgCC and control cohorts. At a larger scale, graph theoretic metrics

such as degree are used to distinguish hub nodes from less-connected nodes. Finally,

summary metrics, such as mean degree, characteristic path length and mean clustering

coefficient, are used to characterize the entire network and provide tractable measures on

which to perform statistics to compare whole connectomes.

These systems-level computational approaches are particularly powerful for exploring the

importance of missing tracts or ectopic tracts, which are the hallmarks of axonal guidance

disorders, through studying the effect of simulated lesions on the whole-brain network.

Here, a “virtual callosotomy” is performed on the healthy control brains, creating control

connectomes without callosal connections. Using the virtual callostomy approach, we can

assess the changes in the connectome of the normal brain due to the absence of

interhemispheric callosal connections, and use these findings to generate specific hypotheses

for the AgCC connectome. Similarly, a “virtual Probstotomy” is performed on the AgCC

cohort to demonstrate the contribution of the Probst bundles to the AgCC connectome.

Using a multi-scale connectomics analysis, we test three central hypotheses about the altered

connectivity of AgCC subjects, garnered from the comparison of the controls to the virtual

callosotomy case. First, we hypothesize that the AgCC brain has reduced long-range or

global connectivity compared to the controls but increased short-range or local connectivity.

Second, we expect to find that the AgCC connectome is less variable compared to the

controls. Third, we postulate that the modular organization of the AgCC brain will not be

altered due to the absence of the callosal fibers. While we do not assume that the virtual

callosotomy will exactly replicate the AgCC brain, we do expect any deviations to provide

insight into the structural alterations of AgCC beyond the lack of callosal connections.

Methods

Subjects

Written informed consent was obtained from all participants and/or their legal guardians

under a study protocol approved by the institutional review board at our medical center.

Seven subjects with AgCC (4 male, 3 female; mean age 24.3±14.2, 5 right-handed) and 11

healthy volunteers (6 male, 5 female; mean age 24.9±9.1, 11 right-handed) were included in
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this study. Full-scale IQ was obtained from the AgCC cohort (mean FS-IQ 102±14) and

control subjects (mean FS-IQ 109 ±17). A two-sample Student’s t-test revealed that there

was no significant group difference in age (p=0.92) or IQ (p=0.28) and a two-sample

Fisher’s exact test showed that there was no significant group difference in handedness

(p=0.14) or gender (p=0.99).

Image Acquisition

All MR imaging was performed on a 3T EXCITE MR scanner (GE Healthcare, Waukesha,

WI, USA) using an 8-channel head phased-array radio-frequency head coil. High-resolution

structural MR imaging of the brain was performed with an axial 3D inversion recovery fast

spoiled gradient-recalled-echo T1-weighted sequence (TE =1.5 ms, TR = 6.3 ms, TI=400

ms, flip angle of 15°) with a 230 mm FOV, and one hundred fifty-six 1.0 mm contiguous

partitions at a 256×256 matrix. Structural MR images of all subjects were interpreted by an

attending neuroradiologist certified by the American Board of Radiology.

Whole-brain diffusion was performed with a multislice 2D single-shot spin-echo echo-

planar sequence with 55 diffusion-encoding directions, the array spatial sensitivity encoding

technique for parallel imaging with a reduction factor of 2, a diffusion-weighting strength of

b = 1000 s/mm2; TR/TE=14,000/63 ms; NEX=1; interleaved 1.8-mm axial sections with no

gap; in-plane resolution of 1.8 × 1.8 mm with a 128×128 matrix; and a field of view of 230

mm. An additional image set was acquired with minimal diffusion weighting (b =10 s/mm2).

The total acquisition time for diffusion imaging was 13 minutes.

Data Pre-processing

After non-brain tissue was removed using the Brain Extraction Tool (BET; http://

www.fmrib.ox.ac.uk/analysis/research/bet/) with a fractional intensity threshold of 0.3

(Smith 2002), the diffusion-weighted images were corrected for motion and eddy currents

using FMRIB's Linear Image Registration Tool (FLIRT; www.fmrib.ox.ac.uk/fsl/flirt) with

12-parameter linear image registration (Jenkinson et al., 2002). All diffusion-weighted

images were registered to the reference b = 10 s/mm2 image. From the transformation of

every diffusion-weighted volume to the b = 10 s/mm2 image, a scalar was derived, which

reflects the amount each volume must be corrected. The mean of the parameter across

volumes for each subject was used as the motion correction parameter in the Data Quality

Assurance analysis. This procedure is described in a FMRIB technical report (Jenkinson,

1999). The fractional anisotropy (FA) image was calculated using FSL’s DTIFIT.

Cortical Parcellation

The T1-weighted MR images were automatically segmented using FreeSurfer 5.1.0 (Fischl

et al., 2004) with the default settings of recon-all, resulting in 68 cortical regions, 34 per

hemisphere, and 14 subcortical regions, 7 per hemisphere. These 82 regions represent the

nodes of the network and were used as the seeds for the fiber tractography described in the

following section. A neuroradiologist confirmed the accuracy of the segmentation of the

AgCC and control brains.
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Fiber Tractography

Probabilistic tractography was performed with probtrackx2 (Behrens et al, 2007), with 2000

streamlines initiated from each seed voxel using the default options. Probtrackx2 allows for

the inclusion of a termination mask, which halts tracking when a streamline comes into

contact with a voxel in the mask. A termination mask was created by thresholding the FA

image at FA<0.15, which prevents errant tracking across the interhemispheric fissure and

between neighboring gyri through the sulcal space. In addition, a plane through the midline

of the brainstem was manually drawn and was added to the termination mask in order to

prevent descending streamlines from crossing the brainstem to ascend on the contralateral

side.

The 68 cortical regions were transformed to the gray/white matter boundary (GWB) using

FreeSurfer. Using FLIRT, the affine transform from diffusion to structural space was

calculated by registering the FA volume to the T1 volume, then this transformation was

inverted in order to register the FreeSurfer parcellation to the FA map. Each of the GWB

volumes and the subcortical volumes was registered to the diffusion space to be used as

seeds for the tractography. In order to regularize the seeding across cortical and subcortical

areas, the seed regions in diffusion space were masked according to 0.15<FA<0.35. Each of

the 82 seed regions was used in a separate tracking run and the results were compiled in a

manner described in the next section, entitled “Connectome Reconstruction”.

To perform a virtual callosotomy for each of the control subjects, we repeated the above

procedure with the addition of another exclusion mask. In probtrackx2, an exclusion mask

can be utilized to exclude any streamlines that come into contact with the mask. A midline

sagittal plane was manually drawn over the corpus callosum for each control subject. The

addition of this exclusion criterion effectively removes any streamlines that pass through the

corpus callosum. The networks derived from this procedure are referred to as “virtual

callosotomy” connectomes.

Echoing the virtual callosotomy maneuver on the controls, a virtual Probstotomy was

performed by placing an exclusion mask across a coronal cross-section of the left and right

Probst bundles in the seven AgCC subjects. The Probst bundle exclusion masks were

manually drawn on a coronal slice of the FA image approximately in the middle of the tract,

for each subject, taking care not to include the cingulum bundle. We repeated the

tractography with this exclusion mask and reconstructed the individual connectomes as

described in the next section. The placement of all exclusion masks was checked by an

attending neuroradiologist certified by the American Board of Radiology and with many

years of experience with diffusion tractography to confirm that each mask only contains the

tract of interest and that it contains the entire cross-sectional area of the tract on the two-

dimensional image used to define the mask. Examples of the exclusion masks for virtual

callosotomy and virtual Probstotomy are shown in Supplementary Figure S1.

Connectome Reconstruction

The technique used to construct the individual and consensus connectomes was modeled on

standard processing pipelines found in the literature, including the use of FreeSurfer to
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define the nodes of the network (Hagmann et al., 2007; Li et al., 2012a; Li et al., 2012b; van

den Heuvel and Sporns, 2011). The pipeline, depicted in Figure 1, is most similar to the M2

method reported by Li et al., (2012a). The network analysis tools, described in the next

section, are also conventional methodologies.

Each of the seed’s tracking results were masked by each of the other 81 regions, referred to

as targets, and summed across voxels to obtain a connection strength between each seed and

target pair, effectively taking the total number of streamlines connecting two regions as the

connection strength. This connection strength was then divided by the sum of voxels in the

seed and target region to account for differences in volume between the various cortical and

subcortical regions. Since tractography cannot determine directionality due to the antipodal

symmetry of diffusion imaging, the normalized connection strength between each seed and

target pair in both directions was summed and the connection strength of a seed with itself

was set to zero. The resulting connection matrix is a symmetric matrix and yields two

undirected connectomes for each control, one before and one after virtual callosotomy, and

for each AgCC subject, one before and one after virtual Probstotomy. In network analysis

terms, the 82 brain regions are the “nodes” and the connection strengths are the “edges” that

connect the nodes. The edges can be weighted by the connection strengths, or can be

binarized using a threshold on the connection strengths, as discussed below.

To create a consensus connectome for each of the three groups, the networks were first

thresholded at a liberal level to remove the weakest connections, those less than

approximately 0.5% of the maximum strength, which corresponds to a connection strength

threshold of 6.5. Then, only those connections that exist in at least 75% of subjects in the

group were retained and the connection strengths were averaged across subjects. The

consensus network is binarized using the same threshold applied to the individuals, yielding

three unweighted consensus connectomes: for the controls, virtual callosotomy controls, and

AgCC subjects. The threshold was tuned in order to obtain a mean degree of approximately

12 for the control consensus connectome, based on published results (van den Heuvel and

Sporns, 2011). For analyses of the individual connectomes, the same threshold of 6.5 was

applied to binarize the networks. The effect of the threshold used on both the individual and

consensus connectomes was explored by plotting mean degree, mean characteristic path

length, and mean clustering coefficient at a wide range of thresholds, from approximately

0.05% to 12.5% of the maximum strength (Supplementary Materials).

Network Analysis: Summary Metrics

To test our hypothesis that the AgCC brain has decreased long-range connectivity, we

calculate mean degree, characteristic path length, mean normalized betweenness, global

efficiency, and cost. To test our hypothesis that the AgCC brain has increased short-range

connectivity, we employ mean local efficiency and mean clustering coefficient.

The degree of a node is the number of connections that node makes with other nodes in the

network. Characteristic path length is the average of the shortest paths between all pairs of

nodes in the network, which is related to how quickly information can be transmitted

through a network. Normalized betweenness is the number of shortest paths that pass

through each node and is normalized to one if all the shortest paths, between all pairs of
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nodes, pass through a particular node in the network. Normalized betweenness provides a

measure of how centralized are the shortest paths. Global efficiency effectively takes the

mean inverse path length between all pairs of nodes. This measure is similar to characteristic

path length, but the inversion process reduces the disproportionate effect of long or infinite

path lengths occurring in very sparse or disconnected networks.

Local efficiency is the mean inverse of the shortest path length between all nodes that pass

through the connected neighbors of a node. Local efficiency provides a measure of the

efficiency of the local environment of a node. Clustering coefficient takes the ratio of closed

triangles between triplets of nodes and the number of connected triplets. Intuitively, a high

clustering coefficient means that, if a node is connected to two other nodes, then those two

nodes also likely to be connected to each other. This pattern of connectivity is assumed to be

a hallmark of local integration of information. The reader is referred to Rubinov and Sporns

(2010) and Bullmore and Bassett (2011) for a more comprehensive discussion of these

network metrics, their significance and mathematic formulation. Only the cost metric is not

defined in Rubinov and Sporns (2010). We calculate cost by dividing the number of

suprathreshold edges by the total number of possible edges in the network.

The metrics were computed for the unweighted individual and consensus connectomes for

comparison to previously published results on the normal human connectome. For the

individual networks, the mean and standard deviation are calculated across the individuals in

the group for each network metric. We also apply the weighted analogs of the network

metrics that take the connection strengths into account to confirm our findings with the

unweighted metrics for the AgCC subjects: mean strength (weighted analog to degree),

weighted characteristic path length, mean weighted normalized betweenness, weighted

global efficiency, mean weighted local efficiency, and mean weighted clustering coefficient.

These weighted metrics are applied to the individual connectomes of the controls and AgCC

subjects without any thresholding.

Network Analysis: Node Degree Distribution and Edge Consistency

To test if the spatial distribution of node degree was more variable between groups, we

transform the degrees of the 82 nodes in each connectome into a vector and use the

correlation coefficient in a pair-wise fashion between all the individuals in each group. In

addition to assessing the variability of node degree, the correlation coefficient of the

connection strengths was used as a measure of consistency for the networks as a whole. To

quantify consistency between networks, we are interested in a network similarity metric.

This is closely related to the problem of defining a "kernel" between graphs, a problem that

has recently received much attention in the machine learning literature (Vishwanathan et al.,

2010). One popular solution originally developed for comparing the structure of large

molecules is based on comparing walks in the networks (Kashima et al., 2003), which is

particularly well-suited for labeled graphs such as the human connectome. The simplest

form of this is to compare all of the one-step walks in the graphs, which is equivalent to

taking the correlation coefficient of the edge weights (i.e. connection strengths). Essentially,

we are performing the simplest imaginable kernel (or similarity metric) between two graphs.

This metric has therefore been used in two prior studies of the structural connectome to
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measure network similarity (Hagmann et al., 2008; Bassett et al., 2011). In our investigation,

the mean correlation coefficient was calculated between the consensus network and each

individual network. The mean correlation coefficient was also calculated in a pair-wise

fashion between the individual networks.

Network Analysis: Modularity

The weighted consensus and individual connectomes were decomposed into modules using

a community detection algorithm proposed in Blondel et al. (2008). The problem of

community detection requires the partitioning of a network into modules where nodes within

the module are densely connected, while nodes belonging to different modules are only

sparsely connected. Modularity and mean participation coefficient, both defined in Rubinov

and Sporns (2010), were calculated for each partitioning of the consensus and individual

connectomes. The mean and standard deviation were calculated for the individual

connectomes. Modularity quantifies how well the module assignments are able to maximize

intramodular connections, while minimizing intermodular connections. The participation

coefficient quantifies the diversity of intermodular connections that a node makes. In

addition, the stability of the modular assignment was quantified using the Hubert rand index

(Hubert and Baker, 1977). Mean Hubert rand index was computed in two ways for each of

the three groups: 1) between the modular assignment for each of the individual connectomes

and the assignment for the consensus connectome, and 2) pair-wise between the modular

assignments for the individual connectomes. The modular assignments are nondeterministic

because of dependence on initial conditions for the optimization; therefore, for the

consensus connectomes, the modular assignment that appeared most often across multiple

runs with 100 random initial conditions was selected. For the individual connectomes, the

module assignment algorithm was repeated 100 times with random initial conditions and the

mean and other descriptive statistics of the network metrics were computed over these

multiple iterations. The code used to compute the network measures and the modules is part

of the open-source Brain Connectivity Toolbox (https://sites.google.com/site/bctnet),

described in Rubinov and Sporns (2010).

Network Analysis: Statistical Inference Testing

To assess the statistical significance of between-group comparisons of the network metrics

and the measures of connectome variability described above, a non-parametric permutation

testing procedure was used. For each metric, the data labels were randomly reassigned

between the two groups and t-values were computed for each relabeling, for a total of 5000

permutations. P-values were calculated based on the distribution of t-values obtained from

the permutations and a threshold of p<0.05 was used to determine significance. The strength

of connections in the anterior-posterior edges of modules corresponding to the “structural

core” of the cerebral cortex (Hagmann et al., 2008) was tested for statistical significance

between the control and AgCC groups using the same permutation test described above. We

take a data-driven approach to the definition of the structural core, in that the structural core

was taken to be the module comprised of the medial cortical regions in each cerebral

hemisphere. The p-values obtained were adjusted for multiple comparisons with a false-

discovery rate (FDR) correction.
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Network Analysis: Virtual Probstotomy

After obtaining connectomes for AgCC with the Probst bundle connections removed

bilaterally, the percent difference of each connection strength between all pairs of nodes was

calculated, generating a percent difference matrix for each subject. The mean and standard

deviation for each subject was computed and the percent difference matrices were binarized

based on a threshold of mean plus one standard deviation, calculated for each subject. The

binarized percent difference matrices were added in order to obtain a consensus percent

difference matrix (with a minimum of 0 and a maximum value of 7) that reflects the

connections most commonly affected by the absence of the Probst bundles.

Data Quality Assurance

The following quality control metrics were calculated a) the mean motion correction

parameter, b) white and gray matter volumes (obtained from FreeSurfer), and c) IQ. These

variables were correlated with mean degree for the individual connectomes and p-values

were obtained. This analysis was performed to determine if the differences in the network

metrics could be explained by an imaging artifact such as motion, or factors related to

demographics such as IQ, or to anatomical characteristics such as gray and white matter

volumes. Furthermore, we also correlated a) mean FA for the entire brain, b) mean FA for

the seed regions and c) mean of the seed volumes with mean degree of the individual

connectomes to ensure that inter-subject variation in these measures did not inject potential

sources of bias into the analyses. A Kolmogorov-Smirnov test between the healthy controls

and AgCC was computed to determine if there were any statistically significant group

differences.

Results

Brain Anatomy

Two color fractional anisotropy maps are displayed in Figure 2. On the top row, the brain of

a healthy control is shown; in the midline sagittal image, both the corpus callosum and

anterior commissure are seen in red due to the left-right orientation of their axonal fibers. In

the bottom row, the brain of a subject with AgCC, the complete absence of a corpus

callosum is observed, while the anterior commissure is intact and is relatively large in cross-

sectional area compared to the control. In the coronal image for the AgCC subject, the

Probst bundles running anterior-posterior are seen in green.

All high-resolution 3D T1-weighted images of the AgCC subjects and controls were

reviewed by a board-certified neuroradiologist. The control brains were free of structural

anomalies and the acallosal brains were free of any additional structural anomalies

commonly found in association with AgCC, such as heterotopias, abnormal sulcation, or

hindbrain anomalies (Hetts et al., 2006). All 7 AgCC participants had complete absence of

the corpus callosum, distinguishing their condition from patients with so-called “partial

agenesis of the corpus callosum”, also known as “hypogenesis of the corpus callosum”

(Hetts et al., 2006; Wahl et al., 2009). Hence, the seven AgCC individuals in this study may

be considered to have “isolated complete AgCC”, i.e. complete absence of the corpus

callosum without other associated abnormalities visible on conventional MRI.
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Data Quality Assurance

There were no significant correlations between mean degree and any of the nuisance

variables considered: mean motion correction, mean FA for the entire brain, mean FA for

the seed regions, mean of the seed volumes, white and gray matter volumes, and IQ. There

were also no significant group differences in these variables between the AgCC and control

cohorts (p>0.05). Notably, this indicates that subject motion during the scan was not worse

for AgCC than for the normal volunteers.

Consensus Connectomes

The consensus connectomes for the three groups are shown in Figure 3. Each circle

represents a seed region or “node” (plotted at the centroid of each FreeSurfer parcel) and a

line connecting two seed regions, or “edge”, represents a structural connection between the

regions. The color and size of each node indicates its degree, where six equally-spaced bins

have been selected, as illustrated in the legend, and the weight of each edge is scaled by the

strength of its connectivity. The nodes have been labeled according to the abbreviations

listed above in the Abbreviations section and the connectomes are plotted in the neurological

convention, i.e. the left hemisphere is shown on the left side of the image and vice versa.

In Figure 4, the degree of each node in the three consensus connectomes has been plotted in

descending order. The nodes in the brain with the highest degree are often referred to as

“hubs”. Here, any node with degree greater than the mean degree plus one standard

deviation is designated as a hub, following Li et al. (2012a) as well as van den Heuvel and

Sporns (2011). For the control consensus connectome (Figure 4a), these regions include

bilateral putamen, bilateral thalamus, bilateral precuneus, left superior frontal, right insula,

and left superior parietal, indicated by the red color. The homologous regions contralateral

to the unilateral hubs also have high degree, but do not meet the criterion for being hubs.

The plot for the virtual callosotomy controls and AgCC has been colored according to the

hubs in the control consensus and the dotted line indicates the mean plus one standard

deviation cutoff. Thus, any nodes colored red appearing to the right of the dotted line have

been demoted from hub status and any white bars to the left of the dotted line are nodes that

have been promoted. In the virtual callosotomy controls, four cortical nodes have been

demoted (bilateral precuneus, right superior parietal, and left superior frontal), while the rest

of the hubs are preserved. Conversely, the bilateral superior temporal regions are promoted

to hub status in the virtual callosotomy controls. In the AgCC consensus, only the precuneus

regions on both sides are demoted from hub status; however, their degrees are both much

lower than seen in the virtual callostomy consensus. The nodes promoted to hub status in the

AgCC consensus connectome are quite different than the virtual callosotomy case:

specifically, the left insula, bilateral caudate, right superior frontal, and left superior parietal

are elevated to hub status. Overall, these findings suggest that absence of the corpus

callosum alone cannot explain the degree distribution of the consensus AgCC connectome.

Mean degree, characteristic path length, mean betweenness, global efficiency, cost, mean

local efficiency, and mean clustering coefficient were calculated for the three consensus

connectomes (Table 1). There is an apparent decrease in mean degree, global efficiency, and

cost in both the virtual callosotomy controls and AgCC subjects relative to the controls.
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There is an apparent increase in characteristic path length, mean betweenness, mean local

efficiency, and mean clustering coefficient in the virtual callosotomy controls and AgCC

subjects compared to the controls. However, these apparent group differences in the

summary network metrics of the consensus connectomes cannot be supported statistically,

since there is only one instance of the consensus connectome for each group. This motivates

further analysis of individual connectomes.

Individual Connectomes

Examples of individual connectomes for three controls and three AgCC subjects are shown

in Figure 5. The controls in the left column illustrate the similarity between the structural

connectomes of individual normal volunteers. Qualitatively, the spatial distribution of high

and low degree nodes does not change dramatically between the individuals. In

contradistinction, the AgCC connectomes visually demonstrate more variability between

individuals in the location of the high and low degree nodes. In order to quantify these

qualitative observations, we examined the within-group node degree variability as described

in the Methods section. We found that the spatial distribution of node degrees was indeed

significantly more variable in the AgCC group as demonstrated by a lower mean correlation

coefficient (r=0.78±0.05) compared to the controls (r=0.81±0.03) at p<0.05.

To further quantify these qualitative differences between groups, the connection strength

correlation coefficient was calculated between each individual connectome and its group

consensus connectome as well as between every pair of individual connectomes in each

group. The results of this analysis are presented in Table 2, where it is evident that the

consensus connectomes of the three groups represent the individuals in their group to

approximately the same extent, with no statistically significant differences. However, the

inter-individual variability of the AgCC connectome is greater than that of the control

connectome, as shown by a significantly lower consistency between individual networks.

This is opposite to the virtual callosotomy connectomes, which are slightly more similar to

one another than is the case for the individual control connectomes. Hence, the correlation

coefficients of the degree spatial distributions and the connection strengths both support the

qualitative impression from Figure 5 that the AgCC connectomes are more variable than the

control connectomes.

In Figure 6, the degree of each node, averaged across subjects, is plotted in descending order

for the individual connectomes for the three groups. The standard deviation of the degree

across individuals is plotted as an error bar for each node. Hubs are defined as those nodes

with degree greater than the mean degree (across all nodes) plus one standard deviation.

This is the same definition used with the consensus connectomes. The hubs for the controls

are bilateral putamen, bilateral thalamus, bilateral precuneus, bilateral superior parietal, right

insula, and left superior frontal (Figure 6a). The virtual callosotomy results demonstrate that

bilateral precuneus and left superior frontal are demoted from hub status when the callosal

connections are excluded, whereas bilateral superior temporal, left insula, and left pallidum

are promoted to hub status (Figure 6b). The AgCC individuals also show demotion of

bilateral precuneus and left superior frontal, as well as promotion of the left insula and left
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pallidum; however, the other three new hub nodes (the bilateral caudate and right pallidum)

are different from the virtual callosotomy case (Figure 6c).

Descriptive statistics of mean degree, characteristic path length, mean normalized

betweenness, mean clustering coefficient, global efficiency, and cost calculated for each

individual connectome in the three groups are presented in Table 3. All of the metrics were

found to be significantly different (p<0.05) between the control and virtual callosotomy

groups. Characteristic path length, mean normalized betweenness, global efficiency, mean

local efficiency, and mean clustering coefficient were also found to be significantly different

between the control and the AgCC groups, and in the same direction (i.e. higher or lower) as

the differences between the control and virtual callosotomy groups. However, differences in

mean degree and cost were not statistically significant between control and AgCC groups,

even though the trends in these metrics were also in the same direction as that between

control and virtual callosotomy groups.

In order to test post hoc for differences in within-hemisphere connectivity between controls

and AgCC, we computed the summary graph metrics for only the intrahemispheric

connections of the right and left cerebral hemispheres. Examining the average unweighted

network metric values of the right and left hemispheres, the mean degree, mean clustering

coefficient, global efficiency, and mean local efficiency all trend higher in AgCC compared

to controls, whereas the characteristic path length and mean normalized betweenness both

trend lower in AgCC than controls. However, none of these trends reach statistical

significance, with clustering coefficient and mean local efficiency being the metrics with the

strongest group differences at p<0.09.

Modularity Analysis

A community detection algorithm was applied to the consensus and individual connectomes

in the three groups. The module assignments for the consensus connectomes are shown in

Figure 8. Seven modules are present in the control and virtual callosotomy consensus

connectomes, (Figure 7a and 7b, respectively). The assignments for these two groups are

identical. There are two modules, Module 1 and Module 5, which together make up the

“structural core” of the network (Hagmann et al., 2008). Modules 3 and 6 largely consist of

frontal nodes, while Modules 2 and 7 are more posterior. On the left, a subcortical module

breaks off into Module 4. The mean modularity for the control and virtual callosotomy

groups is 0.58 and 0.60, respectively, and mean participation coefficient is 0.32 and 0.25,

respectively. There are 6 modules assigned to the AgCC consensus connectome (Figure 7c)

and the assignment is quite different from that found for the control and virtual callosotomy

consensus connectomes. Most notably, the structural core in each hemisphere is not separate

from the other modules, indicating a breakdown of the preferential anterior-posterior

connectivity in this sub-network. There is perfect bilateral symmetry of the modules in the

community assignments for the AgCC consensus connectome, which is not observed in the

control or virtual callosotomy cohorts. The mean modularity for the AgCC consensus

connectome is 0.59 and mean participation coefficient is 0.26.

Due to space constraints, the modularity assignments for each individual connectome are not

shown. In lieu of these results, the mean and standard deviation of modularity-related
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metrics are provided in Table 4. The mean modularity of the individual connectomes is

significantly greater in the virtual callosotomy group compared to the controls, but not in the

AgCC group compared to the controls. Relative to controls, the mean participation

coefficient is significantly decreased in both the virtual callosotomy group and the AgCC

group. The Hubert rand index computed between the individual module assignments and the

consensus module assignment is significantly different between the controls and AgCC

groups, and the Hubert rand index computed between the module assignments for all pairs

of individuals is significantly decreased in both the virtual callosotomy and the AgCC

groups as compared to the controls.

The Structural Core of the Cerebral Cortex in AgCC

The weakening of the structural core in AgCC leads to the hypothesis that the connection

strengths among the nodes that normally form the structural core of the cerebral cortex are

abnormally decreased in AgCC. The structural core nodes are taken to be those that belong

to Modules 1 and 5 of the control consensus connectome: caudal anterior cingulate,

posterior cingulate, paracentral lobule, isthmus of the cingulate, and precuneus in both

hemispheres. The strength of these twenty intrahemispheric connections was tested post-hoc

for group differences between AgCC and controls, correcting for multiple comparisons with

FDR. Interhemispheric connections between these regions do not exist in the acallosal brain

and therefore could not be tested. The results are shown in Figure 8. Six of the twenty

connections are found to be significantly reduced in strength in AgCC (p<0.05); in fact,

these six edges represented all of the possible connections among regions of the cingulate

cortex (CAC, PCC, and ISC) within each hemisphere.

In addition to testing for statistical differences in connection strengths within the structural

core of the controls and AgCC, we also assessed whether the structural core was present in

its entirety in each of the individual connectomes for the controls and AgCC. Again, we are

defining the structural core as containing the five bilateral, medial nodes found in the

modular partition of the control consensus connectome in this study. We found that 9 of the

11 controls have a complete structural core. The 2 control subjects without a complete

structural core have an intact structural core module in the left hemisphere, but the module

that would be the right half of the structural core includes lateral nodes in one case and is

split anterior-posterior in the other case. On the other hand, none of the individual AgCC

connectomes contain a complete structural core. In each AgCC individual, the structural

core is split into separate anterior and posterior modules. In most cases, these anterior and

posterior modules also include more lateral nodes, as also seen in the module assignments

for the consensus AgCC connectome (Figure 7c).

Virtual Probstotomy in AgCC

In Figure 9, the results of the virtual Probstotomy on the AgCC subjects are presented.

Figure 9a shows the consensus percent difference matrix for all edges in the connectome.

The maximum consensus observed was six out of the seven subjects and only connections

that were affected in at least three of the seven subjects are displayed. In Figure 9b, the

edges of the connectome that were altered by the virtual Probstotomy in three or more of the

seven AgCC subjects are displayed. Both panels of Figure 9 demonstrate that the Probst
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bundles contain a mixture of subcortical to subcortical, subcortical to cortical, and

corticocortical connections. Not surprisingly, the greatest connectivity is within paramedian

regions of each cerebral hemisphere, including subcortical structures, with no connections

seen to lateral cortical regions. Overall, these results demonstrate that the connectivity of the

Probst bundles exhibit moderate to high consistency across subjects and a high degree of

hemispheric symmetry.

Discussion

The AgCC Connectome: More than Just the Absence of Callosal Fibers

Using a multi-scale connectomic analysis, we tested three main hypotheses concerning the

altered connectivity of the acallosal brain using virtual callosotomy to generate the

hypotheses and data from AgCC subjects to support or reject the hypotheses. The first

hypothesis is that global connectivity would be reduced and local connectivity would be

increased in AgCC versus controls, as demonstrated by the virtual callosotomy case. Table 3

shows that the global connectivity part of the hypothesis was confirmed by the significant

decrease in global efficiency as well as the increase in both characteristic path length and

mean normalized betweenness of AgCC versus controls. The local connectivity part of the

hypothesis was also confirmed by the significant increase in mean local efficiency and

increase in mean clustering coefficient of AgCC versus controls. These were the same

changes of the summary graph metrics seen in virtual callosotomy versus controls. Notably,

the mean degree did not differ significantly between control and AgCC groups (Table 3).

This means that comparisons of graph metrics between the two groups are not biased by

group differences in the density of network connections (Anderson et al., 1999).

The second hypothesis is that the AgCC connectome would be less variable than the control

connectome, as found in the virtual callosotomy case where the inter-individual network

consistency was significantly greater than that of controls (Table 2). This prediction makes

intuitive sense, since removal of callosal connections reduces the number of links that might

differ across networks. However, this hypothesis was rejected by the same analysis of AgCC

connectomes, which actually exhibited much lower consistency than that of controls (Table

2). The increased variability of the AgCC connectome was also reinforced by the

significantly greater variation in the spatial distribution of node degrees compared to

controls.

The third hypothesis is that the modular organization of the AgCC brain does not differ from

that of controls, as suggested by virtual callosotomy (Figure 7a,b). This hypothesis was also

rejected, as is apparent from the very different modular assignments of the AgCC consensus

connectome (Figure 7c). Moreover, Table 4 shows that the similarity of modular

assignments between the individual AgCC connectomes and the consensus AgCC

connectome is significantly less than that between the individual control connectomes and

the consensus control connectome, a difference not anticipated by the virtual callosotomy

case. Although virtual callosotomy predicts a slight but significant decrease in consistency

of inter-individual modular assignments compared to controls, the actual observed

difference is much larger for the AgCC group (Table 4). This is also consistent with the

topology of white matter connectivity in AgCC being more variable across subjects than is
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the case for controls. Finally, using modularity analysis to identify the “structural core” of

the cerebral cortex, the connections within this bilateral sub-network are found to be weaker

in subjects with AgCC than in controls, especially in the cingulate bundles bilaterally.

Together, these observations demonstrate that structural connectivity in AgCC, a classic

axonal pathfinding disorder, is much more complex than can be explained by the simple

absence of callosal connectivity. Although the virtual callostomy model correctly predicted

the direction of changes in summary graph metrics to be found in the acallosal brain, the

estimates for more sophisticated properties of the network such as its topological variability

and modular structure were found to be incorrect. The implications of this are explored in

more detail below.

MR Connectomics of a Prototypical Axon Guidance Disorder

To our knowledge, this study is the first to apply MR connectomics to a congenital human

brain malformation. One important feature of the structural connectome framework is the

ability to study the effect on white matter connectivity of virtual lesions. This approach has

been employed to generate white matter importance maps in a prior study of traumatic brain

injury by systematically deleting all edges of the connectome that pass through a certain

node, i.e., all fiber tracts connecting a specific brain region, and then recalculating global

network metrics to assess the “importance” of each node (Kuceyeski et al, 2011). The virtual

lesion technique is particularly well suited for investigating axonal pathfinding disorders,

since it can be used to determine the changes in connectivity due to absent tracts as well as

ectopic tracts and can be utilized to generate hypotheses about patient populations with

stereotyped lesions.

The virtual callostomy maneuver reveals how removal of all callosal connections affects the

normal human connectome. We show that, although many of the significant differences in

summary graph metrics between the controls and AgCC are reproduced by the virtual

callostomy case, there are key differences in their results for network consistency and

modular architecture. This is in agreement with hypotheses about probable molecular

defects in axonal guidance underlying the disorder, which might be expected to affect more

than just the corpus callosum. Another interpretation of these results would be that there is

compensatory rewiring in AgCC to circumvent the absence of direct callosal connections

between the two cerebral hemispheres. These two explanations are not mutually exclusive

and their effects would be difficult to disambiguate. This remains an area for future

investigation.

The power of connectomics to elucidate the connectivity of ectopic tracts is demonstrated by

the virtual Probstotomy that we applied to the AgCC connectome. We observe that the fibers

of the Probst bundles connect certain brain regions with some consistency and these

connections can be corticocortical as well as subcortical-subcortical and subcortical-cortical

(Figure 9). The subcortical connectivity of the Probst bundles is supported by prior

investigation in mouse models of AgCC (Ren et al., 2008), but not fully anticipated by prior

diffusion tractography studies in humans. Hence, in AgCC, the interhemispheric

corticocortical connectivity of the corpus callosum is instead rewired into intrahemispheric

connections, some of which are subcortical. These changes to inter- and intrahemispheric
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connectivity are also evident in the degree distributions (Figures 4 and 6). Virtual

callosotomy of the normal human connectome causes a drastic reduction in the degree of

paramedian cortical hubs, such as superior frontal and superior parietal cortex, while the

AgCC connectome preserves these regions as hubs or only mildly reduces their degree. The

preserved connectivity of these regions must be due to increased connectivity with

intrahemispheric brain areas. In addition, the subcortical regions tend to be more connected

in the AgCC connectome than in the control connectome, either with or without virtual

callostomy. It is probable that a combination of increased connectivity through the anterior

commissure and the Probst bundles contributes to these discrepancies between the AgCC

and virtual callosotomy connectomes.

While some brain areas are consistently connected through the Probst bundle in almost all

the examined AgCC subjects, there are also a number of connections that are found in only

three or four of the seven AgCC individuals. The limited findings from prior research

include a diffusion tensor imaging (DTI) and high angular resolution diffusion imaging

(HARDI) tractography study of subjects with partial AgCC that showed that the topography

of the callosal connections in these individuals is highly variable and that there are both

homotopic and heterotopic connections which do not necessarily correspond to the position

or size of the corpus callosum fragment (Wahl et al., 2009). Another DTI tractography study

(Tovar-Moll et al., 2007) reported similar results, showing that the partial AgCC brain has a

combination of normal and aberrant callosal connections, and the correspondence between

the location of the partial corpus callosum does not perfectly correlate with the cortical

regions established in the healthy control brain (Hofer and Frahm, 2006). These findings,

when combined, provide solid evidence that there is substantial inter-individual variability

and aberrant connectivity both in the Probst bundles of AgCC subjects and in the callosal

fibers of partial AgCC.

Summary Network Metrics

The summary network metrics from the control consensus connectome of our study (Table

1) are very similar to those reported in a recent study of the normal human connectome (van

den Heuvel and Sporns, 2011), supporting the validity of our methods, although one of these

metrics, the mean degree, was deliberately matched to the prior study in order to set the

connectivity threshold for reconstruction of the connectomes. This general agreement is also

consistent with prior results showing high test-retest reliability of graph metrics, even from

imaging data acquired with different diffusion gradient acquisition schemes (Vaessen et al.,

2010), as well as moderate to high reliability of graph metrics across different methods for

reconstructing connectomes from diffusion-weighted imaging data (Li et al., 2012a).

For the consensus connectomes, the summary network metrics for the virtual callosotomy

and AgCC groups are similar and can be conflated as the threshold varies (Figure S2).

However, the same is not true for the individual connectomes (Figure S2 and Table 1 and

Table 3). To understand why, it is useful to understand the advantages and disadvantages of

consensus connectomes versus individual connectomes. The consensus connectomes have

the advantage of being pooled across all the individuals in the group, which smooths out

individual variation and allows for comparison of graph metrics with other studies that have

Owen et al. Page 16

Neuroimage. Author manuscript; available in PMC 2014 August 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



reported results for consensus connectomes. However, examination of individual

connectomes is needed to understand individual variation within a group as well as to

establish statistically significant differences in network metrics between groups. Measures of

edge consistency among individual connectomes show that individual AgCC connectomes

are significantly more variable than individual control connectomes (Table 2). This finding

was not predicted by the comparison of the controls to the virtual callosotomy case. This

may explain the discrepancies between the network metrics applied to the individual versus

the consensus connectomes, since greater variability among the edges of the individual

AgCC connectomes would result in fewer of the edges being retained in the consensus

AgCC connectome.

The network metrics applied to the individual connectomes reveal that, while there is a

decrease in global efficiency and increase in characteristic path length and mean normalized

betweenness comparing the control group to the virtual callosotomy and AgCC groups, the

mean local efficiency and mean clustering coefficient is instead increased in the virtual

callosotomy group and AgCC groups (Table 3). This pattern of differences in graph

theoretic metrics of the control subjects before and after virtual callostomy is to be expected

from the loss of long-range interhemispheric callosal fibers, which often interconnect

cortical hubs and form by far the major route of information transmission between the two

cerebral hemispheres. Mean normalized betweenness and characteristic path length are

related in that, as the characteristic path length increases, the number of nodes that the

shortest paths go through should also increase. The increase in the measures of local

connectivity (mean local efficiency and mean clustering coefficient) is less intuitive.

Eliminating callosal connections has the effect of increasing the clustering coefficient

because the callosal connections tend to be homotopic and do not participate in closed

triangles. The increase in local efficiency is related to the increase in characteristic path

length and mean normalized betweenness; more nodes have shortest paths that pass through

them as the shortest paths get longer.

In the analysis of individual networks, although the AgCC connectome lacks callosal

connections, the mean degree and cost are not significantly decreased compared to controls,

unlike the virtual callostomy example (Table 3). This finding must be due to the presence of

alternate pathways that are not present in the normal human connectome, such as the Probst

bundles. These ectopic tracts maintain the cost and mean degree of the network at values

similar to those of controls, but do not make up for the absence of interhemispheric callosal

connections in sustaining the high global efficiency across both cerebral hemispheres of the

control connectome.

The group differences between AgCC and controls observed with the unweighted graph

metrics are largely confirmed with the weighted network metrics (Supplementary Table S1).

However, weighted characteristic path length was not significantly increased in AgCC and

mean weighted local efficiency was slightly decreased, instead of increased. One

explanation for this discrepancy is that these weighted metrics involve the calculation of

weighted path lengths. We have found weighted characteristic path length to be one of the

least reliable network metrics as assessed with test-retest reproducibility data (unpublished

results).
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It is possible that enhanced intrahemispheric connectivity due to ectopic or compensatory

fiber tracts might help account for the improved local efficiency in AgCC, as reflected in the

higher mean clustering coefficient and mean local efficiency. This post hoc hypothesis was

directly tested by computing the summary graph metrics for only the intrahemispheric

connections of the right and left cerebral hemispheres. The pattern of differences in these

metrics are what would be expected with enhanced intrahemispheric connectivity in AgCC;

however, these trends did not reach statistical significance. Since it is likely that the small

sample size of this study is underpowered to detect these subtler effects within subsets of the

connectome, larger-scale investigations are needed to draw firm conclusions regarding

whether intrahemispheric connectivity is enhanced in AgCC.

Degree Distribution and Hubs

Degree is a focus of the analysis of both the consensus networks and the individual

networks, as it can identify the hubs of a network. Our identification of hub regions from

individual normal connectomes based on node degree (Figure 6a) shows good agreement

with Li et al. (2012a), with the majority of regions deemed to be hubs in Figure 6a also

appearing as hubs in Li et al. (2012a) and vice versa. This correspondence with prior

literature on the normal human connectome again provides external validation for our

results. Many of the cortical hubs in the control connectome, in both the consensus and

individual analyses, were demoted from hub status when the corpus callosum was virtually

cut. There were also new hubs created from the exclusion of the corpus callosum. The

consensus and individual analyses of AgCC reveal the demotion of cortical hubs and the

promotion to hub status of several different nodes, including several subcortical areas. This

comparison again shows that, in AgCC, the network topology is fundamentally reorganized

in a way that cannot be entirely explained by the exclusion of callosal fibers from the normal

human brain. The correlation of node degree among the individuals in each group reveals

that the spatial distribution of node degree is more variable in the AgCC cohort as compared

to the controls.

Modularity Analysis and the Structural Core of the Cerebral Cortex

Modular organization is conspicuously different for the AgCC consensus connectome

compared to the control and virtual callosotomy consensus connectomes (Figure 7) and this

finding was not predicted by the comparison of the controls to the virtual callosotomy

controls. The most obvious difference is the weakened structural core of the cerebral cortex

in AgCC. Therefore, even though the AgCC subjects have massive Probst bundles

bilaterally, these tracts do not seem to meaningfully increase anterior-posterior

corticocortical connection strengths among the medial cortical hubs that comprise the

structural core. It was observed that AgCC has significantly reduced connectivity relative to

controls between regions of the cingulate cortex that would normally form an important part

of the structural core (Figure 8). This decrease in connectivity can help explain the

difference in modular assignments of AgCC versus the normal connectomes. If there is not

preferential wiring between paramedian cortical regions in AgCC, then these nodes do not

become segregated into a distinct module by the community detection algorithm. This

finding is concordant with evidence from DTI that the ventral cingulum in AgCC has

reduced fractional anisotropy and reduced volume compared to control subjects (Nakata et

Owen et al. Page 18

Neuroimage. Author manuscript; available in PMC 2014 August 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



al., 2009), but also extends this prior observation to include the dorsal cingulum as well.

Hence, data-driven modularity analysis of regional integration and segregation can discover

abnormalities of connectivity across the whole-brain network in AgCC, at least one of which

has been previously demonstrated by a more focused hypothesis-driven diffusion

tractography study.

The significant decrease in participation coefficient found for both virtual callosotomy and

for AgCC is not surprising, since the loss of long-range callosal connections would decrease

the number of intermodular connections. The modularity of the virtual callosotomy

connectomes was significantly greater than the controls, but the AgCC did not exhibit a

significant change in modularity. The similarity in the modularity metric for the controls and

AgCC indicates that it was not easier to partition one group over another, lending credibility

to the differences we do detect in modular organization between the two groups.

The finding that the Hubert rand index is considerably lower for individual AgCC

connectomes than for controls, both compared to the consensus connectome and compared

to one another (Table 4), means that module assignments are less consistent among AgCC

subjects than controls. Hence, modularity analysis provides more converging evidence that

the AgCC connectome is more variable than that of the normal human brain. This increased

variability of network modular organization cannot be explained solely by the lack of

callosal connectivity, since the Hubert rand index of the individual virtual callosotomy

connectomes versus that of their consensus connectome was not reduced compared to the

same measure in controls.

Methodological Considerations and Study Limitations

We use a common approach to diffusion tractography for connectome reconstruction that

was deliberately chosen to be conservative when comparing normal controls to acallosal

brains. This technique relies on probabilistic streamline fiber tracking seeded from the GWB

and permits tracking along intravoxel crossing fibers using HARDI data; as such, it hews

closely to the M2 method of Li et al. (2012a). The effect of different tractography methods

on connectome reconstruction was explored by Li et al. (2012a, 2012b). They found no

significant advantage in accuracy of any particular technique over the others, using macaque

tract-tracing data as the gold standard. However, they did find a fundamental difference

between tractography seeded throughout the white matter (the M1 method) and tractography

seeded from the GWB (the M2 method) in that the M1 method showed relatively stronger

connectivity over long-range connections than did M2. This is because long-range tracts

contain more seed regions in M1 and are therefore overemphasized, whereas connection

probability decreases with distance in M2 and thus long-range connections are

underemphasized. A variant of M2 that is normalized by tract volume to account for the

decreasing connection probability with distance (the M3 method) did not significantly

improve the accuracy of in vivo tractography in humans (Li et al. 2012a); nor did a newer

global tractography approach (Li et al., 2012b). By adopting a fiber tracking method that is

known to understate long-range connectivity such as through the corpus callosum, we are

being conservative in our comparisons between the normal brain and those of AgCC

subjects. Hence, it is possible that the observed differences between the normal connectome
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and the AgCC connectome would have been greater if a less conservative tractography

approach had been employed.

The various tractography methods used across different connectome studies make the edge

weights (i.e. connection strengths) impossible to compare with the prior literature. As such,

to have some comparability across studies, we apply graph metrics to unweighted graphs

and analyze consensus connectomes along with individual connectomes and we confirm

these findings with weighted metrics. We chose a common threshold across the groups, as

opposed to thresholding each network to maintain a constant degree distribution or edge

density, as is commonly done in the literature (van Wijk et al., 2010). Since the connection

strengths are normalized by the seed and target volumes and there were no significant

correlations between mean degree and white or gray matter volumes, it is defensible to apply

the same threshold to the edge weights for the healthy controls and for AgCC. In the case of

AgCC, using a common threshold reveals decreases and increases in connectivity that would

not have been detected if the degree or density were held constant across groups. Along

these lines, it is interesting that even though statistically significant group differences are

detected in the individual connectomes for mean characteristic path length, mean normalized

betweenness, mean clustering coefficient, and global efficiency, there was no statistically

significant difference in mean degree of AgCC versus controls. The global network metrics

we use here are not normalized by results from random networks; the small world

coefficient is an example of a metric that requires such normalization. Since we use network

metrics for group comparisons and not for drawing absolute inferences about network

properties, such as small worldness, in isolation, there is not a strict necessity for metrics

normalized by random networks.

FreeSurfer was used to segment the brain into 82 cortical and subcortical regions,

representing the nodes of the network. Although no participants had visible cortical

malformations, the gyral and sulcal anatomy of AgCC might still contain subtle divergence

from the FreeSurfer atlas, which is based on the normal human brain. Hence, it is possible

that differences in cortical parcellation might account for some of the connectomic

differences observed between AgCC and controls. However, there is no evidence in the

literature for major cortical reorganization in AgCC. Indeed, recent fMRI studies show a

surprising degree of homology of functional connectivity networks between AgCC and

normal brain (Khanna et al., 2012; Li et al., 2011; Lum et al, 2011; Tyszka et al., 2011).

Furthermore, significant differences in global network metrics were observed in the AgCC

cohort relative to controls that are not commensurate with the expected regional increases

and decreases that would be caused by inconsistencies in cortical and subcortical

parcellation. Given that there is not a significant correlation between mean degree and white

or gray matter volumes for the AgCC group, the differences seen between the controls and

AgCC and within the AgCC group are unlikely to be driven by the designation of cortical

and subcortical boundaries.

Given that we exclude subjects with additional brain malformations besides AgCC and also

those with partial agenesis of the corpus callosum, our sample size is limited to seven

individuals with isolated complete AgCC. In addition to reducing statistical power, the small

sample size of this pilot study also limits the ability to avoid bias in comparison with control
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subjects. In this study, handedness is not matched between the experimental and control

groups. Handedness is not always reported in the connectome literature and it is common

practice in the connectome literature to combine networks from different individuals into a

single consensus network. This is justified by the assumption that, at the coarse level of

granularity of the cortical parcellation (100 nodes or less), there should be little biological

variability among the connectomes of normal adult subjects regardless of demographic

factors such as gender or handedness. Also, the effects of the gross alterations of white

matter connectivity in AgCC are certain to be much larger than any effects of handedness.

For these reasons, we did not feel that it was strictly necessary to match for handedness in

this pilot study. This potential limitation can be addressed in future larger-scale

connectomics studies that might focus on more subtle effects of neurodevelopmental

disorders.

Future Directions

As discussed above, there are many levels of granularity at which the connectome can be

explored and the definition of nodes is one way to modify the granularity. The FreeSurfer

parcellation provides a way to segregate the brain into nodes, but the cortical and subcortical

regions could be further segregated into many smaller regions up to the number of voxels in

each region. As future work, we plan to investigate connectomes with thousands of nodes,

which will provide a much richer and more detailed connectivity map. This will have

particular advantages for AgCC, since the much smaller-sized regions of these more

granular networks do not need to depend on anatomical boundaries defined on the normal

brain. Another avenue of further investigation is the relationship between the functional and

structural connectomes in AgCC.

Individuals with AgCC often suffer from impairments in higher-order cognition and social

skills. These deficits overlap with the diagnostic criteria for autistic spectrum disorders (Paul

et al., 2007). The connectome can provide global measures of brain organization that could

be correlated with behavioral or cognitive outcome variables, as discussed above. The

sample size of patients in this exploratory study of the AgCC connectome is too small to

permit neurocognitive correlation. This will be a focus of future larger-scale investigations.

The pathophysiology of axonal guidance disorders and, more generally, of

neurodevelopmental diseases is not thought to be limited to one or a few isolated brain

regions. Instead, neural circuits diffusely throughout the cortex have been implicated and

these illnesses are now considered to be connectopathies (Seung 2012). A leading

hypothesis for autism postulates overconnectivity of short-range fiber tracts and

underconnectivity of long-range tracts. Indeed, we find a decrease in global connectivity but

increased local connectivity in the AgCC connectome, as shown by reduced global

efficiency with increased mean local efficiency and increased mean clustering coefficient

(Table 3), which may help explain why many acallosal individuals exhibit behavioral

phenotypes on the autistic spectrum (Paul et al., 2007). Combined with the fact that the most

common neurodevelopmental disorders have strong hereditary contributions, this supports

the concept that connectomics can yield endophenotypes or "intermediate phenotypes" for

genetic studies of neuropsychiatric illnesses (Fornito and Bullmore, 2012). The phenotypic
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heterogeneity of neurodevelopmental disorders such as autism and schizophrenia, as well as

their uncertain diagnostic criteria, complicate research into their genetic basis. Quantitative

biomarkers derived from connectomics that capture the altered topology of whole-brain

networks have the potential to identify more homogenous endophenotypes in subgroups of

the patient population for hypothesis-driven tests of candidate susceptibility genes or for

exploratory genome-wide association studies. The discovery and validation of connectomic

intermediate phenotypes might also improve diagnosis and outcome prediction for these

disorders, enabling better treatment decisions as well as better patient selection for clinical

trials of experimental therapies.

Conclusions

Connectomics is a burgeoning new field that can provide novel insights into aberrant brain

organization in neurodevelopmental disorders. In this initial investigation of the most

common human disorder of axonal guidance, we demonstrate that the AgCC connectome

has greater inter-individual variation than that of normal volunteers and also exhibits

pervasive alterations in cortical and subcortical connectivity that are not limited to the

absence of interhemispheric callosal fibers. Simulated lesions of these whole-brain networks

yield further insights into the effect on connectivity of absent tracts like the corpus callosum

and ectopic tracts such as the Probst bundles. Finally, modularity analysis was used to

demonstrate that the structural core of the cerebral cortex is weakened in AgCC, primarily

due to a reduction in cingulate connections. Given the growing realization that

neurodevelopmental disorders are connectopathies, connectomics has the potential to

revolutionize the understanding and, eventually, the diagnosis and treatment of this

prevalent class of disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Abbreviations for cortical and subcortical regions

AMG amygdala

STS bank of superior temporal sulcus

CAC caudal anterior cingulate

CMF caudal medial frontal

CAU caudate

CUN cuneus

ENT entorhinal

FTP frontal temporal pole

FUS fusiform

HIP hippocampus
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IPT inferior parietal sulcus

INS insula

ISC isthmus cingulate

LOC lateral occipital

LOF lateral orbital frontal

LIN lingual

MOF medial orbital frontal

MTP medial temporal

ACB nucleus accumbens

PRC paracentral

PHP pars hippocampus

POP pars opercularis

POB pars orbitalis

PTR pars triangularis

PEC pericalcarine

POC postcentral

PCC posterior cingulate

PRC precentral

PCN precuneus

PUT putamen

RAC rostral anterior cingulate

RMF rostral medial frontal

SFT superior frontal

SPT superior parietal

STP superior temporal

SMG supramarginal gyrus

TPP temporal pole

THL thalamus

TTP transverse temporal
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Figure 1.
The connectome processing pipeline utilized in this paper. FreeSurfer was used to parcellate

the T1 MRI and FSL’s probtrackx2 was used to perform probabilistic tractography. The

individual connectomes were combined to create a consensus connectome for each group.
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Figure 2.
Example midline sagittal and coronal color fractional anisotropy (FA) images for a control

subject (top row) and an AgCC subject (bottom row).
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Figure 3.
Consensus connectomes for the a) control group, b) controls after virtual callosotomy, and

c) AgCC group. The connectomes are displayed in the neurological convention and anterior

is up and posterior is down. The 82 nodes are plotted with a circle scaled and colored

according to the degree of the node (legend). A line between two nodes represents a

suprathreshold connection, where the weight of the lines scales with the strength, although

unweighted connectomes were used for the degree calculation.
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Figure 4.
Degree distribution across nodes for the consensus connectomes. The bars in red

demonstrate the nodes with degree greater than mean plus one standard deviation for the

control consensus connectome in (a). The dotted lines in (b) and (c) demonstrate the cutoff

for mean plus one standard deviation in the virtual callostomy controls and AgCC. The red

bars in (b) and (c) show the redistribution of regions in the virtual callostomy and AgCC

consensus connectomes, respectively, that are hubs in the control consensus connectome.
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Figure 5.
Three example individual connectomes for the controls (left) and for AgCC (right). The

connectomes are displayed in the neurological convention and anterior is up and posterior is

down. The 82 nodes are plotted with a circle scaled and colored according to the degree of

the node (see legend). A line between two nodes represents a suprathreshold connection,

where the weight of the lines scales with the strength, but unweighted connectomes were

used for the degree calculation. The controls exhibit some variability, but the overall

distribution of degree is constant. The AgCC connectomes demonstrate more variability in

the location and number of hub regions.
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Figure 6.
Mean degree distribution across nodes for the individual connectomes with standard

deviation error bars. The bars colored red demonstrate the nodes with degree greater than

mean plus one standard deviation for the controls. The dotted lines in (b) and (c)

demonstrate the cutoff for mean plus one standard deviation for the virtual callostomy

controls and for AgCC, respectively. The red bars in (b) and (c) show the redistribution of

regions in the individual connectomes of the virtual callostomy and AgCC groups,

respectively, that are hubs in the individual connectomes of the control subjects.
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Figure 7.
The module assignments for the consensus connectomes. The connectomes are displayed in

the neurological convention and anterior is up and posterior is down. The 82 nodes are

plotted with a circle colored according to the community to which it was assigned (legend).

A line between two nodes represents a suprathreshold connection, where the weight of the

lines scales with the strength. The weighted connectomes were used for modularity analysis.
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Figure 8.
The medial cortical modules ("structural core") as identified in the control consensus

connectome. The edges colored red were significantly weaker in the AgCC group compared

to the controls at p<0.05, corrected for multiple comparisons using the false discovery rate.
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Figure 9.
The virtual Probstotomy results show that excluding the Probst bundle fibers reliably affects

the corticocortical connections, as well as cortical-subcortical and subcortical-subcortical

connections. Figure 9 (a) plots the number of subjects for which each pair-wise connection

strength was reduced. Reduced connections were defined as those with percent differences

in connection strength, before and after the Probstotomy, greater than the mean plus one

standard deviation. Figure 9(b) displays the connections where at least three of seven

subjects showed reduced connection strengths after the Probstotomy.
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Table 1

Unweighted Network Metrics of Consensus Connectomes

Network Metric Control
Virtual

Callosotomy AgCC

Mean degree 12.1 10.9 10.6

Cost 0.15 0.13 0.13

Characteristic path length 2.26 2.60 2.50

Mean normalized betweenness 0.032 0.041 0.038

Global efficiency 0.50 0.46 0.47

Mean local efficiency 0.77 0.80 0.80

Mean clustering coefficient 0.56 0.61 0.61
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Table 2

Network Consistency (correlation coefficient of connection strengths)

Control
Virtual

Callosotomy AgCC

Consistency of individual networks with the consensus network 0.926±0.014 0.928±0.012 0.912±0.048

Consistency between individual networks 0.846±0.034 0.850±0.030* 0.808±0.042*

*
denotes significantly different from Control group (p<0.05)

The significant difference detected in the consistency between individual networks for the Control and Virtual Callosotomy groups is driven, in
part, by differing distributions of these values. Even though the mean plus one standard deviation would indicate these values overlap, the virtual
callosotomy distribution has a heavier tail than the control distribution.
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Table 3

Unweighted Network Metrics of Individual Connectomes (average ± std deviation)

Network Metric Control
Virtual

Callosotomy AgCC

Mean degree 17.7±2.2 14.9±1.5* 16.7±2.6

Cost 0.22±0.03 0.18±0.02* 0.21±0.03

Characteristic path length 1.98±0.09 2.36±0.09* 2.21±0.10*

Mean normalized betweenness 0.025±0.002 0.035±0.002* 0.031±0.002*

Global efficiency 0.57±0.03 0.51±0.02* 0.53±0.03*

Mean local efficiency 0.79±0.01 0.81±0.01* 0.83±0.03*

Mean clustering coefficient 0.59±0.02 0.64±0.02* 0.67±0.04*

*
denotes significantly different from Control group (p<0.05)
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Table 4

Modularity Metrics

Modularity Metrics Control
Virtual

Callosotomy AgCC

Mean modularity (individual connectomes) 0.58±0.02 0.60±0.01* 0.59±0.04

Mean participation coefficient (individual connectomes) 0.35±0.03 0.28±0.03* 0.25±0.05*

Hubert rand index (compared to consensus partition) 0.79±0.06 0.79±0.06 0.74±0.08*

Hubert rand index (compared to individual partition) 0.742±0.057 0.739±0.063* 0.69±0.060*

*
denotes significantly different from Control group (p<0.05)
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