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The recognition of protein folds is an important step for the prediction of protein structure and function. After the recognition of 27-
class protein folds in 2001 by Ding and Dubchak, prediction algorithms, prediction parameters, and new datasets for the prediction
of protein folds have been improved.However, the influences of interactions frompredicted secondary structure segments andmotif
information on protein folding have not been considered. Therefore, the recognition of 27-class protein folds with the interaction
of segments andmotif information is very important. Based on the 27-class folds dataset built by Liu et al., amino acid composition,
the interactions of secondary structure segments, motif frequency, and predicted secondary structure information were extracted.
Using the Random Forest algorithm and the ensemble classification strategy, 27-class protein folds and corresponding structural
classification were identified by independent test.The overall accuracy of the testing set and structural classificationmeasured up to
78.38% and 92.55%, respectively.When the training set and testing set were combined, the overall accuracy by 5-fold cross validation
was 81.16%. In order to comparewith the results of previous researchers, themethod abovewas tested onDing andDubchak’s dataset
which has been widely used by many previous researchers, and an improved overall accuracy 70.24% was obtained.

1. Introduction

With the accomplishment of theHumanGenomeProject, the
“post genome era” has presented a large number of protein
sequences that have challenged to develop a high-throughput
computationalmethod to structurally annotate the sequences
coming from genomic data. One of these critical structures,
the protein fold, reflects a key topological structure in pro-
teins as it contains three major aspects of protein structure:
the units of secondary structure, the relative arrangement
of structures, and the overall relationship of protein peptide
chains [1].

A protein can only perform its physiological functions if
it folds into its proper structure. Abnormal protein folding
causes molecular aggregation, precipitation, or abnormal
transport, resulting in different diseases. For example, the
prion protein (PRNP) accumulates in the brain and causes
neurodegenerative diseases, such as scrapie, Creutzfeldt-
Jakob disease, Parkinson’s disease, Huntington’s disease, and
mad cow disease. And the PRNP is a pathogenic protein

caused by the abnormal folding of proteins. Thus, the correct
identification of protein folds can be valuable for the studies
on pathogenic mechanisms and drug design [2–8]. Thus, the
identification of folding types is a highly important research
project in bioinformatics.

Proteins with similar sequences tend to fold into similar
spatial structures. When proteins have close evolutionary
relationships, the similarity-based methods can achieve very
reliable predicted results [9, 10]. However, they are unreli-
able for the identification of proteins with far evolutionary
relationships. Fortunately, approaches that extract relevant
features from protein sequences to identify protein folds have
made significant advance in recent years. In 2001, Ding and
Dubchak [11] built the 27-class folds dataset and usedmultiple
feature groups as parameters, including amino acid compo-
sition, predicted secondary structure, hydrophobicity, Van
derWaals volume, polarity, and polarizability; then they pro-
posed support vectormachines andneural networksmethods
for the identification of 27-class protein folds.The best overall
accuracy achieved was 56%.
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Afterwards, based on the dataset built by Ding and
Dubchak and the feature parameters, some researchers
suggested algorithm improvements for the identification of
folds. For example, Chinnasamy et al. [12] introduced the
phylogenetic tree and Bayes classifier for the identification of
protein folds and structural classifications and achieved an
overall accuracy of 58.18% and 80.52%, respectively. Nanni
[13] proposed a new ensemble of K-local hyperplane based
on random subspace and feature selection and achieved an
overall accuracy of 61.1%. Guo andGao [14] presented a novel
hierarchical ensemble classifier named GAOEC (Genetic-
Algorithm Optimized Ensemble Classifier) and achieved an
overall accuracy of 64.7%. Damoulas and Girolami [15]
offered the kernel combination methodology for the predic-
tion of protein folds and the best accuracy was 70%. Lin et al.
[16] exploited novel techniques to impressively increase the
accuracy of protein fold classification.

Based on the dataset built by Ding and Dubchak, other
previous researchers suggested the selection of feature para-
meters for the identification of protein folds. For example,
Shamim et al. [17] used the feature parameters of structural
properties of amino acid residues and amino acid residue
pairs and achieved an overall accuracy of 65.2%. Dong et al.
[18] proposed a method called ACCFold and achieved an
overall accuracy of 70.1%. Li et al. [19] proposed a method
called PFP-RFSM and got improved results for the identifica-
tion of protein folds.

Based on the dataset built by Ding and Dubchak [11],
many pioneering researchers have not only focused on the
selection of feature parameters but also on the improvement
of algorithms to identify protein folds. For example, Zhang
et al. [20] in our group proposed an approach of increment
of diversity by selecting the pseudo amino acid composition,
position weight matrix score, predicted secondary structure,
and the second neighbor dipeptide composition; by using
the characteristic parameters to predict 27-class protein folds
and structural classifications, the overall accuraciesmeasured
up to 61.10% and 79.11%, respectively. Shen and Chou [21]
applied the OET-KNN ensemble classifier to identify folding
types by introducing pseudo amino acid with sequential
order information as a feature parameter and achieved an
overall accuracy of 62.1%. Chen and Kurgan [22] proposed
the PFRES method using evolutionary information and pre-
dicted secondary structure, obtaining an accuracy of 68.4%.
Ghanty and Pal [23] proposed the Fusion of Heterogeneous
Classifiers approach, with features including the selected trio
AACs and trio potential, and the overall recognition accuracy
reached 68.6%. Shen andChou [24] applied amethod to iden-
tify protein folds by using functional domain and sequential
evolution information and achieved an overall accuracy of
70.5%. Yang et al. [25] proposed a novel ensemble classifier
called MarFold, which combines three margin-based classi-
fiers for protein folds recognition, and the overall prediction
accuracy was 71.7%.

Other previous researchers have constructed new 27-
class fold datasets and performed corresponding researches.
For example, based on the Astral SCOP 1.71, with sequence
identity below 40%, Shamim et al. [17] constructed a dataset
including 2554 proteins belonging to 27-class folds, proposed

structural properties of amino acid residues and amino acid
residue pairs as parameters, and achieved an overall accuracy
of 70.5% by 5-fold cross validation. Based on the Astral
SCOP 1.73 with sequence identity below 40%, Dong et al. [18]
constructed the 27-class folds dataset which contains 3202
sequences, proposed an ACCFold method, and obtained an
overall accuracy of 87.6% by 5-fold cross validation. Accord-
ing to Ding and Dubchak’s [11] description on the construc-
tion of protein folds dataset in literature, based on the Astral
SCOP 1.75, Liu and Hu [26] in our group constructed an
expanded 27-class folds dataset. The dataset with a sequence
identity below 35% contains 1895 sequences.Motif frequency,
low-frequency power spectral density, amino acid compo-
sition, predicted secondary structure, and autocorrelation
function values were combined as feature parameters to iden-
tify the 27-class protein folds and structural classifications,
and the overall accuracy by independent test was 66.67% and
89.24%, respectively. At the same time, researches on 76-class
folds, 86-class folds, and 199-class folds have also made some
progress [18, 27].

In this paper, based on the dataset built by Liu et al. [27]
in our group, amino acid composition, motif frequency, pre-
dicted secondary structure information, and the interaction
of predicted secondary structure segments were applied for
the recognition of protein folds. These features reflect the
sequence information, structural information, and functional
information. Based on the ensemble classification strategy
with the Random Forest algorithm, improved identification
results of 27-class protein folds and structural classifications
were achieved.

2. Materials and Methods

2.1. Protein Folds Dataset. The dataset used in this paper was
built by Liu et al. [27] in our group. The sequence identity of
the dataset was below 35%.The number of sequences in each
fold was not less than 10.The training set and testing set con-
tained 956 protein chains and 939 protein chains, respectively.
The distribution of corresponding folds name, number of
sequences, and structural class is shown in Table 1. The other
dataset used in this paper was built by Ding and Dubchak
and reorganized by Shen and Chou [21]. The dataset with
sequence identity below 35% used by many researchers con-
tained a training set including 311 protein chains and a test-
ing set including 383 protein chains. The distribution infor-
mation of corresponding protein folds is also shown in
Table 1. The dataset is available at the following website:
http://202.207.29.245:8080/Ha/HomePage/fzxHomePage.jsp.

The dataset built in our group was according to Ding
and Dubchak’s description about the construction of protein
folds dataset in literature [11]. The number of sequences in
the dataset was three times greater than Ding and Dubchak’s
dataset [11].

2.2. The Selection of Feature Parameters

2.2.1. Amino Acid Composition (A). The distributions of the
20 amino acid residues in protein sequences for different
protein folds are obviously different, and previous researches
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Table 1: Datasets of 27-class protein folds.

Fold Dataset built by Liu et al. [27] Dataset built by Ding and
Dubchak [11]

Training set Testing set Training set Testing set
All 𝛼 structural class 174 169 54 61

(1) Globin-like 14 14 13 6
(2) Cytochrome c 10 10 7 9
(3) DNA-binding 3-helical bundle 92 90 12 20
(4) 4-helical up-and-down bundle 25 24 7 8
(5) 4-helical cytokines 8 8 9 9
(6) Alpha; EF-hand 25 23 6 9

All 𝛽 structural classes 260 254 109 117
(7) Immunoglobulin-like 𝛽-sandwich 86 85 30 44
(8) Cupredoxins 18 18 9 12
(9) Viral coat and capsid proteins 24 24 16 13
(10) ConA-like lectins/glucanases 18 17 7 6
(11) SH3-like barrel 41 41 8 8
(12) OB-fold 29 28 13 19
(13) Trefoil 11 10 8 4
(14) Trypsin-like serine proteases 17 16 9 4
(15) Lipocalins 16 15 9 7
𝛼/𝛽 structural class 341 337 115 143

(16) (TIM)-barrel 93 92 29 48
(17) FAD (also NAD)-binding motif 5 5 11 12
(18) Flavodoxin-like 37 36 11 13
(19) NAD(P)-binding Rossmann-fold 17 16 13 27
(20) P-loop-containing nucleotide 74 73 10 12
(21) Thioredoxin-like 37 36 9 8
(22) Ribonuclease H-like motif 39 40 10 12
(23) Hydrolases 33 33 11 7
(24) Periplasmic binding protein-like 6 6 11 4
𝛼 + 𝛽 structural class 181 179 33 62

(25) 𝛽-Grasp 39 39 7 8
(26) Ferredoxin-like 101 99 13 27
(27) Small inhibitors, toxins, and lectins 41 41 13 27

Overall 956 939 311 383

have shown that amino acid composition is associated with
protein folding information [11, 15, 17, 22]. In this paper,
we extracted the occurrence frequencies of 20 amino acid
residues in protein sequences; thus we got a 20-dimensional
vector. Thus amino acid composition was proposed as a fea-
ture parameter (A).

2.2.2. Motif Information (M). A motif is the conserved local
region in a protein during evolution [28], which often has

a relationship with biological functions. For example, some
motifs are related to DNA-binding sites and enzyme catalytic
sites [29]. As feature parameters, motif information has been
successfully applied for the prediction of super family, protein
folds, and so forth [27, 28, 30]. Two kinds of motifs were
used in this paper: one with biological functions obtained
by searching the existing functional motif dataset PROSITE
[31] and the otherwith statistically significantmotifs searched
by MEME (http://meme.nbcr.net/meme/cgi-bin/meme.cgi).
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Motif information (M) includes functional motifs and statis-
tical motif.

(1) FunctionalMotif.The PROSITE dataset was used to gather
protein sequence patterns with notable biological functions.
PS SCAN packets provided by the PROSITE dataset and
compiled by a Perl program were used as a motif-scan tool
to search the sequences of 27-class folds training set; 45
functionalmotifswere obtained and selected. For an arbitrary
sequence in dataset, the frequencies of different motifs in the
sequence were recorded. If a motif occurred once, the cor-
responding frequency value was recorded as “1”; if the motif
occurred twice, the value would be 2, and so on; otherwise
if the motif did not occur, the corresponding frequency
value was recorded as “0.” Thus, the frequencies of different
functional motifs in a protein sequence were converted into
a 45-dimensional vector.

(2) Statistical Motif. For statistical motifs, MEMEwas applied
as the motif-scan tool. MEME has been widely used to search
protein motifs and DNA sequences [32]. In this paper, the
motifs with the three highest frequencies in each kind of
folds were selected. Each motif contains 6–10 amino acid
residues; thus 81 motifs were obtained from the 27-class folds
training set. For an arbitrary sequence in dataset, when a
motif occurred once, the frequency value was recorded as
“1”; if the motif occurred twice, the value would be 2, and so
on; otherwise if the motif did not occur, the corresponding
frequency value was recorded as “0.”Thus, frequencies of dif-
ferent statistical motifs in a protein sequence were converted
into an 81-dimensional vector.

2.2.3. The Interaction of Segments (ACC). A previous study
showed that predicted secondary structure information is a
main feature parameter for the identification of multiclass
protein folds [11, 17, 21, 22]. Here, the online web server
PSIPRED (http://bioinf.cs.ucl.ac.uk/psipred/) was used as the
tool to obtain the predicted secondary structure of each pro-
tein sequence in the 27-class protein fold dataset. As a protein
fold is a description based on the secondary structure, the
interaction between secondary structures plays an important
part on the folding of protein. In this paper, we extracted the
average interactions between predicted secondary structure
segments as a feature parameter for the recognition of protein
folds.

(1) The Calculation of Autocross Covariance (ACC). The auto-
cross covariance (ACC) [33] has been successfully adopted
by many researchers for the prediction of protein folds [18],
G-proteins [34, 35], protein interaction predictions [36], and
𝛽-hairpins [37]. However, ACC has mainly been used on
the research between residues or bases. In this paper, the
ACC was used at the level of predicted secondary structure
segments (helix, strand, or coil) for the first time to predict
protein folds. ACC contains two kinds of variables: the AC
variable measures the correlation of the same property (the
same property means that two secondary structure seg-
ments are the same type) and the CC variable measures the

Table 2: The physicochemical property values for 20 amino acid
residues.

Code H1 H2 PL SASA
A 0.62 −0.5 8.1 1.181
C 0.29 −1 5.5 1.461
D −0.9 3 13 1.587
E −0.74 3 12.3 1.862
F 1.19 −2.5 5.2 2.228
G 0.48 0 9 0.881
H −0.4 −0.5 10.4 2.025
I 1.38 −1.8 5.2 1.81
K −1.5 3 11.3 2.258
L 1.06 −1.8 4.9 1.931
M 0.64 −1.3 5.7 2.034
N −0.78 2 11.6 1.655
P 0.12 0 8 1.468
Q −0.85 0.2 10.5 1.932
R −2.53 3 10.5 2.56
S −0.18 0.3 9.2 1.298
T −0.05 −0.4 8.6 1.525
V 1.08 −1.5 5.9 1.645
W 0.81 −3.4 5.4 2.663
Y 0.26 −2.3 6.2 2.368

correlation of the different properties. In this paper, given
the corresponding predicted secondary structure segments
(helix, strand, or coil) in one sequence, AC variables describe
the average interactions in the same type of predicted
secondary structure segments, and the separation distance
between two predicted secondary structure segmentsis lg
segments. For example, if two segments are neighboring, then
lg = 1; if the two segments are next-to-neighboring, then
lg = 2, and so on. The AC variables are calculated according
to the following equation:

AC (𝑖, lg) =
𝐿−lg

∑

𝑗=1

(𝑆
𝑖,𝑗
− 𝑆
𝑖
) (𝑆
𝑖,𝑗+lg − 𝑆𝑖)

(𝐿 − lg)
(𝑖 = 1, 2, 3) , (1)

where 𝑆
𝑖
= ∑
𝐿

𝑗=1
𝑠
𝑖,𝑗
/𝐿, 𝑖 is one kind of secondary structure

segment (helix, strand, or coil), 𝐿 is the number of the sec-
ondary structure segments in a protein sequence, and 𝑆

𝑖,𝑗
is a

property value of secondary structure segment 𝑖 at position 𝑗.
𝑆
𝑖
is the average property value for segment 𝑖 along the whole

sequence.
For example, given the hydrophobicity values (Table 2)

for 20 amino acid residues, the secondary structure segment
𝑖 contains 𝑚 residues, and 𝑆

𝑖,𝑗
represents the summation of

hydrophobic values for the𝑚 residues. The dimension of AC
variables is 3 ∗max (lg).
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Figure 1:The numbers of sequences containing secondary structure
segments. (a) and (b) are for training set and testing set, respectively.

CC variables describe the average interactions between
different types of secondary structure segments, which can
be calculated according to the following equation:

CC (𝑖1, 𝑖2, lg) =
𝐿−lg

∑

𝑗=1

(𝑆
𝑖1,𝑗
− 𝑆
𝑖1
) (𝑆
𝑖2,𝑗+lg − 𝑆𝑖2)

(𝐿 − lg)
, (2)

where 𝑖1 and 𝑖2 are two different types of secondary structure
segments (helix, strand, or coil) and 𝑆

𝑖1,𝑗
is a property value

of secondary structure segment 𝑖1 at position 𝑗. 𝑆
𝑖1
(𝑆
𝑖2
) is the

average property value for secondary structure segment 𝑖1(𝑖2)
along the whole sequence. The dimension of CC variables is
3 ∗ 2 ∗ lg.

(2) The Selection of the Maximum Value of lg. The statistical
analysis of the number of the secondary structure segments
in the 27-class folds dataset is shown in Figure 1. The abscissa
represents the number of secondary structure segments. The
ordinate represents the number of sequences.The percentage
of sequences that contained less than five secondary structure
segments was below 0.5%. The maximum value of lg was
selected as 4 (max (lg) = 4).

(3) The Values of Physicochemical Properties. In this paper,
four physicochemical properties used by many researchers
were selected as ACC feature values to calculate the interac-
tions of segments: hydrophobicity (H1), hydrophilicity (H2),

polarity (PL), and solvent accessible surface area (SASA).The
values of physicochemical properties for the 20 amino acid
residues were taken from the literature of Guo et al. [36]
(Table 2). ACC can reflect the segments-order and the long-
range correlation information of the sequence, which has a
major influence on protein folding.

2.2.4. Predicted Secondary Structure Information (P). As the
protein fold is a description based on the secondary structure,
the formation of secondary structure in sequence influences
the folding of protein. From the researches of published liter-
atures [17, 21, 22, 25], in this paper, the occurrence frequencies
of three kinds of predicted secondary structure segments
motifs were extracted as a feature parameter; thus we can
get a 3-dimensional vector. Then the occurrence frequencies
of three-state of amino acid residues (i.e., helix, strand, and
coil) were extracted as a feature parameter, and then we got
another 3-dimensional vector. Therefore, the frequencies of
secondary structure segments and three-state of amino acid
residues above were converted into a 6-dimensional vector,
which were represented by P. Here, the online web server
PSIPRED (http://bioinf.cs.ucl.ac.uk/psipred/) was used to get
the predicted secondary structure of each protein sequence.

2.3. Random Forest. Random Forest is an algorithm for clas-
sification developed by Breiman [38]. The basic idea of the
algorithm is that multiple weak classifiers compose a strong
individual classifier. Random Forest uses a collection of mul-
tiple decision trees, where each decision tree is a classifier,
every split of the decision tree is a classifier, and the final
predictions are made by the majority vote of trees. Random
Forest has the following advantages: (1) few parameters to
adjust and (2) data that does not require preprocessing. And
Random Forest has two important parameters: (1) the num-
ber of feature parameters selected by each node of a single
decision tree at each split, the number being represented by
𝑚 (𝑚 = √𝑀, where𝑀 is the total number of features which
were selected initially), and (2) the number of decision trees
represented by 𝑘 (in this paper, 𝑘 = 1000). The Random
Forest algorithmhas been successfully used for the prediction
of antifreeze proteins [39], DNA-binding residues [40], the
metabolic syndrome status [41],𝛽-hairpins [42], and so forth.
Here, R-2.15.1 software (http://www.r-project.org/) was used
to perform the Random Forest algorithm by calling the ran-
domForest program package.

3. Results and Discussion

3.1. The Comparison Results with Different Parameters. For
the 27-class fold dataset, amino acid composition, motif fre-
quency, predicted secondary structure information, and the
interaction of secondary structure segmentswere extracted as
feature parameters, with the combined feature vector as input
parameters for the Random Forest algorithm. The overall
accuracy of the testing set in the dataset measured up to
78.38% by independent test.

For further comparison, identification results from the
gradual addition of relevant feature parameters are listed
(Table 3). Furthermore, the architecture of the protein folds
identification system is shown (Figure 2).
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Table 3: Prediction accuracies of different parameters in the testing set (%).

Fold A A + ACC A + ACC + M A + ACC +M + P
A + ACC + M + P

(5-fold cross
validation)

The results of
Liu et al. [27]

Ding and Dubchak’s
dataset [11]

A + ACC + M + P

1 21.43 71.43 71.43 71.43 75.00 (0.0252) 78.5 100.00
2 10.00 70.00 70.00 80.00 95.00 (0.0000) 90.0 100.00
3 60.00 90.00 91.11 91.11 92.86 (0.0026) 75.5 75.00
4 4.17 83.33 75.00 75.00 81.63 (0.0000) 54.1 87.50
5 12.50 25.00 12.50 25.00 18.75 (0.0187) 25.0 77.78
6 0.00 60.87 52.17 52.17 75.00 (0.0342) 39.1 66.67
7 87.06 91.76 89.41 90.59 89.47 (0.0114) 82.3 79.55
8 11.11 27.78 27.78 38.89 41.67 (0.0000) 55.5 75.00
9 45.83 50.00 50.00 58.33 70.83 (0.0421) 70.8 84.62
10 23.53 35.29 47.06 52.94 57.14 (0.0255) 47.0 66.67
11 24.39 56.10 48.78 58.54 70.73 (0.0185) 43.9 37.50
12 0.00 46.43 64.29 60.71 54.39 (0.0096) 60.7 89.47
13 0.00 30.00 50.00 60.00 66.67 (0.0426) 10.0 50.00
14 37.50 56.25 62.50 62.50 81.82 (0.0000) 75.0 25.00
15 53.33 40.00 40.00 46.67 67.74 (0.0136) 40.0 100.00
16 86.96 95.65 98.91 100.00 98.92 (0.0144) 89.1 66.67
17 0.00 20.00 20.00 20.00 20.00 (0.0097) 20.0 91.67
18 11.11 30.56 47.22 61.11 68.49 (0.0894) 16.6 38.46
19 37.50 81.25 100.00 100.00 100.00 (0.0300) 81.2 62.96
20 26.03 72.60 90.41 89.04 91.84 (0.0398) 87.6 41.67
21 30.56 50.00 75.00 72.22 72.60 (0.0217) 52.7 75.00
22 22.50 40.00 62.50 57.50 65.82 (0.0113) 50.0 41.67
23 27.27 45.45 90.91 90.91 95.46 (0.0107) 78.7 57.15
24 0.00 16.67 50.00 66.67 41.67 (0.0373) 50.0 25.00
25 12.82 56.41 61.54 61.54 69.23 (0.0233) 30.7 12.50
26 51.52 88.89 90.91 92.93 86.00 (0.0104) 67.6 62.96
27 100.00 75.61 87.80 92.68 92.68 (0.0122) 1.000 96.30
𝑄 43.66 68.80 76.25 78.38 81.16 (0.0028) 66.5 70.24
Note: A means amino acid composition (20 dimensions), A + ACC means amino acid composition and the interaction of segments (164 dimensions), A +
ACC + M means amino acid composition, the interaction of segments, and motif frequency (290 dimensions), and A + ACC + M + P means amino acid
composition, the interaction of segments, motif frequency, and predicted secondary structure information (296 dimensions); 𝑄means the overall accuracy;
the standard deviation values are in the parenthesis of the sixth column, the penultimate column is the results of Liu et al. [27] with the same dataset, and the
last column is our results of the dataset built by Ding and Dubchak [11].

When only one feature parameter, amino acid compo-
sition, was used, the overall accuracy was 43.66% (Table 3).
After adding the feature parameter based on the interaction
of segments, the overall accuracy increased to 68.80% (a 25%
higher overall accuracy). The accuracies for folds 1, 2, 4, 6, 19,
and 20 increased more than 50%, and the accuracies of folds
3, 11, 12, 13, 25, and 26 increased approximately 30% except
folds 15 and 27, and the accuracies of the remaining folds also
improved in different degrees. The feature parameter based

on the interaction of segments also had a great effect on
the identification of protein folds. When adding the feature
parameter of motif frequency to amino acid composition
and interaction of segments, the overall accuracy increased
to 76.25%, an 8% higher overall accuracy. During this
process, the accuracies of folds 12, 13, 19, 22, 23, and 24
increased considerably, and the accuracy of fold 27 showed
improvement. Finally, adding the feature parameter based
on predicted secondary structure information resulted in an
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Figure 2:The architecture of the protein folds identification system.

overall accuracy of 78.38%. Above all, as relevant feature
parameters were gradually added, the accuracies of a large
majority of folds improved in different degrees. Thus, the
feature parameters used were very effective in predicting
27-class folds. According to the previous researches [16–18,
23], we combined the training set and testing set, and the
corresponding prediction results and standard deviation (in
parenthesis) by 5-fold cross validation test were listed in the
sixth column of Table 3. With the same dataset, the previous
results of Liu et al. [27] by independent test were also listed in
Table 3 for comparison. We can see that the overall accuracy
by independent test in our work was 12% higher than that of
Liu et al. [27] (the penultimate column in Table 3), and the
overall accuracy by 5-fold cross validation test in our work
was higher. The web server for protein folds prediction is
accessible to the public (http://202.207.29.245:8080/Ha/Home-
Page/fzxHomePage.jsp).

3.2. The Comparison with Previous Results. To test the effi-
ciency of our method, with the same feature parameters,
classification strategy, and algorithm used above, the 27-class
folds dataset built by Ding and Dubchak [11] was also tested.
An overall accuracy of 70.24% was achieved by independent
test (the last column in Table 3). The previous results from
the same dataset are also listed in Table 4 for comparison.The
accuracy was slightly lower than the results of Shen and Chou
[24] and Yang et al. [25], but the overall accuracy in our work
was higher than the accuracies of most previous researchers
(Table 4).

3.3. The Identification Results of Structural Classifications.
According to Shen and Chou’s [21] description on structural
classification in the literature, 27-class protein folds belong
to four types of structural classification (Table 1). Therefore,
the same feature parameters above were extracted and the
combined feature parameters were inputted in Random
Forest algorithm; the overall accuracy of the four types of
structural classification in the testing set measured up to
92.55% by independent test. This overall accuracy was 3%
higher than that of Liu et al. [26] (Table 5). Our approach
was also tested on the dataset built by Ding and Dubchak
which has been used by many researchers and our results
were superior to most previous results derived from the same
dataset (Table 5).

Table 4: The previous identification results by an independent test
from Ding and Dubchak’s dataset (%).

Author Classifier Accuracy

Ding and Dubchak [11] SVM (All-Versus-All) 56.0

Chinnasamy et al. [12] Tree-Augmented Naive
Bayesian Classifier

58.2

Shen and Chou [21] OET-KNN 62.1

Nanni [13] Fusion of classifiers 61.1

Chen and Kurgan [22] PFRES 68.4

Guo and Gao [14] GAOEC 64.7

Damoulas and Girolami [15] Multiclass multikernel 70.0

Zhang et al. [20] Increment of diversity 61.1

Ghanty and Pal [23] Fusion of different
classifiers

68.6

Dong et al. [18] ACCFold 70.1

Shen and Chou [24] PFP-FunDSeqE 70.5

Yang et al. [25] MarFold 71.7

Liu et al. [27] SVM 69.8

Our work Random Forest 70.2

4. Conclusion

In early 2001, Ding and Dubchak built the 27-class folds
dataset and started research on the identification of 27-class
protein folds with multiple feature groups. Researchers have
since been devoted to the improvement of feature param-
eters, algorithms, classification strategies, and the datasets
for the identification of protein folds and have achieved
good identification results. Based on previous researches, we
combined sequence information, structural information, and
functional information as input feature parameters of the
Random Forest algorithm for protein folds identification and
obtained better results. Therefore, the addition of segment
interactions and motif information for recognizing 27-class
protein folds is a valid and novel approach.

Given the samedataset, whendifferent feature parameters
are used, the same sequence can be correctly or falsely
classified. Here, our approach achieved the improved results
with the following possible reasons. First, in considering the
correlation at the level of secondary structure segments, we
calculate the interaction information of secondary structure
segments, which reflects the segments-order and long-range
correlation information of the sequence and has a major
influence on protein folding. Second, in considering the
local conservation of kernel structure in protein folds, motif
information was extracted, including functional motifs and
statistical motifs. Finally, the Random Forest algorithm is
a combination classifier of convenience and high efficiency
whose final classification results are decided by votes from
decision trees.

In our future work, with the same parameters and classi-
fication strategy, testingmethods (jackknife test, 10-fold cross
validation, etc.) would be used. Different physiochemical
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Table 5: Overall accuracies of structural class using different approaches in the testing set (%).

Dataset Author Structural class Accuracy
𝛼 𝛽 𝛼/𝛽 𝛼 + 𝛽

Liu and Hu [26]
Our work 94.67 91.73 97.33 82.68 92.55
Liu and Hu [26] 97.04 85.43 94.07 78.21 89.24

Ding and Dubchak [11]

Our work 83.60 88.89 82.52 66.13 81.98
Liu and Hu [26] 86.89 88.03 83.22 59.68 81.46
Zhang et al. [20] 79.11
Chinnasamy et al. [12] 80.52

properties also would be analyzed for the recognition of
protein folds. Moreover, Precision-Recall curves or ROC
curves for individual folds could be presented.
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