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Abstract

High-resolution (HR) multi-electrode mapping has become an important technique for evaluating

gastrointestinal (GI) slow wave (SW) behaviors. However, the application and uptake of HR

mapping has been constrained by the complex and laborious task of analyzing the large volumes

of retrieved data. Recently, a rapid and reliable method for automatically identifying activation

times (ATs) of SWs was presented, offering substantial efficiency gains. To extend the automated

data-processing pipeline, novel automated methods are needed for partitioning identified ATs into

their propagation cycles, and for visualizing the HR spatiotemporal maps. A novel cycle

partitioning algorithm (termed REGROUPS) is presented. REGROUPS employs an iterative

REgion GROwing procedure and incorporates a Polynomial-surface-estimate Stabilization step,

after initiation by an automated seed selection process. Automated activation map visualization

was achieved via an isochronal contour mapping algorithm, augmented by a heuristic 2-step

scheme. All automated methods were collectively validated in a series of experimental test cases

of normal and abnormal SW propagation, including instances of patchy data quality. The

automated pipeline performance was highly comparable to manual analysis, and outperformed a

previously proposed partitioning approach. These methods will substantially improve the

efficiency of GI HR mapping research.
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Introduction

Gastric motility is initiated and coordinated by electrical activity termed slow waves (SWs).

SWs are generated and propagated by the interstitial cells of Cajal (ICCs), and conducted

passively to the adjacent smooth muscle cells, causing depolarization and inducing

contractions when co-regulatory conditions are met, as occurs after a meal.23 In an intact

network, the frequencies of ICCs synchronize to the single fastest frequency in the

syncytium, in a process known as entrainment.23 In the human stomach, SWs therefore arise

from a pacemaker area which has the highest intrinsic frequency, located near the greater

curvature of the mid to upper corpus, and then propagate toward the antrum at a frequency

of ≈3 cycles per minute (cpm).17 Abnormal SW activity has been associated with gastric

motility disorders, such as gastroparesis,19 functional dyspepsia,16 and gastro-esophageal

reflux disease.3 In gastroparesis, ICC loss may be an underlying or contributing cause.9

The recent advent of high-resolution (HR) electrical mapping has been an important advance

for evaluating gastric SW behaviors.14,15 HR mapping involves the placement of spatially

dense arrays of many electrodes (typically >100, spaced at 2–10 mm), and recording

simultaneously from all sites, in order to provide a detailed understanding of SW

propagation across the target organ. These recordings can be used to generate activation

time (AT) maps that provide a spatiotemporal quantification of the spread of electrical

activity, and therefore significantly more detail than was revealed with past sparse electrode

approaches.5,14,18 For example, recent HR studies of the normal canine, porcine, and human

stomachs have revealed significant new information regarding the origin and propagation

dynamics of slow wave activity.7,15,17 HR mapping has also been applied to investigate the

mechanisms of gastric dysrhythmia, revealing complex focal and reentrant activities similar

to behaviors seen in cardiac fibrillation,14 and to better define the effects of gastric pacing

on SW activity.18 The clinical significance of these findings now awaits to be determined.

Although it is a relatively new technique in gastroenterology, HR mapping has been widely

used for many years in cardiology where it has led to routine tools for the management of

dysrhythmias.10,24 A large number of methods now enable the efficient analysis of cardiac

mapping data.1, 21, 22 In the GI field, however, the application of HR mapping has been

constrained by the poor efficiency of data processing and analysis. In a 256 channel 10

minute gastric recording, there may be ≈30 SW cycles, comprising >7500 individual events,

to individually assess, mark, map, and characterize. Until recently, this task has mostly been

performed manually, presenting a laborious and time-consuming assignment.

To improve the efficiency of GI HR mapping, an effective algorithm for automating the

identification of SW ATs was recently developed and validated, termed the “falling-edge

variable threshold” (FEVT) method.8 Identification of ATs is the first critical step for

analyzing HR mapping data, because they are required to generate the spatiotemporal AT

(isochronal) maps, as well as to calculate SW frequencies, velocities, and amplitudes. The

FEVT method detects ATs at a sensitivity and positive predictive value (PPV) of >90%,

offering >100× time savings compared to manual identification.8 However, the analysis of

GI HR mapping remains laborious, because robust automated methods are still required for
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clustering the marked ATs into their individual propagation cycles—which must be

performed before the AT maps are generated.

This study, therefore, had two aims: (1) to introduce and validate an improved method for

partitioning of SW wavefronts; and (2) to introduce and validate automated methods for

generating accurate spatiotemporal AT maps using the partitioning result. The successful

automation of these combined processing steps would greatly improve the efficiency of GI

HR mapping research, therefore, enabling its increased application.

Methods

Experimental Methods, Signal Acquisition, and Filtering

Data for this study were acquired from recent in vivo porcine gastric HR mapping studies.7

Details of the ethical approval, and surgical, anesthetic, and recording methods are also

described in Egbuji et al.7 Briefly, HR gastric mapping was performed using up to six

tessellated flexible printed circuit board (PCB) arrays (4 × 8 electrode configuration; inter-

electrode distance 7.62 mm)5 covering a large area (up to 93 cm2) of gastric tissue. Unipolar

recordings were acquired at 512 Hz using the ActiveTwo System (BioSemi, Amsterdam).

Signals were preprocessed by applying a second-order digital Butterworth bandpass filter of

0.017–1 Hz (1–60 cpm) in order to minimize baseline wander and high frequency noise.

Flexible PCBs achieve a modestly inferior signal to noise ratio (SNR) compared to the resin-

embedded platforms used for GI HR mapping in some studies,5,15 but are most suitable for

human use.5,17 Therefore, the performance of the FEVT method is somewhat lower when

applied to PCB recordings (PPV ≈87%, sensitivity ≈90%),8 providing a more rigorous

testing scenario for the novel methods described herein.

Selection of Test Case Data

Four data sets (120 s duration) from four porcine subjects were selected for algorithm

validation because these segments represented a range of scenarios encountered during

porcine HR mapping,7 including normal and abnormal propagation. Normally, gastric SWs

propagate aborally as a transverse band of activation.7 However, periodic abnormal SW

behaviors are observed during porcine HR gastric mapping,7 such as retrograde propagation,

ectopic, and competing pacemakers. Robust analysis methods must correctly identify normal

propagation patterns, as well as a range of abnormal ones. For emphasis on potential clinical

applicability, three out of four test cases involve abnormal propagation patterns, as described

below:

1. Normal corpus propagation: During normal propagation, consecutive wavefronts

are often simultaneously detected by a large mapping array.15,17 A robust cycle

partitioning algorithm must correctly determine which ATs belong to the distinct

cycles, otherwise AT maps will be highly distorted and misleading. The first test

case was from a corpus recordings on the greater curvature (Fig. 3a), featuring

simultaneous, consecutive propagating wavefronts.
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2. Retrograde propagation: One test case involves retrograde propagation recorded in

the upper corpus/distal fundus (Fig. 4a). Robust analysis methods must correctly

identify propagation patterns spreading in a direction opposite to that of normal.

3. Ectopic Pacemaker: One test case includes an ectopic pacemaker recorded in the

upper corpus/distal fundus (Fig. 5a). Robust analysis methods must correctly

identify propagation patterns which enter the recording field at a position that may

change between consecutive cycles.

4. Competing Pacemakers/Colliding Wavefronts: One test case includes competing

pacemakers; the location of one of these varies over consecutive cycles (Fig. 6b). In

general, two respective wavefronts (one from each pacemaker) collide in the central

field of the recording array. Subsequently, the wavefronts merge, and continue

propagating aborally. Robust analysis methods must correctly identify such

relatively complex propagation patterns, including the number and position of

pacemakers contributing to an independent cycle. This recording is also taken from

the upper corpus/distal fundus (Fig. 6a).

Importantly, three of these test cases also had patchy data quality, which results from

suboptimal or obstructed electrode contact, or due to interfering signals (e.g., respiration

artifacts). A robust cycle partitioning algorithm should properly cluster ATs across patchy

data gaps, otherwise it may terminate early, generating incomplete and/or faulty AT maps.

Previous Work Motivating the REGROUPS Algorithm

A “wave mapping” (WM) method was previously introduced and applied to partition

independent wavefronts in the rat myometrium.12 Briefly, this method implemented an

iterative procedure whereby the AT of a seed electrode Tseed was compared to the ATs at

(up to) eight adjacent electrode sites Tk, where ‘k’ indexes the adjacent electrodes. If the

difference in ATs between the seed and kth adjacent electrode was small enough, |Tseed – Tk|

≤ Δtmax, then Tk was grouped with Tseed, and Tk (eventually) became the new seed. All ATs

that are grouped in this manner were considered to represent ATs from the same cycle. The

value of Δtmax was an invariant, chosen by the user prior to commencing the clustering

algorithm.

Crucially, the WM approach employed only a single reference AT from the seed electrode to

which another AT on an adjacent electrode is compared. Therefore, the accuracy of the WM

algorithm was sensitive to the initial state as well as outliers in the marked ATs, making the

routine prone to inaccurate results. This lack of robustness may be less problematic when

using exclusively manually marked ATs, because outliers can be manually screened, but this

is very time-consuming. Moreover, we have found that the WM method is inadequate when

applied to a typical FEVT automarked data, because the results typically include a small

fraction of false-positives (FPs), where signal noise or artifacts (e.g., respiration) mimicked

true events.8 We have also found that the WM method is inadequate when applied to data

sets with patchy quality: It terminates prematurely, due the lack of information regarding the

SW velocity.
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We investigated adapting existing cardiac field mapping algorithms for GI data. Rogers et

al.21,22 presented a cardiac wave front isolation method specifically designed to counter the

premature wavefront termination problem arising in noisy or sparse data sets. Their

algorithm also used an iterative “flood-fill” scheme, and incorporated a spatiotemporal

filtering step to join or disconnect multiple wavefronts utilizing an unconnected digraph

framework. “Undersized sibling” wavefronts were (potentially) merged according to a set of

rules regarding their size and contact times, and assumed valid ventricular propagation

patterns. The final set of isolated wavefronts was found to be strongly dependent on the

merging threshold parameter.21 While this method is well suited for identifying complex

cardiac wavefront propagation, we sought to develop a method that avoids as many a priori

assumptions as possible regarding valid propagation patterns, and that is relatively

insensitive to algorithm parameter values. In addition, because the mechanisms of wavefront

propagation are physiologically distinct in the stomach (entrainment) and the heart (a

reaction-diffusion phenomenon25), a new wavefront isolation method suited to gastric SW

propagation dynamics was sought.

As an alternative approach to existing cardiac or GI wave mapping methods, we developed a

data-driven approach with two principles in mind: that it should properly partition (1) FEVT

automarked ATs and (2) effectively handle more complex data sets, described above.

Our novel method, “Region Growing Using Polynomial-surface-estimate Stabilization”

(REGROUPS), is based on the observation that a propagating gastric wavefront is

spatiotemporally smooth—i.e., well described by a second-order polynomial surface.6 The

REGROUPS method incorporates a continuously updating spatiotemporal filter by updating

the coefficients defining the polynomial surface whenever another AT is added to the group

of points representing the wavefront. The idea that a second-order surface is suitable for

representing the principle features of a propagating gastric wavefront was informed by

previous cardiac and GI velocity-field mapping studies.1,6 Recently, this approach has been

applied to graphically present SW velocity fields in several studies.7,17,18

Description of the REGROUPS Algorithm

The REGROUPS algorithm (Fig. 1) works by clustering (x, y, t) points representing ATs

into groups that represent independent SW cycles. Here, (x, y) denotes the position of an

electrode site (relative to an arbitrary reference) when the array is laid flat, and t denotes an

AT marked at that site. During the experiment, the flexible electrode array is curved to

conform 3D geometry of the stomach, but the interelectrode spacing is maintained because

the array does not stretch.

REGROUPS employs an iterative “flood fill” or “region growing” procedure similar to that

described in Lammers et al.12 and Rogers et al.22 It is initialized by creating a master list of

all marked ATs, and judiciously selecting the master seed electrode site in automated

fashion (see “Automated Master Seed Selection” section). Each iteration begins by

assigning the next consecutive AT marked at the master seed to the newly initialized cluster,

and establishing a queue containing the (x, y) positions of nearby sites. A “nearby” site is

defined as falling within a distance  of the seed electrode, where dmin denotes the
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minimum distance between the seed and the closest site containing (at least) one AT. The

factor of  essentially defines a circular search radius (for a square lattice array) to include

sites located diagonal to the seed. It is important to note that dmin is not necessarily equal to

the inter-electrode spacing (although it often will be), which enables the algorithm to

successfully “jump” across areas of patchy data quality.

The first queue entry (electrode site) becomes the current seed, and all ATs at that site, AT(x,

y, j) (where j = 1,…, J indexes the marked ATs) are tested for membership. A point (x, y, t)

in AT(x, y, j) is assigned membership to the cluster (or not) based on comparison to an

estimated AT, Test. The AT which minimizes the estimate error is assigned membership to

the cluster, if the difference is small enough: minj|AT(x, y, j) – Test| ≤ Δtmax. Once assigned,

membership is never revoked. A point can be assigned membership to (at most) one cluster.

Upon assignment, that (x, y, t) point is removed from master list of ATs so that it is never

tested again. If the tested point is clustered, its nearby sites are added to the back of the

queue, if they are not already in it. If the tested point is not clustered, it may be tested again

for membership only after a new cluster has initialized (a new activation time surface is

calculated) at the next iteration. Regardless, the current seed is removed from the queue, and

the next queue element becomes the current seed. Thus, the region in (x, y, t) space

representing an independent cycle grows, terminating when the queue of nearby sites

becomes empty. At this stage, the cluster contains all ATs from one SW cycle. The same

process is repeated anew to identify another independent cycle, starting back at the master

seed. Each iteration produces a cluster of (x, y, t) points, which represent the dynamics of an

independent SW cycle. Points which are not assigned membership to any cluster are termed

“orphans.”

A critical new step introduced here is to implement a second-order polynomial surface, T(x,

y), to act as a continuously updating spatiotemporal filter, where:

(1)

Using only the (x, y, t) points already in cluster, the vector of coefficients that defines the

surface, p = [p1, p2, p3, p4, p5, p6], is computed using a previously described least-squares-

fitting procedure1:

(2)

where A is a matrix whose rows are created using the (x, y) electrode positions of points

already in the cluster: [x2, y2, xy, x, y, 1]; and t is a column vector containing the

corresponding ATs marked at those electrode sites. Having solved for the vector of

coefficients p that defines the polynomial surface in Eq. (1), an estimate of the AT at a

nearby site (xn, yn) can be obtained by simply extending the surface into that region: Test =

T(xn, yn). As illustrated in Fig. 2, the coefficients describing the surface, p, are automatically

updated every time another point is added to the cluster. Therefore, the data set at hand

determines the form of the polynomial surface, making it substantially more robust and

more widely applicable for distinguishing independent cycles in a variety of SW behaviors.
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It is important to note that at least six points are required to obtain a fully determined system

of equations. However, we generally grow the cluster to a “critical mass” of Ncrit ≈ 12

points before implementing the second-order surface estimation. Prior to using the

polynomial surface estimate, Test is computed as the mean of the ATs of the points already

assigned membership in the cluster.

Automated Master Seed Selection

The outcome of clustering/region growing techniques is dependent on the selection of the

master seed, particularly when the data quality is patchy (sparse). We automated this

selection such that the master seed is chosen to be at an electrode position (x, y)master which

is typically embedded in a region providing the maximal density of information about the

propagating wavefront. This approach grows the cluster outward from the region where the

spatial density of data is highest, helping to insure that the subset of points initially assigned

to the cluster is statistically cohesive, limiting the likelihood of outliers being assigned

membership to the nascent cluster. Automated seed selection is a three-step process:

1. For each electrode site, tally N(x, y), the total number of ATs detected at an

electrode site location (x, y).

2. Compute the center of mass (CM) (xCM, yCM) using the entries of N(x, y):

where the sum is taken over all electrode sites, indexed by i. The y-coordinate yCM

is similarly computed.

3. Check if (xCM, yCM) corresponds to the coordinates of an electrode with marked

ATs. If yes, then the master seed is selected to be the CM. If not, move the master

seed to the closest electrode site meeting this condition. In practice, the master seed

is usually selected to be at the CM.

Automated Spatial Interpolation and Visualization (SIV) of AT Maps

Pseudo-colored AT (isochrone contour) maps were automatically generated for each cycle

identified by REGROUPS. To achieve this, each electrode site’s AT is represented by a

colored pixel according to the set of clustered ATs representing one cycle. An electrode site

with no AT marked in that cluster is temporarily left blank (white). The FEVT method

yields a small fraction of false negatives (missed event detection), depending on the SNR,8

and the algorithm should rationally discern which sites are likely blank due to patchy data

quality vs. electrode sites that are positioned over quiescent tissue. AT maps should be

interpolated for the former, but not the latter.

In our experience, it is atypical to find a small quiescent region of tissue surrounded by

active tissue, hence the guiding principle informing the visualization algorithm was that

blank electrode sites surrounded by several active (non-blank) sites should be interpolated

into the AT map. We therefore developed a 2-stage spatial interpolation and visualization
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(SIV) scheme that conservatively interpolates AT maps using information from neighboring

active sites, according to the following rules (Suppl. Fig. 1A):

1. If a blank site is bordered by ≥3 directly adjacent (including diagonal) active sites,

the AT is linearly interpolated from adjacent active sites’ ATs, and correspondingly

pseudo-colored (termed an “interpolated site”).

2. If the total number of active plus interpolated sites (from stage 1) bordering a still-

blank site is ≥4, then interpolate the still-blank site.

Using this 2-stage scheme, as opposed to a recursive one, prevents a run-away interpolation

process from inappropriately filling in blank sites across the entire array. The choice of the

parameter values used in the SIV scheme is discussed in “Discussion” section.

Finally, the pixelated AT maps are converted into a smooth, filled contour representation

with isochronal lines spaced at 2 s intervals (Suppl. Fig 1B). Two reasons for performing the

conversion are: (1) to aid easy visual interpretation—investigators commonly remark that

smooth contours are easier to visually process20; and (2) to adhere to the tradition of

presenting AT maps as smooth contours.13,17 No information is lost or gained during the

conversion (see Suppl. Fig. 1B). The smooth contour style is used in Figs. 3, 4, 5, and 6 to

show the cycles of SW propagation.

Methods of Validation and Comparison

Control and experimental arms were developed to compare completely automated vs.

completely manual results, starting from raw data and ending with AT maps. This approach

therefore sought to validate the FEVT-REGROUPS-SIV pipeline as a complete package,

rather than any of these in isolation, to demonstrate the real-world practicability of the

complete system.

Experimental Arm

Activation times were identified via the FEVT method (refer to Erickson et al.8 for full

details). The REGROUPS and SIV algorithms were applied to each FEVT auto-marked data

set to identify the first five consecutive SW cycles. In addition, a modified version of the

previous WM method was also applied to each data set for comparison. For a fair

comparison, we improved the original version of WM to relax the restriction on testing ATs

only at adjacent electrode sites, allowing it to jump over areas of patchy data quality, in the

same manner as REGROUPS. The SIV scheme was applied to the result of both the

REGROUPS and WM methods to generate isochronal AT maps to directly investigate the

effect of the polynomial surface estimation step.

Control Arm

Activation times were manually assessed and marked by a fully blinded investigator. ATs

were manually marked at the apparent point of steepest negative slope using Smoothmap

v3.05.11 The resulting ATs were then manually partitioned to identify the first five

consecutive SW cycles, with resultant isochronal maps being generated in MATLAB. The

manually generated maps were considered to be the gold standard for comparison.
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Quantitative Comparison

The automated results were quantitatively compared to the manually derived results in terms

of AT mapping (1) area of coverage, and (2) isochronal timing accuracy, as follows:

1. Spatial Coverage: The spatial coverage true positive rate (TPR), false-positive rate

(FPR), and false-negative rate (FNR) were calculated. The TPR is defined as the

number of electrodes sites in common to both manual and automated maps, as a

fraction of the total number of sites filled on the automated maps. The FPR rate

accounts for the sites which were filled in the automated, but not the manual AT

map. The FNR accounts for the sites which were filled in the manual, but not the

automated, AT map. These rates were used to compute the sensitivity (Sens.), the

positive predictive value (PPV), and the area ratio of coverage (Aroc) performance

metrics, as follows:

An ideal algorithm achieves a value of 1 for all metrics (range 0–1). Incomplete

spatial coverage in the AT maps decreases Sens., whereas inappropriate filling of

sites which should be left blank decreases PPV. Tuning an algorithm for increased

sensitivity tends to reduce specificity (PPV), and vice-versa. Hence, the Aroc metric

gives the single best overall performance measure.

2. Isochronal Timing Accuracy: The coefficients of the second-order polynomial

surfaces (i.e., the vector p in Eq. (2)) effectively characterize the spatiotemporal

dynamics (velocity) of each SW cycle. To compare the automated vs. manual

isochronal timing accuracy, the “coefficient correlation score” (CCS) was

computed as the normalized dot product of the first five coefficients, p1–5 = [p1,

…,p5], for the surfaces describing a cycle partitioned via the automated and manual

methods:

(3)

The “dc offset” coefficient (p6) was ignored because it only reflects the bias for

manual analysis to consistently mark ATs about 100 ms earlier than the point of

true steepest derivative.8 The CCS value falls within a range of −1 to 1, with a

score of 1 representing perfect agreement between automated and manual methods.

Small excursions below a value of 1 (i.e., CCS ≈0.90) typically resulted when all

points were clustered properly into SW cycles, but the extent of spatial coverage

differed slightly (e.g., Fig. 5d; see Fig. 7 Exp. 3 cycles 1–3). In this case, the

interpretation of SW activity represented in the automated AT map is not altered. A

larger excursion (i.e., CCS ≤0.80) resulted when (at least) one region of points was

misclustered (e.g., Fig. 6f, see Fig. 7 Exp. 4 cycle 1; and Fig. 4f, see Fig. 7 Exp. 2

cycles 1, 2, and 5), which may alter the interpretation of SW activity based on the

AT maps. It should be noted that the surface fitting can be very sensitive to cases
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with erroneously clustered points and/or reduced spatial coverage, in which case

the CCS value can be as low as ≈−1 (e.g., Fig. 3f, cycle 5; and Fig. 4f, cycle 2).

Results

Experimental Data Set Results

Activation time mapping outcomes for the manual (control) vs. the FEVT-REGROUPS-SIV

and FEVT-WM-SIV methods are presented in Figs. 3, 4, 5, and 6. (For brevity, these

acronyms are hereafter shortened to REGROUPS and WM.) All results in Figs. 3, 4, 5, and

6 are presented in the same configuration. Panel a depicts the position of the HR electrode

array on the porcine stomach. Panels c and e show the (x, y, t) representation of the cycle

partitioning result obtained using the REGROUPS, and WM methods, respectively. Cluster

membership is indicated with a distinct color for each cycle. Open diamonds represent

marked ATs that were not assigned to any cluster (orphans); they do not contribute to the

drawing of AT maps. Panels b, d, and f show the isochronal contour AT maps for the five

analyzed manual, REGROUPS and WM cycles, respectively. The slow wave propagates

from red to blue. Each solid line (isochrone) demarcates a 2 s time interval. The maps in d

and f correspond to the first five full SW events shown in c and e, respectively. All

automated results shown in these figures were obtained using a value of Δtmax = 5 s (see

“Robustness of REGROUPS Method” section).

In general, Figs. 3, 4, 5, and 6 demonstrate cycle-to-cycle stability obtained with the

REGROUPS method, and qualitatively good comparisons between the manual and

REGROUPS maps. Slight differences between the automated and manually generated

propagation patterns were not judged to significantly alter the interpretations derived from

them. Qualitative outcomes for each result are discussed in further detail below, followed by

quantitative comparisons.

1. Normal aboral propagation (Fig. 3): The manual and both automated methods

generated AT maps showing normal aboral SW propagation. The REGROUPS

results (Fig. 3d) showed strong similarity to the manual results (Fig. 3b), with

comparable isochronal intervals and orientations, comparable map coverage, and a

high consistency between cycles. The WM results (Fig. 3f) demonstrated the same

general propagation pattern, with exception of cycle 5, which, lacking information

in the proximal field (upper-left corner of the array), less clearly delineates an

aboral pattern. The spatial coverage compared less well: WM was primarily limited

by incomplete partitioning of the ATs from the proximal field, resulting in more

orphans in the proximal region (Fig. 3e) compared to the REGROUPS (Fig. 3c),

and therefore reduced AT map coverage.

2. Retrograde Propagation (Fig. 4): The manual and REGROUPS AT maps depict

retrograde activity propagating into the fundus. A medial shift in the entry of the

wavefront progresses from cycles 1 to 5. The manual maps (Fig. 4b) and

REGROUPS maps (Fig. 4d) were highly comparable in terms of isochronal

intervals and orientations. Interestingly, however, the REGROUPS consistently

demonstrated slightly greater spatial coverage than the manual maps, extending
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proximally with a physiologically consistent activation pattern, potentially because

FEVT may sometimes yield a higher AT detection sensitivity compared to manual

marking.8 The WM AT maps (Fig. 4f) also illustrate retrograde activity. However,

the entry point and propagation direction of the wavefront are confounded due to

misclustering of points at the distal edge (bottom-right) of the electrode array for

four cycles (1, 2, 4, and 5), and also at the proximal edge for three cycles (1, 2, and

4). The quality of spatial coverage was consistent, though somewhat greater,

compared with the manual AT maps, except for cycle 3—a consequence of

premature termination of the WM algorithm due to patchy data quality.

3. Ectopic Pacemaker (Fig. 5): All maps demonstrate abnormal propagation from an

ectopic pacemaker site near the medial (lesser curvature) porcine fundus. The

REGROUPS result (Fig. 5d) showed strong similarity to the manual result (Fig.

5b), with comparable isochronal intervals and orientations. A number of orphans

are evident in the distal field (Fig. 5c, right), which may be due to patchy data

quality. Importantly, the blinded manual marker also viewed these data as too

inconsistent to reliably map, hence spatial coverage of both REGROUPS and

manual outcomes was ultimately consistent. A substantially greater proportion of

orphans is shown in the WM clustering result (Fig. 5e), because of consistent

inappropriate early termination of the algorithm, leading to substantially reduced

AT map coverage (Fig. 5f). This outcome is likely due to the relatively high

velocity noted near the boundary containing the majority of orphans.

4. Competing Pacemakers/Colliding Wavefronts (Fig. 6): The manual (Fig. 6b) and

REGROUPS (Fig. 6d) AT maps demonstrate a high degree of similarity for all

cycles. Cycles 1–3 show two wavefronts entering the array from competing

pacemakers situated at upper-left and middle-right. These wavefronts collide, then

merge into a single wavefront which continues to propagate aborally (bottom of

array). The collision boundary generally extends from middle-left to upper-right.

Cycle 4 shows this pattern to a lesser extent—the pacemaker at middle-right is less

prominent. The manual and REGROUPS maps for cycle 4 also suggest a further

ectopic source initiating activity at middle-left, which is more prominent in cycle 5.

In a few instances, REGROUPS misclustered a small number of points in isolated

fashion (e.g., panel d, cycle 4, sites colored green in an otherwise yellow region at

mid- to upper-right), but the effect on interpreting SW activity from these maps is

negligible. For all cycles, REGROUPS maps indicated the correct number and

location of multiple pacemakers. However, the REGROUPS spatial coverage

consistently extends beyond that of the manual maps, likely because FEVT may

detect more ATs than manual marking when the SNR is reduced.8 In this particular

instance, the electrode array at the edge of the field (a five flexible PCB patch) had

relatively poor contact, reducing the SNR of the signals, thus rendering the extent

of SW propagation in this region ambiguous by manual assessment.

The WM maps (Fig. 6f) also generally demonstrate the same colliding wavefront pattern.

However, discrepancies with the manual maps are noted at the bottom of the array, where

points are misclustered (most noticeably in cycles 1 and 5), and more orphans exist (cycles

2–5). This result is attributed to poor AT estimation—due to using no velocity information
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— near the bottom of the collision boundary, where ATs are sparsely marked (Fig. 6e). WM

maps, therefore, may erroneously suggest that a third pacemaker exists in the distal field for

cycles 1 and 5, and that the colliding wavefronts do not continue to propagate in the aboral

direction after merging for cycles 2–5.

Quantitative Analysis: Performance Metrics

Figure 7 shows the performance metrics of the REGROUPS and WM methods compared to

the manual outcomes for each of five partitioned cycles in each test case. All results shown

are for Δtmax = 5 s, which corresponds to the best overall performance attained by WM

averaged across all experiments, in terms of the trade off between spatial coverage and

timing accuracy (see Fig. 8 and “Discussion” section). REGROUPS was still found to be

superior overall, achieving a higher sensitivity than WM (+13.7%), with a lower PPV

(−5.4%). As indicated by the Aroc metric in Fig. 7, the spatial array coverage of

REGROUPS was consistently superior (+5.7%) to that of WM. (Results quoted are the

median difference, since comparison of outcomes varied widely on a per-cycle basis.) In

addition, REGROUPS achieved a higher CCS than WM (+11.6%). Importantly, the CCS

metric in Fig. 7 indicates that REGROUPS consistently yielded AT maps very similar to the

manually generated result, with CCS ≥ 0.88 for all cycles. By contrast, WM was

substantially less consistent, with CCS ≤ 0.66 for 7 of 20 cycles.

Taken together, these findings indicate that the REGROUPS polynomial surface

stabilization step served to significantly increase the quantity and quality of information

contained in the AT maps.

Robustness of REGROUPS Method

The REGROUPS methods make use of two user-selectable parameters: Δtmax and Ncrit. The

WM method makes use of only the first of these. In order to assess the robustness of these

automated methods, we further evaluated their outcomes over a range of Δtmax = 2—12 s,

which corresponded to about 1/10—1/2 of a cycle period. Figure 8 shows that the

REGROUPS method was observed to be robust to the value of Δtmax, whereas the WM

method was not. For each value of Δtmax, the mean and standard deviation of the Aroc and

CCS metrics were computed across all five partitioned cycles. The WM outcome depended

on the parameter value. The spatial coverage generally increased in a linear fashion for

smaller values (≤5 s) of Δtmax, while the isochronal timing accuracy varied significantly

depending on Δtmax, generally peaking around Δtmax = 5 s, and failing to attain peak CCS

performance for larger values (Fig. 8). By contrast, the REGROUPS performance metrics

were found to be highly satisfactory (typically Aroc ≥ 0.8; CCS ≥ 0.9) and essentially

invariant when Δtmax ≥ 3 s. One exception was noted in Experiment 3, where Aroc and CCS

modestly declined with increasing Δtmax. We attributed this result to larger Δtmax values

allowing for inappropriate clustering of some of the FEVT FPs in the distal field (bottom of

the array).

The parameter Ncrit, which controls when the polynomial surface stabilization is switched

on, was also varied. Having examined the automated outcomes for a range of Ncrit = 6–36

points (≈5–30% of the total number of electrode sites), we observed that the REGROUPS
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outcome is essentially invariant to the value of this parameter above, so long as Ncrit ≥ 12

points (data not shown). If the critical mass is too small, then the surface was overfit to a

small core of points, yielding a poor description of the propagation pattern across the entire

electrode array. On the other hand, if the critical mass was too large, then the technique fails

to utilize information about the velocity at the wavefront boundary, which is critical for the

success of our algorithm.

In summary, REGROUPS was found to be robust to the selection of parameter values over a

relatively large range. It is capable of producing accurate AT maps with proper spatial

coverage, without the end-user having fine-tune parameter values on a per-experiment basis.

Discussion

This study has presented and validated methods for a major need in the GI high-resolution

mapping community—accurate and reliable automated partitioning and visualization of SW

ATs into independent propagating wavefront cycles. Importantly, the REGROUPS and SIV

methods were demonstrated to perform robustly across a broad range of real-world

experimental scenarios, including mapping of normal activity, mapping over regions with

quiescent tissue, and mapping retrograde as well as ectopic pacemaker activity. Highly

satisfactory performance was obtained across consecutive cycles, even when the

spatiotemporal dynamics of the propagation pattern changed one cycle to the next.

The continuously updating second-order polynomial surface estimation step was shown to

result in superior robustness of the REGROUPS algorithm, and helped solve the problem of

patchy data quality. Continuously updating (a model of) the local velocity yielded good

estimates for ATs at both immediately adjacent and more distant electrode sites. Crucially,

utilizing a second-order polynomial surface as a spatiotemporal filter made this estimation

process insensitive to outliers, helping overcome the problem inherent with noisy and sparse

data. Indeed, the result of the fourth test case shows that, for instances when REGROUPS

may miscluster a few isolated points, incorporating information from a relatively large

number of ATs in the polynomial surface protects against “run-away” misclustering. In

practice, this will be highly beneficial, as it is not uncommon for recorded HR data to be

somewhat patchy and/or attain a relatively low SNR for some electrode sites, especially

when employing the flexible PCB electrodes in the human operating room, when there is

often insufficient time to repeat placements of the arrays when contact is not ideal on the

first attempt.

Using a low-order model is attractive because it avoids overfitting issues inherent to higher-

order models, and it is computationally efficient. In the instances when results obtained

using a second-order surface were less than ideal, we investigated whether employing a

similar third-order model would be beneficial. However, the third-order outcomes were

almost always observed to be worse than those obtained using the second-order surface. The

problem with utilizing higher-order surfaces appears to be that the estimated velocity is too

large near a boundary of the growing cluster, thus yielding an inaccurate estimate for ATs at

nearby sites.
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The REGROUPS outcome was found to be robust to the value for Δtmax, within reasonable

bounds. Its value should be made generous enough to allow for small (≈10%) AT

estimation error, but also generally not exceed more than about 1/2 of a cycle period (<10 s

for 3 cpm SWs), so as to adequately filter outliers. If REGROUPS incorrectly regarded a

point as an outlier, the SIV scheme often rectified the fault by properly interpolating that site

into the AT map. Similarly, an FEVT false-positive mark was often filtered out by

REGROUPS. Thus, the FEVT and REGROUPS/SIV methods work synergistically: the new

data analysis and visualization pipeline presented here provides a cohesive framework for

overcoming the cycle partitioning problems inherent with noisy and sparse data.

By contrast, the WM outcome was observed to be highly sensitive to Δtmax, performing best

with this parameter set between 4 and 5 s, but often yielding less than satisfactory results.

The fragility is easily understood: the WM method does not incorporate information about

the propagating wavefront contained in the spatially varying velocity. Therefore, Δtmax must

be set to a relatively large value to properly cluster in regions with a high velocity. Doing so,

however, allows outliers (principally FEVT-marked FPs) to enter the cluster. The alternative

is to keep Δtmax small to keep outliers out of the cluster, but then points that should have

been included in the cluster are too often excluded. The newly introduced polynomial

surface estimation step integrated into the REGROUPS algorithm solves this problem.

A potential shortcoming of the REGROUPS algorithm is the method of seed selection. If the

spatial density of ATs is bimodal, with ATs marked commonly at either edge of the

electrode array, but only sparsely in the middle, then the seed will actually be chosen at a

position at which minimal information exists. We have not encountered this situation

physiologically. If necessary, future alternative methods would be to choose the seed

electrode where N(x, y) is a maximum, or to choose multiple seeds, one for each local

maximum in a (smoothed version of) N(x, y).

A potential shortcoming with the SIV scheme is that it may fail to recognize the boundary

between active and quiescent regions, causing it to over-zealously interpolate part of a true

quiescent zone into an AT map. The values for 3 and 4 adjacent neighbors for SIV stages 1

and 2, respectively, were tuned based on our trial-and-error comparisons with manually

generated AT maps. However, increasing these parameter values may lead to incomplete

interpolation because only 4–6 active sites typically border the interior of a blank region to

be filled in (e.g., see Suppl Fig. 1A, middle of array). This issue could be ameliorated by

disallowing interpolation across such a boundary in the direction a suspected quiescent

region.

Finally, while we have found the performance of the REGROUPS-SIV method to be robust

against variations in several parameters, it is always well advised to consider adjusting these

values accordingly to analyze a particular data set, if less than optimal performance is

initially achieved.

To date, all published HR maps of SW dysrhythmias have been from animal models with

stomachs exhibiting normal or organized abnormal behaviors.14,18 In the future, during the

course of studying the mechanisms of dysrhythmic activities in the human stomach, it may
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be found that the presented algorithms must be reviewed in light of new clinical evidence. If

dysrhythmic activities prove to be highly disorganized (i.e., SW propagation is not smooth),

as was recently shown in a study of HR mapping in the canine antrum,15 then cycle

partitioning may prove to be too complex a task for REGROUPS. In this case, alternative

visualization approaches may need to be considered—e.g., animated or “activation pattern

decomposition” maps of FEVT-detected events.20

The automated mapping pipeline presented here offers major efficiency gains, and we

anticipate that it will be widely applied in future GI HR mapping work. Indeed, the FEVT-

REGROUPS-SIV combination is already providing reliable analyses for intra-operative

human studies of gastric slow wave propagation, in our limited early experience to date.

Although the clinical application of HR mapping is limited by its invasiveness, some clinical

opportunities to apply it do exist, for example in gastroparesis patients undergoing routine

surgeries. In the future, it would be highly desirable to perform a comparative experiment,

whereby HR serosal and multichannel cutaneous electrogastrographic (EGG) recordings are

made simultaneously. Doing so would help clarify the relation between these two

measurement modalities, and allow for comparison of clinically relevant information

contained within them.2,4 We expect that the detailed information about SW propagation

gained with HR mapping will help further elucidate the underlying causes and symptoms of

normal vs. dysrhythmic gastric function, thus suggesting diagnostic strategies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
REGROUPS algorithm flow chart. Each iteration initializes a new cluster starting at the

master seed. The algorithm contains two critical decision points: (1) determining the method

for estimating the activation time (Test), and (2) whether the estimated AT at an adjacent site

is close enough to the marked (actual) AT. One cluster of (x, y, t) points represents one

partitioned cycle. See text for full description of algorithm
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Figure 2.
The second-order surface T(x, y) updating according to the points already in the cluster.

Filled circles represent points which, at the end of clustering, are clustered into the cycle;

unfilled diamonds represent points that were rejected during clustering (orphans). The

subpanels (top to bottom) show the second-order surface when clustering is approximately

1/4, 1/2, 3/4, and fully complete. Time is represented on the vertical axis (units of s). The (x,

y) coordinates represent the electrode site positions (units of mm)
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Figure 3.
Cycle partitioning results for Experiment 1: Normal aboral SW propagation. The electrode

array is placed on the greater curvature of the lower/distal corpus (a). The REGROUPS AT

maps (d) compare well with the corresponding manually generated maps (b), with slight

exception in cycle 5 near the top-right array, where the SIV scheme interpolated ATs. The

WM algorithm consistently failed to appropriately cluster the active proximal region near

the top of the array (e), leading to reduced spatial coverage in the AT maps (f)
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Figure 4.
Cycle partitioning results for Experiment 2: Patchy data quality and ectopic pacemaker. The

REGROUPS-derived AT maps (d) show a similar, but slightly larger, extent in spatial

coverage relative to the manual maps (b). The WM result (e and f) was comparable in terms

of spatial coverage to the manual AT maps for most cycles (1, 2, 4, and 5). WM clustering

for cycle 3 terminated prematurely leading to reduced coverage. Isochrones for most cycles

(1, 2, 3, and 5) are drawn inaccurately in the proximal and distal regions due to

misclustering
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Figure 5.
Cycle partitioning results for Experiment 3: Patchy data quality and ectopic pacemaker. AT

maps for all methods indicate the SW propagates radially outward from the pacemaker site.

The REGROUPS AT maps (d) exhibit a spatial extent of the SW similar to that indicated in

the manual AT maps (b), while WM clustering terminated prematurely (e), substantially

reducing the coverage (f)
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Figure 6.
Cycle partitioning results for Experiment 4: Competing pacemakers/colliding wavefronts.

The manual (b) and REGROUPS (d) maps demonstrate highly similar isochrone

orientations, with greater spatial coverage in the latter. WM maps (f) also generally show

colliding wavefronts. However, map accuracy is reduced due to misclustering (most

prominent in cycle 1, bottom and cycle 5, bottom-right), and early termination (d) (most

prominent in cycles 3–5)
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Figure 7.
Quantitative comparison of AT map spatial coverage and isochronal timing accuracy of the

REGROUPS and WM methods to manual outcomes. Data points show Sens., PPV, Aroc,

and CCS, computed for Δtmax = 5 s (see text for description of these quantities). Outcomes

for each of four experimental test case are represented in columns. Filled and unfilled

markers indicate the result for the REGROUPS and WM algorithms, respectively. Each

series of five points in Experiments (“Exp.”) 1–4 corresponds to each of five partitioned SW

cycles shown in Figs. 3, 4, 5, and 6, respectively. The REGROUPS method was observed to

achieve more accurate overall spatial coverage (Aroc) and more consistent timing accuracy

(CCS) than the WM method across almost all partitioned cycles
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Figure 8.
Dependence of spatial array coverage performance metric (Aroc) and isochronal contour

accuracy (CCS) on the parameter Δtmax. REGROUPS (solid markers) and WM (unfilled

markers) methods are compared to manual outcomes. Each data point with error bars

represents the mean ± SD of the performance metric computed across five partitioned cycles

for a particular value of Δtmax = 2–12 s, in increments of 1 s. In the bottom row, the dotted

red line marks the ideal CCS value of 1. In general, the REGROUPS outcome was observed

to be relatively insensitive to Δtmax. By contrast, the WM outcome was observed to be

sensitive to this parameter, often unable to achieve both satisfactory array coverage while

maintaining accurate isochronal timing accuracy
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