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Abstract

The physiological responses to TGF-β stimulation are diverse and vary amongst different cell

types and environmental conditions. Even though the principal molecular components of the

canonical and the noncanonical TGF-β signaling pathways have been largely identified, the

mechanism that underlies the well-established context dependent physiological responses remains

a mystery. Understanding how the components of TGF-β signaling function as a system and how

this system functions in the context of the global cellular regulatory network requires a more

quantitative and systematic approach. Here, we review the recent progress in understanding TGF-β

biology using integration of mathematical modeling and quantitative experimental analysis. These

studies reveal many interesting dynamics of TGF-β signaling and how cells quantitatively decode

variable doses of TGF-β stimulation.
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1. The basics of transforming growth factor-β signaling

TGF-β is the prototypical ligand of the TGF-β superfamily, which signal through receptor

serine/threonine kinases. The superfamily is subdivided into two branches: (1) the TGF-β/

Activin branch and (2) the Bone Morphogenetic Protein (BMP)/Growth and Differentiation

Factor (GDF) branch. Each branch is further divided into subgroups based on sequence

similarity [1]. The TGF-β/Activin branch includes TGF-β, Activin, Inhibin, Nodal, and

Lefty ligands. The BMP/GDF branch includes BMP, GDF, and Mullerian Inhibitory

Substance (MIS) ligands. This review will focus on the quantitative analyses of TGF-β

signaling, which is the most studied ligand in terms of basic signal transduction

mechanisms. There are also substantial quantitative studies of BMP signaling, especially in
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the context of morphogen gradient formation and interpretation, which have been covered in

several excellent reviews [2-5].

TGF-β is expressed in most cell types and is translated into a proprotein that is

proteolytically cleaved into a noncovalently linked mature TGF-β and latency-associated

protein (LAP) [6,7]. The active TGF-β ligand is a 25 kDa dimer, covalently linked by a

disulfide bond between cysteine residues from each monomeric peptide. When bound to

LAP, TGF-β cannot bind to its receptors, resulting in a ligand that lacks bioavailability. Its

bioavailability is further restricted by binding to another protein called Latent TGF-β

Binding Protein (LTBP). The LAP-TGF-β complex is bound by LTBP during the secretion

process [6]. LTBP binds the extracellular matrix and sequesters LAP-TGF-β in vivo [6].

Various proteases cleave LAP and LTBP to liberate the bioactive TGF-β [8]. Bioactive

TGF-β can bind various non-receptor cell surface proteins such as decorin, biglycan, and

betaglycan, which also serve to regulate its bioavailability, most likely through the

enrichment of TGF-β at the plasma membrane [6,7]. Therefore, multiple mechanisms serve

to regulate the bioavailability of TGF-β in vivo.

Once bioavailable TGF-β reaches the surface of the target cell, it binds a homodimer of

TGF-β type II receptors (TβRII) [1]. The TGF-β-TβRII complex provides a structural

interface that facilitates stable complex formation with a homodimer of the TGF-β type I

receptor (TβRI) [8]. Therefore, the active ligand-receptor complex is a heterotetrameric

complex consisting of a dimer of TGF-β and homodimers of both TβRII and TβRI. Within

the active receptor complex, the TβRII, which is a constitutively active kinase, undergoes

autophosphorylation, as well as catalyzes transphosphorylation of the TβRI [8].

Transphosphorylation of the TβRI activates kinase activity. In the TGF-β pathway, Smad2

and Smad3 are receptor-regulated effector proteins (R-Smads), which are phosphorylated by

the activated TβRI at a C-terminal SSXS motif, resulting in R-Smad nuclear accumulation

[8].

TGF-β signaling amplitude and duration can be regulated through the control of receptor

trafficking. The ligand bound activated receptor complex is internalized via endoytosis [9].

Internalization of cell surface receptors can occur through either clathrin-mediated or

caveolae-mediated endocytosis [10]. Through the clathrin pathway, activated ligand-

receptor complexes are brought into early endosomes which are enriched with scaffold

proteins such as SARA and Hrs [9]. The proximity of the activated receptor complex and

scaffold proteins enhances the phosphorylation of Smad2/3 and their affinity towards

Smad4, ultimately activating the nuclear accumulation of Smad4 (also known as the co-

Smad) [11]. Therefore, clathrin-mediated endocytosis may promote TGF-β signaling by

providing a platform for R-Smad phosphorylation and the formation of active Smad

signaling complexes. Ligand-bound receptor complexes in the early endosomes are further

sorted to late endosomes, where TGF-β and the receptors are separated. Some of the

unbound receptors can be recycled to the plasma membrane, while others are degraded,

along with TGF-β, upon fusion with the lysosomes [10]. Since TGF-β is not recycled,

internalization of TGF-β by endocytosis is the primary means of removing active TGF-β

from the cell surface, and lysosomal degradation is the primary means of termination of

TGF-β signaling [12,13].
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Activation of TGF-β receptors initiates both Smad-dependent and Smad-independent

signaling events [14-16]. Since the majority of the quantitative studies of TGF-β signaling

have focused on Smad-dependent events, we will focus our discussion on the dynamics of

the canonical pathway (Smad-dependent). In unstimulated cells, Smads constitutively shuttle

between the cytoplasm and nucleus. Upon ligand stimulation, the Smads accumulate in the

nucleus as the R-Smad/Co-Smad complex formation, which leads to a decrease in their

nuclear export rate [17-19]. The Smad complex binds DNA in conjunction with other

transcription factors and interacts with the general transcription machinery to regulate the

expression of approximately 100-300 target genes [11]. Phosphatase(s) such as PPM1A can

deactivate phospho-R-Smads, resulting in the disassembly of the Smad complex and

providing a means for negative regulation of TGF-β signaling in the nucleus [18]. Therefore,

the intracellular Smad signaling module is a dynamic circuit for ligand sensing.

2. Mathematical modeling of the TGF-β signaling pathway

Conventional cell signaling studies have largely focused on understanding the identity and

the functions of the individual parts of each pathway. It is now realized that cell behaviors

are not only shaped by the identity of the individual system components, but also by the

weighted interactions of components that act together as a system. The systems biology

approach using mathematical models has been proven as a powerful tool in studying such

complex networks [20]. Mathematical modeling is helpful in predicting emergent cell

behaviors and uncovering how the dynamic interactions of signal transducers lead to context

dependent cellular responses [21]. Several mathematical models have been established for

the canonical TGF-β/Smad signaling [13,17,22-29]. These mathematical models provide

quantitative analyses of TGF-β signaling dynamics, leading to a better understanding of the

role of feedbacks in regulating TGF-β signaling responses.

The most common way to describe TGF-β signaling dynamics is through a set of

deterministic ordinary differential equations (ODEs), assuming the signaling molecules are

well-mixed or homogenous in each compartment [20]. The ODEs represent the change of

each signaling molecule over time. In order to perform model simulations and predictions, it

is necessary to know the values for two types of model parameters: the initial conditions of

the pathway that correspond to the concentrations of the signaling molecules at time 0

(before TGF-β stimulation) and the rate constants that characterizes the signaling reactions.

The principal molecular components of TGF-β signaling have been identified, yet relatively

little is known about the quantitative values of particular components' abundance and rate

constants. The lack of experimental data on initial conditions and rate constants is currently

one of the bottlenecks for developing high-quality predictive mathematical models for

signaling networks.

Different approaches have been applied to estimate the model parameters. The initial

conditions of the signaling network can be determined by the absolute abundance of the

signaling proteins and the volume of the signaling compartment. It is possible to estimate the

absolute abundance of a signaling protein when the recombinant protein is available. For

example, the absolute abundance of Smad2 protein per cell can be quantified by

immunoblotting with a standard curve of recombinant tagged-Smad2 protein [30]. Cell
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volume is sometimes roughly estimated from cell diameter or it can be measured more

accurately by confocal microscopy [31]. On the other hand, direct measurement of the rate

constants for different signaling reactions is still experimentally challenging. In order to

estimate the unknown model parameters, optimization algorithms are applied to find the

most feasible parameters that make model simulations fit the experimental datasets as close

as possible [32,33]. During the past few years, some quantitative data has been

experimentally measured for the TGF-β signaling pathway, aiding the modeling efforts for

this network [10,13,19,25]. Figure 1 summarizes our current knowledge about the model

parameters for the canonical TGF-β/Smad signaling network.

3. Quantitative analysis of signaling responses to different TGF-β

stimulations

The cellular responses to TGF-β superfamily ligands depend on the quantity to which the

cells are exposed. In development, TGF-β superfamily members form morphogen gradients

to determine the fates of cells [2]. Cells read the TGF-β concentration with high precision, as

they can distinguish subtle differences in the concentration gradients and orchestrate

different cell fates [34]. One of the best examples is the responses of embryonic Xenopus

cells to activin, in which five distinct cell responses or fates are observed by varying activin

doses [34]. However, the mechanism by which cells are able to accurately decode the

concentration of bioavailable TGF-β and elicit a corresponding cellular response remains

largely unknown.

3.1 The Smad signaling response correlates with TGF-β molecules per cell rather than the
concentration of TGF-β

An early study with mathematical models has shown that cell density affects signaling

dynamics in response to the same concentration of ligand [35]. Through modeling analyses

of receptor trafficking networks, Zi et al. showed that with the same concentration of ligand

stimulation, cells have distinct signaling durations that depend upon cell density, where

signaling persists longer when cell density is decreased [35]. Additionally, the model

analyses indicate that the dose–response curve of signaling is shifted to the right as the cell

density is increased, suggesting that increasing cell density allows for insensitivity to lower

doses of ligand. Thus, the key parameter for successful experimental design cannot be

“concentration of ligand”, but rather must be “molecules of ligand per cell”, which takes

into account the number of cells in the experiment. Further model simulations indicate that

signaling responses are regulated by the ratio of ligand to cell surface receptor number [35].

In cell culture experiments, individual cells are likely to express different amounts of

receptors at cell surface. Thus, when all cells are exposed to the same amount of ligand, the

ratio of ligand to cell surface receptor number in each cell will be different, which might

cause heterogeneous signaling responses at single cell level.

To provide additional evidence that cellular responses to ligand occur in terms of “molecules

per cell” rather than by the concentration of the ligand, Clarke et al. investigated how cells

transduce TGF-β doses into variable kinetic profiles of Smad2 phosphorylation at C-

terminal SSXS motif (P-Smad2) by quantitative experimental assays [12]. Clarke et al.
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measured P-Smad2 levels in a two-level factorial experiment by varying four experimental

parameters (TGF-β concentration, cell number at seeding, plate type, and medium volume).

When the P-Smad2 data is plotted versus TGF-β concentration, large variations are observed

for the same TGF-β concentration among different experimental setups. In contrast, the

variation of P-Smad2 levels is significantly reduced if these levels are plotted versus the

number of TGF-β molecules per cell. This result implies that the ligand dose expressed as

TGF-β molecules per cell is a better predictor of P-Smad2 levels, which is in agreement with

early modeling studies about the impact of cell density on signaling response.

Ligand depletion in the TGF-β network provides additional complexity and increases the

difficulty of predicting the time dependent signaling responses. For example, the number of

TGF-β molecules per cell in the media changes substantially with time because the cells

deplete TGF-β from the surrounding medium. It was shown that TβRII defective, but not

TβRI defective, cell lines lost their ability to deplete TGF-β from the medium [12]. Thus,

TβRII helps to shape the Smad signal amplitude and duration by constitutively depleting

extracellular TGF-β. TGF-β depletion most likely occurs through TβRII-mediated

endocytosis. However, direct evidence that supports this notion remains to be presented in

the literature. In this aspect, TGF-β degradation shares many similarities to EGF or TGF-α

[36,37] in that ligand-induced endocytosis does not merely serve as a mechanism for “down-

regulation” of signaling, but also provides a mechanism whereby the receptor can

continuously track the changes in the secretion of TGF-β by nearby cells. It should be noted

that most studies of TGF-β signaling assume that TGF-β concentration in the medium is

sufficient to describe the input variable (potency of ligand). Consequently, most modeling

studies have assumed a constant level of TGF-β during signaling over time. However, in cell

based experiments TGF-β concentration in the medium changes substantially with time,

especially for low doses of TGF-β. Therefore, the assumption that TGF-β concentration is

constant in medium might be appropriate for high doses of TGF-β, but it is invalid for low

doses of TGF-β.

3.2 TGF-β dose-responses are time dependent

Earlier experimental and modeling analyses showed that Smad signal amplitude is gradually

increased with the increments of TGF-β doses [23,24,38]. This leads to an important

question about how cells convert continuous TGF-β doses into discrete or binary cellular

fate decisions. Since most of modeling studies in the TGF-β field do not account for the

TGF-β input variable by assuming constant TGF-β concentration in medium, this omission

often results in unreliable predictions of Smad signaling kinetics in response to variable

doses of TGF-β stimulation [13]. Recently, we developed an improved mathematical model

to describe the dynamics of Smad signaling in response to TGF-β [13]. The model was

composed of TGF-β receptor trafficking, Smad phosphorylation and Smad

nucleocytoplasmic shuttling. More importantly, it took into account the dynamics of TGF-β

depletion. Model parameters were estimated by fitting to several time course datasets, which

include variables of TGF-β depletion in the medium, Smad2 nuclear localization and P-

Smad2 dynamics. The model was further tested for its ability to predict the P-Smad2

signaling upon pulsation of TGF-β stimulations. With this data-calibrated model, novel

predictions were made through model simulations. It was shown that TGF-β signaling
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responses display different sensitivities to ligand doses at different time scales [13]. In this

study, modeling simulations and experimental results show that while short-term P-Smad2 is

graded, long-term P-Smad2 response is switch-like to changes in TGF-β doses (Figure 2). In

the short-term graded response, P-Smad2 signal gradually increases with the increment of

TGF-β dose. In the long-term switch-like response, a small change of TGF-β dose within a

certain range results in a large change in P-Smad2 response. Furthermore, a switch-like

response is observed for TGF-β induced long-term gene expression and growth inhibitory

responses. Additional model perturbation experiments predicted that the long-term

switchlike P-Smad2 response is mainly affected by the parameters related to the ligand

depletion. This prediction was experimentally confirmed [13].

3.3 The TGF-β pathway is insensitive to high frequency noise

While extensive studies have focused on signaling responses to continuous TGF-β

stimulations, little is known about how cells respond to short pulses of TGF-β stimulations.

Taking advantage of model simulations, Zi et al. have shown that short-term TGF-β pulse

stimulation results in transient P-Smad2, whereas serial pulses result in sustained P-Smad2,

similar to that seen with continuous stimulation [13]. To generate a sustained response, the

gap between repeated pulse stimulation is ∼30 min. This result suggests that with a strong

TGF-β stimulation, the pre-bound receptors are capable of sustaining the signaling response

for half of an hour and tiding it to the next stimulus. Incidentally, this optimal gap period is

approximately the time to reach maximum Smad2 phosphorylation and nuclear

accumulation of Smad2 after TGF-β stimulation [13]. Therefore, there is a time-delay in the

TGF-β signaling system, which may be attributed to ligand-bound receptor endocytosis or

Smad nucleocytoplasmic shuttling dynamics. Because of this built-in time-delay, the TGF-β

signaling system can filter high frequency changes (short time pulsations) in ligand

stimulations. Thus, combining mathematical modeling with guided experiments enables new

discoveries in systems properties of TGF-β signaling that would have been difficult to reveal

using the traditional biochemical approaches alone. The functional significance of pulses of

TGF-β has yet to be shown in vivo, but is theoretically occurring within tissues, where the

extracellular volume and local secretion of TGF-β is extremely small in magnitude, resulting

in a largely noisy extracellular level of TGF-β. Such noise would then be dampened by the

delayed TGF-β response that has been observed in cell culture models.

4. Quantitative analysis of transient and sustained signaling responses

The duration of signaling responses can be critical for alerting cell fate decisions in response

to growth factor. Previous work with PC12 cells showed that epidermal growth factor (EGF)

induces transient activation of extracellular signal-regulated kinase (ERK) and results in cell

proliferation, while sustained ERK activation triggered by nerve growth factor (NGF) leads

to cell differentiation [39,40]. Although some of these effects could be due to non-ERK

dependent responses to the different ligands, these experiments propose an interesting

notion, where the duration of ligand stimulation can determine the prevailing cellular

response.

In the case of the TGF-β signaling network, the duration of Smad signaling response seems

to be context dependent. Experimental studies have shown that keratinocyte epithelial cells
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have sustained phospho-Smad responses to TGF-β, while some fibroblast and tumor cells

display transient Smad activation [41,42]. It was hypothesized that sustained TGF-β

signaling may be required for growth inhibition, while transient signaling may cause the

resistance to anti-proliferative effects of TGF-β in certain tumor cells [41]. However, the

exact mechanism underlying the variation of Smad signal duration in different cell types

remains to be elucidated. Here we summarize the time dependent changes in the cellular

responses to TGF-β.

4.1 Sequestration of TGF-β receptors by endocytosis

TGF-β signaling is initiated by the binding of TGF-β to TβRI and TβRII. The activation of

the ligand-receptor complex is a relatively fast step in the TGF-β signal transduction

pathway. An early study from Wrana et al. shows that the phosphorylation of TβRI in the

receptor complex peaks at about 2 minutes after TGF-β stimulation [43]. The signal is

relayed to the activation of Smad proteins, which arrive at their maximal levels in about

30-60 minutes. The time delay between ligand receptor complex and R-Smad activation may

due to intermediate processes, including receptor endocytosis, the recruitment of Smads to

receptor complex and Smad activation. After 30-60 minutes, the phosphorylation of Smads

correlates with the degree of TGF-β-receptor complex level, which might be due continuous

nucleocytoplasmic shuttling of the Smads, but this shuttling fails to explain why there is a

prominent delay following receptor activation and prior to Smad phosphorylation [25,44].

Although it has been shown that two main types of endocytosis mediate the internalization

of TGF-β receptors, clathrin-dependent and clathrin-independent [9,45], different lines of

experimental evidence display discrepancies in the requirement of receptor internalization

for Smad phosphorylation. Using potassium depletion, which interferes with clathrin-

dependent internalization of receptors, P-Smad2 levels are reduced in Mv1Lu cells [10,46].

On the other hand, potassium depletion or mutant dynamin (K44A) in L17-TβRI cells

reveals that receptor trafficking is entirely dispensable for TGF-β signaling to occur [9,47].

Even though there is little debate about whether the TGF-β receptors undergo endocytosis,

the precise role of receptor endocytosis in signaling remains controversial [9]. Several lines

of evidence support a positive role of endocytosis on R-Smad phosphorylation

[10,46,48,49], while there are several reports describing Smad activation immediately at the

cell surface without need of receptor endocytosis [47,50,51]. The disagreement among these

studies could be attributed to different cell types and experimental systems. Despite the

variable effects of receptor endocytosis on Smad phosphorylation, activation of non-Smad

signaling pathways by TGF-β appears to require receptor internalization [51,52].

To understand the role of receptor endocytosis on TGF-β signaling, mathematical models

were established by focusing on TGF-β receptor endocytosis. Vilar et al. developed a

concise model for TGF-β receptor trafficking and the ligand-receptor interactions. This

model predicts that the duration of signaling activity is determined by the ratio of the

constitutive to the ligand-induced degradation rate of the receptors, termed the “constitutive-

to-induced degradation ratio” (CIR). Model analyses suggest that signal activity is transient

with a low CIR, while sustained signal response is observed with a high CIR. The model has

some assumptions including: (1) TGF-β signaling activity is proportional to the level of
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ligand-receptor complexes in the internalized endosomes, and (2) Ligand-receptor

complexes between type I and type II receptors have the same constitutive degradation rate.

In addition, the model lumps the processes including non-clathrin dependent internalization,

recycling and the degradation of the receptors into one reaction as “the ligand-induced

receptor degradation from plasma membrane”. Thus, CIR defined in Vilar's model is not

directly determined by the ratio of the reaction rate constants for constitutive and ligand-

induced degradations. Instead, it refers to the balance of the overall effect of the combined

processes of the two branches of receptor degradation machinery.

Subsequently, a mathematical model developed by Zi and Klipp includes two major types of

TGF-β receptor endocytosis, Smad activation and Smad nuclearcytolasmic shuttling [29].

Similar as Vilar's model, the extended model assumes that Smad activation is proportional to

the ligand-receptor complex in early endosomes. The model simulations using different sets

of parameter values suggest that Smad activation is regulated by the balance between

clathrin dependent endocytosis (kiEE) and caveolar/lipid-raft mediated (clathrin-

independent) endocytosis (kiCave). If clathrin-dependent internalization is dominant (kiEE ≫

kiCave), Smad activation becomes a sustained response. On the other hand, if clathrin-

independent endocytosis is overwhelming (kiCave ≫ kiEE), Smad activation displays a

transient response. Interestingly, the simulation results suggest that changing the balance

between the two branches of endocytosis has relatively little effect on the early Smad signal,

and has larger effect in reshaping long term Smad activity. This hypothesis might explain

the variations among experimental observations about the impact of inhibiting TGF-β

receptor endocytosis on TGF-β signaling responses, where the different model systems may

have different ratio of clathrin-dependent to clathrin-independent endocytosis. Thus, in a cell

line with similar rates of clathrin-dependent and clathrin-independent endocysis, an

inhibition of clathrin-dependent will make clathrin-independent endocysis (ligand-induced

receptor degradation) dominant and result in a reduction in Smad activity. In other cell

types, if the clathrin-dependent endocytosis is overwhelmed by clathrin-independent

endocytosis, inhibiting clathrin-dependent internalization will not shift the balance between

these two endocytosis branches and should result in little effect on the perturbation of

signaling responses. Moreover, the inhibitors of endocytosis used in previous experimental

studies may not be very specific and could have some off target effects. In the future, a

systems biology approach can be useful to clarify this issue by combining mathematical

models with quantitative experimental data of receptors and Smad kinetics.

4.2 Quantitative analysis of the dynamics of Smad nuclear import and export

A prominent feature of TGF-β signaling is the continuous shuttling of Smads in and out the

nucleus, in both treated and untreated cells [44,53]. Ligand-induced nuclear accumulation of

R-Smad and Co-Smad is relatively slow and peaks at ∼45 min after TGF-β exposure.

Ligand-induced Smad shuttling dynamics is considered to be a prevailing mechanism for

Smads to continuously monitor receptor activity [44,53]. Different mechanisms have been

invoked to account for Smad nucleocytoplasmic shuttling dynamics. Mathematical modeling

analysis has been instrumental in differentiating various hypotheses [18]. Clarke et al. [17]

was the first to publish a kinetic model of Smad signaling dynamics. The simple kinetic

model includes R-Smad phosphorylation/dephosphorylaton, heterodimerization with Smad4,
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and nucleocytoplasmic shuttling steps. Analyzing the existing data with this model led to

several novel hypotheses for Smad nuclear accumulation during TGF-β signaling. Through

parameter sensitivity analysis, Clarke et al. posited that (1) the balance between the rates of

R-Smad phosphorylation in the cytoplasm and phospho-R-Smad dephosphorylation in the

nucleus determines Smad nuclear accumulation. (2) Smad homo- or hetero-oligomerization

could protect the phospho-R-Smads from rapid dephosphorylation and therefore promote

Smad nuclear accumulation. (3) Nuclear retention factors alone are insufficient for induction

of Smad nuclear accumulation. Schmierer et al. investigated the relationship between

receptor activation and Smad shuttling dynamics using a combined mathematical modeling

and systematic experiment approach [25]. Two competing models were developed based on

different assumptions of the Smad import mechanism. The retention/enhanced complex

import (RECI) model assumes Smad complexes to be imported at a faster rate than the

monomeric species, while the retention only (RO) model sets identical import rates for both

Smad complexes and monomeric species but only allows nuclear retention of complexes.

The two competing models were simultaneously fit to four sets of kinetic empirical data.

The result of comparative analysis shows that RECl is clearly a more accurate model.

Moreover, the RECl model also shows excellent agreement with fluorescence recovery after

photobleaching (FRAP) data of GFP-Smad2 that were not used to construct the model. The

FRAP experiment was used to infer the shuttling of GFP-Smad2 between nucleus and

cytoplasmic compartments. Therefore, quantitative analysis of Smad shuttling led to the

notion that the Smad complex must have a faster nuclear import rate and that the

phosphatase(s) that deactivate R-Smads likely resides in the nucleus. A novel insight that

comes out of the modeling analysis is that time-delayed coupling between receptor activity

and Smad nuclear accumulation could function as a low-pass filter to dampen the noise in

receptor activity [25,54].

4.3 Negative feedbacks in TGF-β signaling

Negative feedback in a signal transduction cascade is one of the major mechanisms for

desensitization of sustained ligand stimulation and generation of transient, sometimes

oscillating signaling outputs [55]. Even though transient or oscillatory responses associated

with sustained TGF-β exposure are not ubiquitous, potential negative feedback motifs have

been identified. The most well characterized example is Smad7, a TGF-β-inducible early

response gene [56,57]. Smad7 antagonizes TGF-β signaling through multiple mechanisms,

both in the cytosol and the nucleus. Since Smad7 can bind the TGF-β receptors, but lacks the

SXSS motif commonly found in R-Smads, it has been proposed that Smad7 is likely to be a

pseudo substrate and a competitive inhibitor of R-Smads [56,57]. Owing to its ability to

form stable complexes with the TGF-β receptors, PP1 phosphatase [58], or the

ubiquitination E3 ligase Smurf1 and Smurf2 [59], Smad7 serves as an adapter to mediate

inactivation of TGF-β receptors through dephosphorylation or ubiquitin-proteasomal

degradation. Besides targeting receptors for inactivation, Smad7 also appears to be involved

in repressing TGF-β-dependent transcription through either the disruption of R-Smad/Co-

Smad/DNA complexes or the recruitment of histone deacetylases [60]. Regardless of the

exact biochemical mechanisms of Smad7, the induction of Smad7 by TGF-β and its function

as an antagonist for TGF-β signaling are very compelling. A key question is, “what is the

strength of this feedback and to what degree does it impact TGF-β signal transduction.”
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Melke at al. analyzed a more comprehensive model of TGF-β/Smad signaling in endothelial

cells that included canonical Smad signaling. They found that negative feedback through

Smad7 was important for terminating signaling and for conferring global robustness to the

TGF-β pathway [24].

TMEPAI is another antagonist of TGF-β signaling and is transcriptionally induced by ligand

exposure [61]. TMEPAI possesses both transmembrane and Smad interacting domain

(SIM). The inhibition of TGF-β signaling can be attributed to sequestration of both

unphosphorylation and phosphorylated R-Smads from interacting with the receptors or

Smad4 [61]. While inhibition of TGF-β signaling by Smad7 and TMEPAI predominantly

occurs in the early step of signaling propagation, the negative feedback loop that involves

SnoN appears to target the downstream signaling cascade at the chromatin level. SnoN and

its relative Ski are both transcriptional co-repressors of the Smad signaling complex [62,63].

In the early phase of TGF-β stimulation, SnoN is destabilized by association with activated

R-Smads and ubiquitin E3 ligases such as Arkadia [64-67]. Degradation of SnoN/Ski

unleashes the full activity of the Smad complex, resulting in the transcriptional activation of

target genes. SnoN is one of the TGF-β inducible genes and the elevated SnoN restrains the

activity of Smad complexes [64]. Therefore, there are at least three negative feedback loops

associated with TGF-β signaling. All of these are initiated by transcriptional induction of the

antagonist, although spatial and temporal variations exist among them.

4.4 Are there oscillations in TGF-β signaling responses?

Oscillations of signaling responses have been observed in some pathways with negative

feedbacks, for example, NF-κB, p53 and Erk systems [37,68,69]. Modeling analyses have

shown that biochemical oscillations can occur if four general requirements are satisfied:

negative feedback, time delay, nonlinearity of the reaction kinetics, and tightly controlled

timescales of opposing chemical reactions [70]. Since different negative feedbacks have

been proposed for regulating TGF-β signaling [71], theoretically, it is possible to generate

oscillating responses in the TGF-β network. Recent modeling analyses by extensive

sampling of parameter space show that oscillating Smad signaling can appear by fine-tuning

only a few parameters related to negative feedback (e.g. Smad7) [22,28]. However, it is still

an open question about whether there are oscillations in TGF-β network because no

oscillations of TGF-β signaling have yet been observed in cells. One reason could be that the

negative feedback regulations of TGF-β network may not be strong enough at the

endogenous level. Moreover, the time-delay between negative feedback and Smad activation

might not be coupled in a proper time scale at in vivo conditions. Last but not least, cell

signaling often results in heterogeneous responses within single cells. Averaging signaling

dynamics at cell population levels can mask dynamic signaling mechanisms within

individual cells [72]. Oscillation responses may appear upon investigation at the single cell

level in a variety of cell lines and culture conditions.

4.5 Modeling cell context specific TGF-β signaling

It has been long recognized that the cellular responses triggered by TGF-β are often cell type

specific and stimulation specific [73]. For example, TGF-β is a potent inhibitor of normal

epithelial cell proliferation but acts to stimulate fibroblast growth [73]. Even in the same cell

Zi et al. Page 10

FEBS Lett. Author manuscript; available in PMC 2014 August 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



type, TGF-β can produce opposite proliferation effects depending on the presence of other

growth factors. In the presence of PDGF, TGF-β stimulates growth of Myc-1 cells, and in

the presence of EGF, TGF-β inhibits growth of the exact same cells [73]. The exact

molecular mechanisms underlying these contradictory cellular responses remain largely

elusive. One possible explanation to account for these observations is that the pathways

activated by TGF-β vary among different cell types and are restrained by crosstalk with

other signaling pathways. Even though TGF-β signals through Smad2 and Smad3 in most

cell types through ALK-5, in endothelial and hepatic stellate cells TGF-β induces

phosphorylation of both Smad1/5 and Smad2 via ALK-1 and ALK-5, respectively

[24,38,74]. Based on this evidence, Melke et al. developed a mathematical model for the

TGF-β pathway in endothelial cells, taking parallel activation of ALK1 and ALK5 into

consideration. Their model recapitulates the kinetics of the experimental data and correctly

predicts the behavior in experiments where the system is perturbed [24]. This study

highlights a need to develop mathematical modeling tailored to a specific biological context

in order to understand the multifunctional nature of TGF-β signaling.

5. Outlook and concluding remarks

TGF-β signaling is spatiotemporally regulated in at least three compartments (extracellular,

cytosol and nucleus). Quantitative analysis of the TGF-β signaling pathway is still very

much in its infancy. At present, modeling efforts have been focused on the canonical TGF-β

signaling cascade. As TGF-β signals through both canonical and noncanonical pathways, it

is imperative to develop mathematical models that comprise both pathways in order to

accurately predict overall TGF-β signaling. Since the noncanonical pathway is often cell

type dependent and operates in the context of other signaling networks, it will be a major

challenge to develop such models. Another challenge is to understand the quantitative

coupling between Smad signaling kinetics and gene expression profiles. Most of the

mathematical models developed so far assume that the dynamics of Smad2 and Smad3

phosphorylation is similar and indistinguishable. However, the biological functions of

Smad2 and Smad3 are clearly different, based on mouse knockout studies and DNA

microarray analysis [75,76]. The abundance of Smad2 and Smad3 varies significantly in

different cell types and the ratio of Smad2 and Smad3 influences the resulting cellular

responses to TGF-β stimulation [17,77]. Future modeling efforts need to consider how to

model the R-Smads separately. Finally, given the emerging role of TGF-β type III receptor

in modulating TGF-β signaling [78], it would be interesting to quantitatively assess their

contributions to the signaling dynamics. As more quantitative TGF-β signaling data becomes

readily accessible, we anticipate that the innovative systems biology approach to study TGF-

β/Smad signaling will fundamentally advance our knowledge in this major signaling

network.
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TGF-β Transforming Growth Factor-β

TβRI TGF-β type I receptors

TβRII TGF-β type II receptors

BMP Bone Morphogenetic Protein

GDF Growth and Differentiation Factor

ODEs Ordinary Differential Equations

P-Smad2 Smad2 phosphorylation at C-terminal SSXS motif
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Figure 1.
Scheme of the compartmentalized TGF-β model. The kinetic parameter information is

approximately estimated according to the experimental data from different cell types. The

nuclear export rate constants of Smads are scaled with the ratio of cytoplasmic to nuclear

volume size. It is necessary to calibrate these parameter values with quantitative data sets for

modeling of TGF-β signaling responses in a specific cell type.
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Figure 2.
Model simulations for the time-course profile of P-Smad2 dose-response in HaCaT cells.

Cells have distinct interpretations to TGF-β doses at different time scales. The early P-

Smad2 signal (e.g. before 2 hour) displays a graded response to different doses of TGF-β,

while the late P-Smad2 response (e.g. at 24 hour) is switch-like. The long-term ultrasensitive

signaling response is critical for cellular fate decisions, for example, cell growth arrest.
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