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Abstract

Shape regression is emerging as an important tool for the statistical analysis of time dependent

shapes. In this paper, we develop a new generative model which describes shape change over

time, by extending simple linear regression to the space of shapes represented as currents in the

large deformation diffeomorphic metric mapping (LDDMM) framework. By analogy with linear

regression, we estimate a baseline shape (intercept) and initial momenta (slope) which fully

parameterize the geodesic shape evolution. This is in contrast to previous shape regression

methods which assume the baseline shape is fixed. We further leverage a control point

formulation, which provides a discrete and low dimensional parameterization of large

diffeomorphic transformations. This flexible system decouples the parameterization of

deformations from the specific shape representation, allowing the user to define the dimensionality

of the deformation parameters. We present an optimization scheme that estimates the baseline

shape, location of the control points, and initial momenta simultaneously via a single gradient

descent algorithm. Finally, we demonstrate our proposed method on synthetic data as well as real

anatomical shape complexes.

1 Introduction

Shape regression is of crucial importance for statistical shape analysis. It is useful to find

correlations between shape configuration and a continuous scalar parameter such as age,

disease progression, drug delivery, or cognitive scores. When only few follow-up

observations are available, regression is also a necessary tool to interpolate between data

points and provide a scenario of continuous shape evolution over the parameter range [5,13].

Longitudinal studies also require to compare such regressions across different subjects

[5,8,10,11].

Extending traditional scalar regression for shape is not straightforward as shape intrinsically

live on a Riemannian manifold. Therefore, methods differ according to the choice of metric

on the shape space and the corresponding regression function. In [5], a piecewise geodesic

method has been proposed, which extends piecewise linear regression for shape time-series.

In [7,16] second-order models have been proposed which are controlled by the acceleration

of shape changes or the deviation from geodesic paths. Non-parametric regression has been

proposed in [3], extending kernel regression to Riemannian manifolds. In [9] geodesic

regression is proposed as a straightforward extension of linear regression on Riemannian

manifolds. Geodesic regression is fully characterized by the baseline shape (the intercept)

and the tangent vector defining the geodesic at the baseline shape (the slope). Therefore, it
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seems well adapted for longitudinal studies, since different regressions could be compared

by transporting baseline and tangent vectors from subject to subject, using parallel transport

for instance [12].

Methods in [5,7,14] are based on the large deformation diffeomorphic metric mapping

(LDDMM) paradigm, which is well suited for regression purposes since it is built on a

continuous flow of diffeomorphisms that model continuous shape changes over a time

period. In [14], geodesic regression is proposed in the LDDMM framework for image data.

Extending it for geometric data such as curves and surfaces is challenging for at least two

reasons.

First, images seen as measures on ℝ3 inherit from a linear structure which eases the

estimation of the baseline image (images could be averaged by averaging grey levels for

instance). Curves or surfaces could be also embedded into a vector space if we assume point

correspondences between shapes [2]. Alternatively, we can avoid explicit correspondence by

embedding shapes into the space of currents, which defines a generic metric which can

handle both surfaces and curves or any mix of them. However, the average of surfaces in the

space of currents is usually not a surface anymore [5]. To overcome this limitation, we will

use here the new formulation initiated in [6], which allows to optimize a given template in

the space of currents, while preserving its topology.

Second, the parameterization of the deformations in the LDDMM setting is given by a scalar

momenta map (which plays the role of the tangent vector defining the geodesic path), which

has the same dimension as the images. For point data, the parameterization is given by one

momentum vector at every point of the baseline shape. The dimension of this

parameterization explodes when shape complexes are analyzed. To overcome this limitation,

we will use the control point formulation in the LDDMM setting that has been introduced in

[4]. Consequently, our geodesic model characterizes complex evolution with a small number

of parameters (defined by the user), compared to [5,7] which require vectors at every shape

point and every time point in the discretization.

2 Methods

2.1 Shape regression

In shape regression, the goal is to estimate a continuous shape evolution from a discrete set

of observed shapes Oti at time ti within the time interval [t0, T]. Here we consider shape to

be generic geometric objects that can be represented as curves, landmark points, or surfaces

in 2D or 3D. Shape evolution is modeled as the geodesic flow of diffeomorphisms acting on

a baseline shape X0, defined as X(t) = ϕt(X0) with t varying continuously within the time

interval determined by the observed data. The baseline shape X0 is continuously deformed

over time to match the observation data (X(ti) ~ Oti) with the rigidity of the evolution

controlled by a regularity term. This setting is naturally expressed as a variational problem,

described by the regression criterion
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(1)

where D represents the squared distance on currents ( ) and L is a measure of the

regularity of the time-varying deformation ϕt.

2.2 Control point parameterization of deformations

We adopt a discrete parameterization of deformations, where dense diffeomorphisms of the

underlying space are built by interpolating momenta located at control points [4]. Let c0 =

{c1, …, cNc} be a finite set of control points which carry initial momenta vectors α0 = {α1,

…αNc}, together referred to as the initial state of the system S0 = {c0, α0}.

The set of control point positions c0 and initial momenta α0 serve as initial conditions for the

geodesic equations, which define the time evolution of the system of control points and

momenta, given by

(2)

where K is the interpolating kernel assumed (without loss of generality) to be Gaussian: K(x,

y) = exp(−|x−y|2)/σ2). These equations describe the evolution of the state of the system S(t) =

{ci(t), αi(t)} and can be written in short as Ṡ(t) = FS(t)

Thanks to the geodesic equations, the trajectories of control points ci(t) and αi(t) now

parameterize the time-varying velocity field v(x, t) defined at any point in space x and time t

as

(3)

which can be written in short as ẋ(t) = G(x(t), S(t)).

The time-varying velocity field v(x, t) can then be used to build the flow of deformations

ϕt(x) in the spirit of the LDDMM framework by integrating the ODE: ϕ̇t(x) = v(ϕt(x), t).

Using the coordinates of the baseline shape X0 as initial conditions, integrating this ODE

computes the deformation of the baseline shape from time t0 to T. Therefore the flow of

diffeomorphisms is fully determined by the initial state of the system S0: the set of initial

control points c0 and initial momenta vectors α0.
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2.3 Minimization of regression criterion

The geodesic flow of diffeomorphisms ϕt in the criterion (1) is parameterized by Nc control

points and momenta vectors S0 = {c0, α0}, which act as initial conditions for the flow

equations (2). The baseline shape X0 can then be deformed according to this flow by

applying equation (3). Therefore we seek to estimate the position of the control points,

initial momenta, and position of the points on the baseline shape such that the resulting

geodesic flow of the baseline shape best matches the observed data. An overview of our

control point formulation of geodesic shape regression is shown in Fig. 1. With all elements

of our framework defined, geodesic shape regression can now be described by the specific

regression criterion

(4)

subject to

(5)

where λ2 is used to balance the importance of the data term and regularity,

 is the regularity term defined by the kinetic energy of the

control points. The first part of (5) describes the trajectory of the control points and

momenta as in (2). The second equation of (5) represents flowing the baseline shape along

the deformation defined by S(t) as in (3).

As shown in the appendix, the gradients of the criterion (4) are

(6)

where the auxiliary variables θ(t) and ξ(t) = {ξc, ξα} satisfy the ODEs:

(7)

The gradient is computed by first integrating equations (2) forward in time to construct the

flow of diffeomorphisms. The deformations are then applied to the baseline shape by

integrating forward in time equation (3). With the full trajectory of the deformed baseline

shape, one can compute the gradient of the data term ∇X(ti)D(ti), corresponding to each

observation. The ODEs (7) are then integrated backwards in time, with the gradients of the

data term acting as jump conditions at observation time points, which pull the geodesic

towards target data. The final values of the auxiliary variables θ(0) and ξ(0) are then used to
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update the location of the control points, the initial momenta, and the location of the points

on the baseline shape.

The method, summarized in Algorithm 1, is implemented via a gradient descent scheme.

The parameters of the algorithm are the tradeoff between data matching and regularity λ, the

standard deviation of the deformation kernel σV, and the standard deviation of the metric on

currents σW. The value of σV controls the scale at which points in space move in a correlated

manner, while the value of σW controls the scale at which shape differences are considered

noise. The algorithm also requires an initial baseline shape. For surfaces, initialization

consists of an ellipsoid for each connected component of the shapes, which defines the

number of shape points as well as the connectivity, which is preserved during optimization.

3 Results

Synthetic Transformations

We explore the ability of the geodesic regression model to capture simple synthetic

transformations applied to a real anatomical surface. We consider the amygdala surface

extracted from a 4 year old child and investigate translation and scaling. For both

experiments, we initialize the baseline shape to be an ellipse, as shown in Fig. 2, which

defines the topology of the baseline shape, which will remain unchanged during

optimization. We define 12 control points on a regular grid and parameters σV = 12 mm, σW

= 5 mm, and λ = 0.1. Both experiments contain three shape observations spaced one time

unit apart.

For both experiments, the baseline shape estimated by our method closely matches the

amygdala surface at the earliest time point and the dynamics of shape evolution are well

captured by the geodesic model (Fig. 3). However, very accurate matching of the target

shapes is not the goal with a geodesic model (and is generally not possible). The power of

the model lies in the low dimensional parameterization of shape evolution, which facilitates

statistical analysis. These experiments demonstrate the compactness of the geodesic model –

continuous shape evolution is described by the baseline shape and 12 momentum vectors.

Synthetic Tumor Evolution

Next, we apply our geodesic model to study tumor evolution over time. Using TumorSim

[15], we simulate three differing tumor scenarios : a slowly deforming tumor, a rapidly

deforming tumor, and a tumor which infiltrates rather than deforming surrounding tissue.

We obtain four observations in the time span of one year, obtained at the same baseline time

0, 5 ± 1, 8 ± 1, and 12 months. This mimics the acquisition of real medical images, which

are not necessarily acquired at the same time for every patient. The simulated images and

tumor segmentations are shown in Fig. 4.

In order to compare the differing tumor evolutions, we leverage the control point

formulation. We establish a common reference space which is shared among each geodesic

model by placing 125 control points on a regular grid with 12 mm spacing and freeze these

locations during optimization. We estimate a geodesic model for each tumor scenario, using
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parameters σV = 12 mm, σW = 5 mm, λ = 1.0, and initialize the baseline shape with an

ellipse.

The estimated baseline tumor and initial momenta are displayed in Fig. 5 for each of the

three tumor scenarios. The magnitude of the momenta describing the rapidly deforming

tumor are the largest among the three tumor scenarios, which is also evident in the speed of

growth overlaid on the baseline tumor. The orientation of the momenta vectors encode the

direction of tumor growth, which highlight the differences in the way each tumor evolves.

We note that the initial momenta vectors do not differentiate well between deforming and

infiltrating tumors, as the infiltration process cannot be described by tumor shape alone.

However, the estimated baseline shape and dynamics of shape change are well captured by

the geodesic model for all three tumor scenarios.

Pediatric Subcortical Development

We next investigate the application of geodesic shape regression to model pediatric

subcortical development. Three subcortical shapes are considered as a multi-object shape

complex: putamen, amygdala, and hippocampus. The structures were obtained from MRI of

a healthy child scanned at approximately 9, 13, and 24 months of age. Geodesic regression

was conducted using 126 control points and parameters σV = 8 mm, σW = 6 mm, and λ = 1.0.

To improve speed of convergence, we initialize the baseline shapes for each subcortical

structure with an ellipse that has been coarsely registered to its corresponding subcortical

shape. Regression was conducted on all shapes simultaneously, resulting in one deformation

of the ambient space.

Several snapshots of the evolution of subcortical structures is shown in Fig. 6, with

estimated baseline shape shown at 6 months. From 6 to 26 months, all subcortical structures

increase in size, with the putamen demonstrating the most dramatic growth. The evolution of

the putamen is characterized by accelerated growth at the superior anterior and inferior

posterior regions, while the hippocampus grows mostly at the extreme posterior region,

expanding and bending at the tip. The geodesic model is able to capture interesting non-

linear growth patterns with few parameters; the full time evolution is modeled by three

baseline shapes and 126 momenta vectors.

This experiment demonstrates the applicability of the geodesic model in characterizing

pediatric subcortical development. Our regression framework simultaneously handles

multiple shapes, including those with complex geometry. Multi-object regression allows for

a more complete analysis, compared to an independent treatment of each subcortical

structure, which ignores potentially important spatial relationships between structures. This

single subject experiment can also be extended to a population analysis thanks to the control

point formulation of deformations. As with the previous tumor experiment, one can fix the

control point locations for all subjects. The differences between and within populations can

be quantified by exploring the variability between estimated baseline shapes, and between

initial momenta at identical locations for all subjects.
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White Matter Fibers in Early Brain Development

Finally, we study early brain development by considering the evolution of white matter

connections from birth to 2 years of age. For this experiment, we have diffusion tensor

imaging (DTI) data from 17 subjects with scans obtained at clustered time points of 2 ± 2,

12 ± 2 months, and 24 ± 2 months. We extract the genu fiber tract from each DTI using the

framework of [1]. In our experiment, we use 26 genu fiber tracts which are represented as a

collection of 3D curves. By considering fiber geometry obtained from multiple subjects, the

estimated geodesic model can be considered as the development of the genu tract for an

average child. We initialize the baseline shape with the genu fiber bundle from the atlas

space, define 75 control points on a regular grid, and set parameter values as σV = 5 mm, σW

= 8 mm, and λ = 0.1.

The average development of the genu tract estimated by our geodesic model is summarized

in Fig. 7, which shows several snapshots on the genu fibers over time. The elongation of the

fibers reflects the myelination process that occur during early development, where myelin

sheaths grows to cover white matter regions outward to the cortex. Our geodesic regression

framework handles the multiple fiber structure that form the genu fiber bundle, using the

currents framework to match the curvilinear fiber structures.

4 Conclusions

We have presented a geodesic regression model for shapes represented as currents in the

large deformation diffeomorphic metric mapping (LDDMM) framework where dense

diffeomorphisms are built using a control point formulation. This provides a discrete and

low dimensional parameterization of large diffeomorphic transformations, decoupling the

parameterization of deformations from the specific shape representation. By representing

shapes as currents, our regression model can seamlessly handle both surfaces and curves, or

any combination of them represented as multi-object complexes. This is a powerful

representation that incorporates potentially important spatial relationships between

anatomical shapes into the regression framework.

By analogy with linear regression, our generative geodesic model is fully characterized by a

baseline shape (intercept) and initial momenta vectors (slope). We have introduced an

optimization scheme which estimates the baseline shape, location of the control points, and

initial momenta simultaneously via a single gradient descent algorithm. Finally, we

presented results from experiments carried out on a diverse collection of shape data,

demonstrating the widespread applicability of our geodesic shape regression framework.

Future work will focus on incorporating the geodesic model into a framework for the

statistical analysis of longitudinal data. We will explore approaches which simultaneously

estimate a population baseline as well as momenta for individual subjects in homologous

locations. We will also explore methods for transporting baseline shapes and momenta

vectors between subjects and between population groups to enable hypothesis testing on 4D

growth models.
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A Differentiation of the Regression Criterion

Consider a perturbation δS0 to the initial state of the system (c0, α0), which leads to a

perturbation of the motion of the control points δS(t), a perturbation of the template shape

trajectory δX(t), and a perturbation of the criterion δE

(8)

The perturbations δS(t) and δX(t) satisfy the ODEs:

(9)

Let  and . The first ODE is a linear

homogeneous ODE with well known solution

(10)

The second ODE is a linear inhomogeneous ODE with solution

(11)

which can now be plugged into (8). After arranging terms we have

(12)

Letting , g(t) = ∂2G(t)θ(t), and 

leads to the gradient of the criterion written as

(13)

where auxiliary variables θ(t) and ξ(t) satisfy the ODEs

(14)
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Fig. 1.
Overview of geodesic regression with estimated parameters in red.
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Fig. 2.
Initial baseline shape and observed amygdala.
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Fig. 3.
For both translation and scaling panels, the top row shows discrete shape observations of the

amygdala surface, while the bottom row shows shapes estimated during geodesic regression

at observation times as well as intermediate stages. Our method estimates a baseline shape

and momenta vectors that capture shape evolution.
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Fig. 4.
Four observations of synthetic tumor evolution. Top) Slowly deforming tumor. Middle)
Rapidly deforming tumor. Bottom) Tumor which infiltrates surrounding tissue. The first

two cases show different degrees of deformation in surrounding tissue and ventricles, while

the third has little deformation.
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Fig. 5.
Baseline shape and initial momenta for geodesic models of tumor evolution. Our regression

framework captures the different tumor growth characteristics, with momenta vectors

constrained to be in the same coordinates for comparison purposes.
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Fig. 6.
Snapshots of subcortical shape evolution after geodesic regression on a multi-object

complex: putamen, amygdala, and hippocampus.
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Fig. 7.
Average development of genu fiber tract from 2 to 24 months. Top row shows observed data

for all subjects, which is clustered around 2, 12, and 24 months. Bottom row shows genu

fiber tracts estimated from geodesic regression at several time points with velocity of fiber

development displayed on the surface of the estimated fibers.
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Algorithm 1

Geodesic shape regression
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