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ABSTRACT
Objective: A high genomic load of Pneumococcus
from blood or cerebrospinal fluid has been associated
with increased mortality. We aimed to analyse whether
nasopharyngeal colonisation density in HIV-infected
patients with community-acquired pneumonia (CAP) is
associated with markers of disease severity or poor
outcome.
Methods: Quantitative lytA real-time PCR was
performed on nasopharyngeal swabs in HIV-infected
South African adults hospitalised for acute CAP at Chris
Hani Baragwanath Hospital, Soweto, South Africa.
Pneumonia aetiology was considered pneumococcal if
any sputum culture or Gram stain, urinary
pneumococcal C-polysaccharide-based antigen, blood
culture or whole blood lytA real-time PCR revealed
pneumococci.
Results: There was a moderate correlation between the
mean nasopharyngeal colonisation densities and
increasing CURB65 scores among all-cause patients
with pneumonia (Spearman correlation coefficient
r=0.15, p=0.06) or with the Pitt bacteraemia score
among patients with pneumococcal bacteraemia
(p=0.63). In patients with pneumococcal pneumonia,
nasopharyngeal pneumococcal colonisation density was
higher among non-survivors than survivors (7.7 vs 6.1
log10 copies/mL, respectively, p=0.02) and among
those who had pneumococci identified from blood
cultures and/or by whole blood lytA real-time PCR than
those with non-bacteraemic pneumococcal pneumonia
(6.6 vs 5.6 log10 copies/mL, p=0.03). Nasopharyngeal
colonisation density correlated positively with the
biomarkers procalcitonin (Spearman correlation
coefficient r=0.37, p<0.0001), proadrenomedullin
(r=0.39, p=0.008) and copeptin (r=0.30, p=0.01).
Conclusions: In addition to its previously reported role
as a diagnostic tool for pneumococcal pneumonia,
quantitative nasopharyngeal colonisation density also
correlates with mortality and prognostic biomarkers.
It may also be useful as a severity marker for
pneumococcal pneumonia in HIV-infected adults.

INTRODUCTION
Community-acquired pneumonia (CAP) and
influenza are the second leading natural

cause of death in South Africa, responsible
for 6.6–7.5% of deaths between 2009 and
2011.1 Streptococcus pneumoniae is the most
common aetiology of CAP in adults regard-
less of setting and clinical severity.2 This is
also the case for HIV-infected adults and has
been confirmed in various aetiological
studies from Africa.3–8 In HIV-infected
adults, Pneumococcus has been estimated to
be implicated in 20% of bacterial pneumo-
nias, 40% of pneumonias with an identified
organism and 70% of pneumonias with posi-
tive blood cultures.9 Pneumococcal pneumo-
nia carries a mortality of about 10–15% with
slightly higher mortality in patients with bac-
teraemic pneumococcal pneumonia,10–14

which has been roughly unchanged since the
advent of antibiotic therapy.15 Outcomes are
worse for HIV-infected patients with
pneumococcal pneumonia in some studies5

but not others.9

Strengths and limitations of this study

▪ This study shows, for the first time, that naso-
pharyngeal (NP) colonisation density of
Streptococcus pneumoniae is a prognostic
marker in HIV-infected adults with pneumonia.

▪ NP density, as measured with a lytA real-time
PCR, correlated with survival, bacteraemia and
prognostic biomarkers.

▪ This information might be useful for clinical
management decisions relating to site of care
and antibiotic choice and duration.

▪ A major limitation is that it was tested in a single
well-characterised cohort of HIV-infected South
African adults hospitalised for pneumonia,
whereas it needs to be confirmed in other set-
tings and in HIV-uninfected adults.

▪ Other limitations were the lack of arterial blood
gas analysis, which prevented us from calculat-
ing the Pneumonia Severity Index; as well as the
small number of patients admitted to an inten-
sive care unit.
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Information on prognosis is useful to assign limited
medical resources including treatment and site-of-care
decisions or to intensify therapy. The prognosis for
patients with pneumonia is a complex interplay between
host and microbiological factors. Current prognostic
scoring systems such as the CURB65 score16 or the
Pneumonia Severity Index (PSI)17 are based on under-
lying conditions, clinical and laboratory characteristics.
Interestingly, these scores have not been validated in
patients with HIV infection even though HIV is a recog-
nised risk factor for poor outcome in patients with
pneumococcal pneumonia.5 Strikingly, these scores also
do not take into account microbiological data. Novel
biomarkers are increasingly used to provide prognostic
information in patients with pneumonia, correlate with
clinical severity scores18 and might provide additional
information beyond clinical scores.19

Since organism burden has been difficult to assess in
bacterial infections prior to more widespread use of
quantitative molecular techniques, relatively little infor-
mation is available on its prognostic impact. A high
genomic load of Pneumococcus from cerebrospinal fluid
and blood, respectively, has been associated with poor
outcome and increased mortality in Malawian children
with pneumococcal meningitis20 and Malawian children
and European adults with bacteraemic pneumococcal
pneumonia.13 20 21 Non-invasive specimens would be
preferable due to ease of sample collection and due to
low diagnostic yields of blood specimens. We recently
proposed quantitative nasopharyngeal (NP) colonisation
density as a novel diagnostic tool for pneumococcal aeti-
ology in HIV-infected adults with pneumonia.22 In this
study, we aimed to analyse whether NP colonisation
density is associated with clinical and biological markers
of disease severity or poor outcome in the same cohort
of patients with pneumonia.

METHODS
Details of the analysed patients were previously
described.22 In brief, we enrolled adults (age ≥18 years)
who were hospitalised at Chris Hani Baragwanath
Hospital, Soweto, South Africa, with acute X-ray con-
firmed pneumonia CAP. Active tuberculosis or current
antituberculous treatment at diagnosis were exclusion cri-
teria for enrolment, whereas patients with current or
recent antibiotic therapy were not excluded. S. pneumo-
niae was identified by colony morphology, optochin sus-
ceptibility and bile solubility. Urine was tested with the
immunochromatographic BinaxNow S. pneumoniae test
(ICT) for pneumococcal C-polysaccharide according to
the manufacturer’s instructions. Quantitative lytA real-
time (rt) PCR was performed on NP swab as described.22

For whole blood testing, nucleic acids were extracted
from 200 µL of clinical samples using the QIAamp DNA
Blood Mini Kit (Qiagen, the Netherlands) and eluted in
100 µL of elution buffer. 5 µL of extracted DNA was sub-
jected to a triplex rtPCR for Pneumococcus (lytA),

Haemophilus influenzae type b, and Staphylococcus aureus
using the iQ Multiplex Powermix (Bio-Rad, USA). Owing
to the lack of a diagnostic gold standard, pneumococcal
pneumonia (SP-CAP) was considered present if a com-
posite diagnostic standard was positive in patients with
CAP, that is, if pneumococci were detected by either
blood culture, urine ICT, good quality (ie, >25 neutro-
phils and <10 epithelial cells per high-power field)
sputum Gram stain or culture, or whole blood lytA rtPCR.
In an expanded composite diagnostic (eSP-CAP) we
included a quantitative NP density >8000 copies/mL22 as
an additional criterion for pneumococcal pneumonia.
Antimicrobial activity in urine as evidence of previous
antimicrobial use was measured as previously described.22

HIV counselling and testing were offered to all
patients with unknown or negative HIV serostatus.
Testing was performed using the Architect HIV Ag/Ab
Combo assay (Abbott) and, if positive, was confirmed by
Elecsys HIV combi assay (Elecsys 2010 analyzer, Roche).
The main study population included only patients who
were already known to be HIV-infected or newly diag-
nosed with HIV infection.
The CURB65 score was calculated as according to Lim

et al.16 For patients with bacteraemic pneumonia, that is,
positive blood culture or whole blood lytA rtPCR, we cal-
culated the Pitt bacteraemia score.23 24 Infection-related
and prognosis-related biomarkers were measured in
batch with a highly sensitive research assay for procalci-
tonin (BRAHMS PCT LIA sensitive) and commercial
assays for mid-regional proadrenomedullin (BRAHMS
MR-proADM KRYPTOR), mid-regional proatrial natri-
uretic peptide (BRAHMS MR-proANP KRYPTOR) and
copeptin (BRAHMS Copeptin KRYPTOR, all Thermo
Scientific Biomarkers, Hennigsdorf, Germany) after
storage at −70°C. C reactive protein (CRP) was mea-
sured immediately on site by the routine diagnostics
laboratory (CRP immunoturbidometry, 717 automated
analyzer; Boehringer Mannheim/Hitachi, Mannheim,
Germany) if requested by the treating physicians.
Continuous variables were compared with two-sided

pooled t tests or a Mann-Whitney-Wilcoxon test, as
appropriate, and proportions calculated with Pearson’s
χ2 test or Fisher’s exact test, as appropriate. For relation-
ship between continuous variables, we used Spearman
correlation coefficients. One-way analysis of variance
(ANOVA) and Kruskal-Wallis tests were applied for com-
parisons of continuous dependent variables between
more than two categorical independent variables, as
appropriate. Univariate and multivariate analyses were
performed to identify predictors of hospital mortality.
Variables significant in the univariate analysis and those
of special interest were included in the multivariate ana-
lysis. The area under the receiver operating characteris-
tic curve (AUC-ROC) was calculated as indicator for
diagnostic accuracy to predict hospital mortality.
p Values ≤0.05 were considered significant.
All patients and controls provided written informed

consent.
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RESULTS
Of 514 patients with acute clinical pneumonia, 370 had
X-ray confirmed pneumonia (CAP). Analyses were
restricted to those 280 patients with CAP in whom
HIV-infection was present or newly diagnosed. Based on
the composite diagnostic criteria, SP-CAP was diagnosed
in 99 (35.4%) of 280 patients: 75 had either a positive
urine ICT or blood culture, or good quality (ie, >25 neu-
trophils and <10 epithelial cells per high-power field)
sputum Gram stain or culture with pneumococcus22; 58
patients had a positive whole blood lytA rtPCR. A lytA
rtPCR from NP >8000 copies/mL was present in 126
patients, resulting in a diagnosis of pneumococcal CAP
based on the expanded composite diagnostic in 150
(53.6%) of 280 patients. The in-hospital case death rate
was not different between those with (11.7%) and those
without (14.1%; p=0.53) pneumococcal aetiology.
Mean pneumococcal colonisation density was not sig-

nificantly different between patients with and those
without antimicrobial activity in urine (3.36 (95% CI
2.82 to 3.89) copies/mL vs 3.95 (95% CI 3.30 to 4.60);
p=0.16). There was also no difference in in-hospital mor-
tality between those with and those without antimicro-
bial activity in urine (13.2% vs 11.5%; p=0.69).

Correlation between colonisation density and clinical
scores
As a prognostic marker for mortality, we correlated NP
colonisation with the CURB65 score. Colonisation
density measured by lytA rtPCR did not significantly cor-
relate with increasing CURB65 classes either among
cases with CAP (Spearman correlation coefficient
r=0.15, p=0.06) or among cases with SP-CAP (Spearman
correlation coefficient r=0.14, p=0.19). The mean colon-
isation density of cases with bacteraemic SP-CAP did not
vary significantly for different Pitt bacteraemia scores (0:
6.5 log10 copies/mL, 1: 6.8 log10 copies/mL; 2: 7.0 log10

copies/mL; 3: 4.8 log10 copies/mL; p=0.63). Hospital
mortality did not vary significantly between CURB65
scores (0:13.1%; 1: 11.1%; 2: 11.3%; 3: 25.0%; 4: 0%;
p=0.56) or—among those with bacteraemic pneumococ-
cal pneumonia—between Pitt bacteraemia score points
(0: 20.7%; 1: 10.7%; 2: 16.7%; 3: 0%).

Correlation between colonisation density and bacteraemia
Presence of pneumococci in blood (by culture or whole
blood lytA rtPCR) among cases with SP-CAP was asso-
ciated with a higher pneumococcal NP colonisation
density than if SP-CAP was non-bacteraemic (6.6 vs 5.6
log10 copies/mL, p=0.03; figure 1). Similarly, growth of
S. pneumoniae from blood cultures was associated with
higher NP colonisation density among patients with
SP-CAP than those without (7.1 vs 6.1 log10 copies/mL,
p=0.04).

Correlation between colonisation density and biomarkers
The levels of the biomarkers procalcitonin, proadreno-
medullin and CRP, but not of copeptin and ProANP
were significantly higher for patients with SP-CAP than
for patients with CAP without pneumococcal aetiology
(table 1).
There was a positive correlation between increasing

NP colonisation density among those colonised with
Pneumococcus and increasing procalcitonin values in
cases with CAP (Spearman correlation coefficient
r=0.37, p<0.0001) and in cases with SP-CAP (r=0.37,
p=0.001; figure 2A).
Similarly, there was a significant positive correlation

between increasing NP colonisation density among
those colonised with Pneumococcus and increasing proa-
drenomedullin values in cases with CAP (r=0.34,
p<0.0001) and in cases with SP-CAP (r=0.40, p=0.008;
figure 2B). A similar positive correlation was observed
between increasing copeptin and increasing NP

Figure 1 Association of nasopharyngeal colonisation density with bacteraemia and death. Nasopharyngeal colonisation density

according to bacteraemia (either positive blood cultures or positive lytA real-time (rt) PCR from whole blood) and survival in

HIV-infected patients with pneumococcal pneumonia. +/° represent the mean; length of the box represents the IQR between the

25th and 75th centiles; horizontal line in the box represents median; whiskers represent minimum and maximum values.
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colonisation density among those colonised with
Pneumococcus and in patients with CAP (r=0.18, p=0.03)
and in patients with SP-CAP (r=0.30, p=0.01; figure 2C).
There was a trend for a positive correlation between
increasing NP colonisation density among those colo-
nised with Pneumococcus and increasing ProANP values
in patients with CAP (r=0.17, p=0.047), but less so in
patients with SP-CAP (r=0.12, p=0.30; figure 2D). In con-
trast, there was no significant correlation between
increasing NP colonisation density and CRP values for
patients with CAP (r=0.13, p=0.51) or for patients with
SP-CAP (r=0.35, p=0.17; figure 2E).

Correlation between colonisation density and in-hospital
mortality
Among patients with SP-CAP who had pneumococcal
colonisation in the nasopharynx, mean NP colonisation
density was significantly higher in those who died (n=8;
7.72 log10 copies/mL) than those who survived (n=76;
6.11 log10 copies/mL; p=0.02). All non-survivors had
very high NP colonisation densities, which were at least
6.4 log10 copies/mL and thus more than 2.5 log10
copies/mL higher than the cut-off of 3.9 log10 copies/
mL proposed to diagnose pneumococcal aetiology
(figure 1).
In univariate analysis the levels of copeptin, ProANP,

proadrenomedullin and procalcitonin and the NP
pneumococcal colonisation density were significantly
associated with hospital mortality in patients with CAP
(table 2). In multivariable logistic regression, proadreno-
medullin (aOR 1.196, 95% CI 1.011 to 1.414; p=0.04)
and quantitative lytA rtPCR from NP (aOR 1.870; 95%
CI 1.047 to 3.342; p=0.03) were independent predictors
of hospital mortality (table 2).

In patients with SP-CAP, receipt of highly active anti-
retroviral therapy (HAART) and increasing levels of the
biomarkers copeptin, ProANP, proadrenomedullin and
increasing NP pneumococcal colonisation density were
associated with hospital mortality (table 2). In a multi-
variable logistic regression model, there were trends for
increasing age (aOR 1.09; 95% CI 0.99 to 1.20; p=0.10)
and quantitative lytA rtPCR from NP (aOR 2.10; 95% CI
0.95 to 4.65; p=0.07) as predictors of mortality (table 2).
The prognostic accuracy as determined by the

ROC-AUC curves showed the best prediction of hospital
mortality from all-cause pneumonia for the prognostic
biomarkers proadrenomedullin, ProANP and copeptin,
with lower AUC observed for quantitative lytA rtPCR
from NP (see online supplementary table S3, figure 3A).
In patients with SP-CAP, proadrenomedullin and quanti-
tative lytA rtPCR from NP had the highest AUC (0.77
and 0.74, respectively, figure 3B).

DISCUSSION
This study shows, for the first time, that NP colonisation
density as measured by quantitative lytA rtPCR was pre-
dictive of bacteraemia and mortality in HIV-infected
South African adults with CAP. Colonisation density cor-
related moderately with prognostic biomarkers indicative
of poor outcome.
Despite the theoretical limitation being that molecular

diagnostics cannot distinguish between dead and alive
bacteria, we previously reported a good correlation
between quantitative lytA rtPCR and quantitative NP cul-
tures.22 A pneumococcal colonisation density cut-off
>8000 copies/mL for HIV-infected adults with CAP was a
highly sensitive and specific diagnostic tool for pneumo-
coccal aetiology.22 This supported the pathophysiological

Table 1 Biomarkers in HIV-infected patients with community-acquired pneumonia

Based on composite diagnostic standard*

Based on expanded composite diagnostic

standard†

Pneumococcal

aetiology*

Non-pneumococcal

aetiology* p Value*

Pneumococcal

aetiology†

Non-pneumococcal

aetiology† p Value†

Procalcitonin (ng/mL) 18.8 (n=84) 6.93 (n=153) <0.0001 16.2 (n=128) 5.1 (n=109) <0.0001

Proadrenomedullin

(MR-proADM; nmol/L)

2.9 (n=80) 1.9 (n=156) 0.01 2.8 (n=125) 1.6 (n=111) 0.003

Proatrial natriuretic

peptide (MR-proANP;

pmol/L)

119.4 (n=81) 120.9 (n=156) 0.93 118.7 (n=126) 122.3 (n=111) 0.84

Copeptin (pmol/L) 73.0 (n=82) 46.2 (n=155) 0.07 68.6 (n=127) 40.3 (n=110) 0.0476

CRP (mg/L) 282.9 (n=20) 134.4 (n=27) <0.0001 248.2 (n=27) 129.3 (n=20) 0.0009

Since C reactive protein (CRP) values were available only when requested by the treating physicians, we compared patients with available
values for CRP to patients without available CRP values. There was no difference in mean age, in mean nasopharyngeal colonisation density
and no difference in pneumococcal diagnosis. However, patients with an available CRP value had a significantly higher (30.6%) in-hospital
mortality compared to patients without a CRP value (15.3%) (p=0.02).
*Pneumococcal and non-pneumococcal aetiology were defined according to composite diagnostic standard (pneumococci were detected by
either blood culture, urine immunochromatographic BinaxNow Streptococcus pneumoniae test, good quality (ie, >25 neutrophils and <10
epithelial cells per high-power field) sputum Gram stain or culture, or whole blood lytA rtPCR). (rt, real-time).
†Pneumococcal and non-pneumococcal aetiology were defined according to composite diagnostic standard (pneumococci were detected by
either blood culture, urine immunochromatographic BinaxNow Streptococcus pneumoniae test, good quality (ie, >25 neutrophils and <10
epithelial cells per high-power field) sputum Gram stain or culture, or whole blood lytA rtPCR or lytA rtPCR from nasal swab >8000 copies/mL).
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concept of a critical pneumococcal colonisation density
in the nasopharynx, at which the risk of pneumococcal
microaspiration and subsequent lower respiratory tract

infection increase.25 Owing to the lack of lung specimens
or bronchoalveolar lavage samples representing the
direct site of infection, we instead chose to correlate NP

Figure 2 Correlation between nasopharyngeal colonisation density and biomarkers in pneumococcal pneumonia.

(A) Procalcitonin. (B) MR-proADM. (C) Copeptin. (D) MR-proANP. (E) C reactive protein. Correlation between nasopharyngeal

colonisation density and biomarkers among HIV-infected cases with SP-CAP who are colonised with pneumococcus.

Pneumococcal aetiology (SP-CAP) in patients with CAP was defined as pneumococcal detection from either blood culture, urine

immunochromatographic BinaxNow Streptococcus pneumoniae test, good quality (ie, >25 neutrophils and <10 epithelial cells per

high-power field) sputum Gram stain or culture, or whole blood lytA real-time (rt) PCR. Counts are depicted after logarithmic

transformation.
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Table 2 Predictors of in-hospital mortality in HIV-infected adults with CAP and SP-CAP

CAP SP-CAP

Univariate analysis Multivariable analysis Univariate analysis Multivariable analysis

OR

95%

Confidence

limit p Value OR

95%

Confidence

limit p Value OR

95%

Confidence

limit p Value OR

95%

Confidence

limit p Value

Pneumococcal aetiology

(vs not)

0.806 0.378–1.719 0.5766

Bacteraemic

pneumococcal

pneumonia (vs not)

1.289 0.585–2.841 0.5285 5.37 0.655–44.055 0.12

Male (vs female) 1.083 0.527–2.225 0.8292 0.91 0.247–3.36 0.88

Age 1.028 0.992–1.065 0.1307 1.04 0.97–1.108 0.29 1.086 0.985–1.198 0.097

Cotrimoxazole

prophylaxis (vs not)

0.211 0.028–1.603 0.1327 1.08 0.121–9.765 0.94

CD4 count 0.999 0.996–1.002 0.4752 0.998 0.992–1.005 0.58

HAART (vs not) 0.838 0.238–2.948 0.783 5.85 1.175–29.144 0.03

CURB65 1.137 0.782–1.654 0.5007 1.425 0.684–2.97 0.34

Copeptin 1.005 1.002–1.008 0.0013 1.005 1.001–1.009 0.0254

MR-proANP 1.005 1.003–1.008 <0.0001 1.008 1.001–1.014 0.0156

PCT 1.013 0.996–1.030 0.1226 1.018 0.993–1.043 0.1597

MR-proADM 1.260 1.123–1.412 <0.0001 1.196 1.011–1.414 0.0366 1.266 1.064–1.505 0.0076

Log10 lytA rtPCR NP 1.284 0.985–1.672 0.0642 1.870 1.047–3.342 0.0345 2.262 1.086–4.712 0.03 2.104 0.952–4.65 0.0659

Pneumococcal and non-pneumococcal aetiology were defined according to composite diagnostic standard (pneumococci were detected by either blood culture, urine immunochromatographic
BinaxNow Streptococcus pneumoniae test, good quality (ie, >25 neutrophils and <10 epithelial cells per high-power field) sputum Gram stain or culture, or whole blood lytA real-time (rt) PCR).
ORs are reported as increase per single unit of the respective risk factor, for example, per year (age), per point (CURB65 score), per cell/µL (CD4 count).
CAP, community-acquired pneumonia; SP-CAP, pneumococcal pneumonia.
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colonisation density with prognosis. Despite the bio-
logical plausibility that clinical severity and risk of poor
outcome correlate with a higher organism density at the
site of infection, there are surprisingly few data to
support this hypothesis in patients with pneumonia.
Major reasons might be the difficulty of measuring the
organism burden prior to the wider application of quanti-
tative molecular methods and obtaining the appropriate
specimen for this measurement. Studies in the first half
of the 20th century using quantitative blood cultures
reported a dose–effect relationship between organism
burden and mortality.26 27 As a surrogate marker for bac-
terial load in children with bacteraemic SP-CAP in Spain,
a shorter time to positivity of blood cultures correlated
with risk of hospitalisation, admission to the intensive
care unit (ICU), meningitis or other non-pneumonic
sources of bacteraemia and with a higher number of posi-
tive blood cultures.28 In children with pneumococcal
meningitis in Malawi, higher DNA loads as measured
with a lytA rtPCR from cerebrospinal fluid and blood
were found in more non-survivors than survivors (8.2 vs
7.5 log10 copies/mL, p=0.03; and 3.8 vs 3.2 log10 copies/
mL, p=0.02; respectively). All children with SP-CAP sur-
vived and had lower DNA loads (0.42 log10 copies/mL)
than meningitis survivors and non-survivors.20 Genomic
loads were higher for HIV-infected children (n=59) than
HIV-uninfected children (n=39) (p=0.04 for CSF; p=0.6
for blood). In addition, blood bacterial DNA load corre-
lated with plasma cytokines such as tumor necrosis
factor-α, interleukin (IL)-1β, IL-6 and IL-10.20 In a study
of 45 Dutch adults with CAP, quantitative pneumococcal
load measured with lytA PCR from whole blood was
higher in patients with bacteraemia and in those who ful-
filled criteria of the systemic inflammatory response syn-
drome. It correlated positively with markers for severity of
disease including length of stay, CRP levels and mental

status changes.21 In a Spanish study of 93 adults with
pneumococcal CAP whole blood lytA copies independ-
ently predicted septic shock and receipt of mechanical
ventilation.13 High lytA copy numbers (≥103/mL) were
risk factors for bacteraemia (OR=6.3), septic shock
(OR=8.0), acute kidney injury (OR=7.0), mechanical ven-
tilation (OR=10.5), acute respiratory distress syndrome
(OR=14.8), rapid radiological spread (OR=22.8) and
mortality (OR=5.4).13 A recent study showed that HIV
and influenza infections were associated with higher lytA
load in blood among South African patients with acute
lower respiratory tract infections and demonstrated
3.6-fold increased mortality if pneumococcal load was
≥105/mL.29 Pleural fluid genomic pneumococcal load
measured with ply rtPCR, which is a less specific target
than lytA,30 in children with SP-CAP correlated with posi-
tive cultures, higher biomarkers such as CRP and neutro-
phils and with a longer length of hospital stay.31 In
another study, high blood lytA copy numbers in children
≤5 years of age with CAP were predictive of a parapneu-
monic effusion. Children with empyema had higher
values than those with simple parapneumonic effusion.
Serotype 19A was associated with high bacterial loads as
well as parapneumonic effusion or empyema.32

A limitation of applying quantitative molecular
methods to invasive specimens in these studies is that
only the relatively small subset of pneumococcal disease
with documented invasiveness can be evaluated: approxi-
mately 10–25% of SP-CAP in adults33 34 and < 10% in
children35 36 are bacteraemic. Therefore, application of
quantitative molecular methods in NP swabs not only
improves ease of specimen collection but also markedly
increases the number of patients who could be assessed
in this way. In this regard NP swabs are also superior to
sputum, which frequently cannot be obtained in suffi-
cient quantity and quality.37 In adults from New Zealand

Figure 3 Prognostic accuracy for hospital mortality. (A) All-cause pneumonia. (B) Pneumococcal pneumonia. Receiver

operating characteristic curves with area under the curve for individual parameters. Pneumococcal aetiology defined as

pneumococcal detection from either blood culture, urine immunochromatographic BinaxNow Streptococcus pneumoniae test,

good quality (ie, >25 neutrophils and <10 epithelial cells per high-power field) sputum Gram stain or culture, or whole blood lytA

real-time (rt) PCR.
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with CAP, the pneumococcal copy numbers measured by
quantitative lytA rtPCR were higher in sputum than in
serum or urine.38 However, sputum could only be ana-
lysed in 196 of 304 patients. The pneumococcal load in
serum was associated with CURBage score, PSI, length
of hospital stay and ICU admission, while increasing
sputum load was only associated with severity of disease
as measured with the CURBage score.38

To the best of our knowledge, ours is the first study
that formally correlated quantitative NP pneumococcal
load with clinical severity markers. Higher pneumococ-
cal loads were detected in more bacteraemic than non-
bacteraemic patients, thereby confirming previous
studies, which used quantitative blood13 or sputum38

loads. In addition, pneumococcal colonisation density
tended to increase with increasing CURB65 scores, with
significant albeit only moderate correlation. However, in
this study, the CURB65 did not correlate with mortality.
Data on the utility of the CURB65 score in HIV is
largely absent. In the only prior study formally evaluat-
ing the CURB65 score it underestimated mortality and
the requirement for ICU admission as HIV-infected
patients had more than twice as high mortality and twice
as long hospital and ICU stays compared with
HIV-uninfected patients despite similar CURB65
scores.39 While reasons for this discrepant performance
of the CURB65 score between HIV-infected and
HIV-uninfected adults are not clear, the age factor
seems less important in typically younger HIV-infected
patients, whose biological ages are reportedly 10–14
years advanced.40–42 There are two possible non-
exclusive explanations for the lack of correlation
between NP colonisation density and the Pitt bacter-
aemia score. The first possible reason may be the poor
performance of the Pitt bacteraemia score24 in our
study, which is likely due to the low number of bacter-
aemic patients with high scores. Second, it may be that
NP colonisation density correlates mostly with the pres-
ence of bacteraemia, but among bacteraemic patients
provides little additional prognostic information.
However, in the multivariable analysis, colonisation
density rather than the presence of bacteraemia corre-
lated with mortality. Even though the magnitude of the
association between NP colonisation density and progno-
sis was low, these data are in concordance with pneumo-
coccal load data from invasive specimens as indicated
above.13 20 21 31 32 38 To our knowledge, ours is also the
first study to assess systematically a large set of prognostic
inflammatory and cardiovascular biomarkers among
African HIV-infected adults with CAP. ProADM was the
best prognostic biomarker, as previously shown in set-
tings in the developed world, in largely HIV-uninfected
adults.43 44 Since the peptides of the calcitonin gene
family including ProADM and PCT as “hormokines” are
ubiquitously upregulated in parenchymatous body cells
and do not mainly originate from leucocytes,45 it is not
unexpected that their prognostic quality can be
extended to HIV-infected adults.

Correlation with a variety of severity markers with the
presence of bacteraemia and with mortality all support
NP colonisation density as a prognostic tool in
HIV-infected adults with SP-CAP. Persistence or increase
of bacterial loads over time by serial monitoring might
indicate insufficient treatment, antibiotic resistance or
insufficient focus control, while documented decreases
of the bacterial load could allow discontinuation of anti-
biotic therapy. Waterer and Rello46 suggested that a high
organism burden could indicate a risk for
antibiotic-induced bacterial lysis, cytokine release and an
unfavourable proinflammatory state with subsequent
haemodynamic instability, which might benefit from
immunomodulation. Therefore, a high colonisation
density might be an indication for combination treat-
ment with macrolides or other antibiotics that down-
regulate pneumolysin production,47 or for alternative
anti-inflammatory treatments.
A limitation of our study includes the lack of data, par-

ticularly arterial blood gas analysis, to calculate the PSI.
Owing to the setting, very few patients were admitted to
ICU, which unfortunately makes this a not useful
outcome measure. As there were few HIV-uninfected
patients in our study, our results should be confirmed in
a larger study of HIV-uninfected adults even though
similar trends were found regardless of HIV status in our
study (data not shown).

CONCLUSIONS
As previously reported, the quantitative lytA rtPCR from
NP swabs is a very promising tool to diagnose pneumo-
coccal pneumonia.22 In addition, this study shows that
the same assay also conveys some prognostic information
as it correlated with bacteraemia, survival and prognostic
biomarkers. How exactly it could be implemented and
how it might change management, such as site of care,
antibiotic choices and duration, needs to be
determined.
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