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Abstract

Attempts to understand why memory predicts intelligence have not fully leveraged state-of-the-art

measures of recall dynamics. Using data from a multi–session free recall study we examine

individual differences in measures of recall initiation and post–initiation transitions. We identify

four sources of variation: a recency factor reflecting variation in the tendency to initiate recall

from an item near the end of the list, a primacy factor reflecting a tendency to initiate from the

beginning of the list, a temporal factor corresponding to transitions mediated by temporal

associations, and a semantic factor corresponding to semantically–mediated transitions. Together

these four factors account for 83% of the variability in overall recall accuracy, suggesting they

provide a nearly complete picture of recall dynamics. We also show that these sources of

variability account for over 80% of the variance shared between memory and intelligence. The

temporal association factor was the most influential in predicting both recall accuracy and

intelligence. We outline a theory of how controlled drift of temporal context may be critical across

a range of cognitive activities.

Complex behavior such as having a conversation, reading a paper, or making a decision

relies on the coordinated operation of many cognitive processes. For over 100 years

psychologists have attempted to understand how such coordination is achieved. One of the

earliest findings was that performance on simple memory span tasks predicts success on

more complex tasks (Jacobs, 1887). Dozens of studies have since confirmed that span

performance correlates with a wide range of cognitive abilities (for meta-analyses see

Ackerman, Beier, & Boyle, 2005; Daneman & Merikle, 1996). In trying to understand the

connection between memory and complex cognition, the literature has come to focus on

general intelligence, as it constitutes a theory-neutral statistical factor that contributes to

almost all cognitive tasks (i.e., the “positive manifold”; Carroll, 1993). The question of

which memory processes are critical in predicting intelligence has animated the individual

differences literature for over 30 years (Daneman & Carpenter, 1980; Mogle, Lovett,

Stawski, & Sliwinski, 2008; Turner & Engle, 1989; Unsworth, Brewer, & Spillers, 2009).

Most of this work has focused on limitations in working memory and attention (e.g., Hasher,

Lustig, & Zacks, 2007; Kane, Conway, Hambrick, & Engle, 2007; Oberauer, 2002; Towse,

Hitch, & Hutton, 1998). The focus on working memory likely has roots in the fact that span
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tasks were developed to measure the ability to hold information active in primary memory

rather than to measure the ability to retrieve information from secondary memory (Jacobs,

1887). As the idea of a passive primary memory matured into the notion of a working

memory system that both stores and manipulates information (Baddeley, 2003; Miyake &

Shah, 1999), new “complex” span tasks were designed that required simultaneously storing

and processing of information (Daneman & Carpenter, 1980; Turner & Engle, 1989). These

complex span tasks have proven to be even better predictors of intelligence than simple span

tasks, further solidifying the central role of working memory in the search for the link

between memory and intelligence. Despite extensive investigation, a consensus on which

processes are critical has failed to emerge (for a variety of competing perspectives see

Conway, Jarrold, Kane, Miyake, & Towse, 2007).

Recent evidence suggests that part of the difficulty is that in addition to working memory,

episodic memory also contributes to the correlation between span and intelligence. Healey

and Miyake (2009) found that span tasks require considerable attentional resources during

retrieval, which is inconsistent with the view that items are held in working memory and

easily accessible. Mogle et al. (2008) and Unsworth et al. (2009) have shown that after

accounting for variation in episodic tasks such as free recall, paired associate learning, and

prose recall, the correlation between span and intelligence is either eliminated or

considerably reduced. Discovering which episodic memory processes are related to

intelligence is now a priority for individual differences research (Ratcliff, Thapar, &

McKoon, 2011; Unsworth, Brewer, & Spillers, 2013).

Prior to the current focus on working memory, some early individual difference work

examined episodic memory tasks (e.g., Carlson, 1937; Christal, 1958; Games, 1962; Kelley,

1964; Underwood, Boruch, & Malmi, 1978). This work attempted to understand the

relationships among both span and classic episodic memory tasks (e.g., free recall, paired

associates, recognition) by deriving an overall summary measure for each task, such as

overall recall accuracy, and examining the correlations among the summary measures. The

main conclusion was that although there were identifiable sub-groups of memory tasks (e.g.,

span tasks versus associative tasks), the tasks also loaded onto a common factor (for reviews

see Beier & Ackerman, 2004; Kane & Miyake, 2008). Although this older literature clearly

established that episodic memory tasks share common variance, perhaps due to the focus on

summary measures, it has not shed much light on which memory processes underlie the

correlation with intelligence.

Proceeding largely in parallel to the individual difference literature (Carroll, 1993;

Cronbach, 1957; Kane & Miyake, 2008; Underwood, 1975), the experimental study of

episodic memory has focused not on the correlations of summary measures across tasks but

on developing a detailed understanding of the cognitive processes at work within particular

tasks. This work has provided a set of sophisticated measures of recall dynamics, which

have only recently begun to inform the individual difference literature (e.g., Healey &

Kahana, in press; Sederberg, Miller, Howard, & Kahana, 2010; Unsworth, 2009). Here we

examine individual differences in recall dynamics in an effort to illuminate the correlation

between memory and intelligence. We begin by reviewing the dynamics of memory search.
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The Dynamics of Memory Search

The dynamics of memory search can be decomposed into recall initiation and post–initiation

transitions. Probability of first recall (PFR) curves (Figure 1A) measure initiation by

showing the probability of initiating from each serial position (Hogan, 1975; Howard &

Kahana, 1999; Laming, 1999). In immediate free recall of supra-span lists (Grenfell-Essam

& Ward, 2012), participants tend to initiate from the last serial position (Deese & Kaufman,

1957).

Post-initiation dynamics are revealed by the order in which items are recalled. Both long–

standing semantic associations and newly formed episodic (temporal) associations exert a

powerful influence on recall order. The influence of temporal associations can be described

by how the probability that recall of item i is followed by recall of item j changes as a

function of the distance, or lag, between i and j in the original list. For example, if i = 5 and j

= 6 we would have a lag, j − i, of +1. Plotting these probabilities for a range of lags gives a

lag-CRP (Conditional Response Probability) function. Lag-CRPs are computed by dividing

the number of times a transition of a given lag was actually made by the number of times it

could have been made (Kahana, 1996). Lag-CRPs (Figure 1B) show a strong temporal

contiguity effect.

We can examine the influence of long–standing semantic associations on transition

probabilities (Bousfield, 1953; Romney, Brewer, & Batchelder, 1993) using Latent

Semantic Analysis (LSA; Landauer & Dumais, 1997), which measures the proximity of

words in a multidimensional model of semantic space. Using LSA values to create a

semantic-CRP curve (Figure 1C) reveals a strong semantic contiguity effect (Howard &

Kahana, 2002). Together the three curves (Figure 1), which we call the Recall Dynamics

Functions, provide a summary of the dynamics of memory search.

We have recently shown that these three Recall Dynamics Functions exhibit a remarkable

level of qualitative consistency across individuals (Healey & Kahana, in press). The

functions do, however, show individual differences. Examining the PFR curves of individual

participants revealed that whereas most participants tend to initiate recall with the very last

item of the list, there are two additional sub–groups that show different initiation patterns. In

contrast to the beginning–first pattern, one sub–group of participants tended to initiate from

the beginning of the list. The final sub–group of participants tended to initiate from a few

items back from the end. We argued that this recall pattern results from participants

encoding trains of several successive items into a chunk (Farrell, 2012). Post–initiation

dynamics also show variation, but it is quantitative variation in level of the functions, not

their shape. Here we provide a more detailed examination of these individual differences

and their relation to intelligence.

Individual Differences in Memory Search

The fundamental goals of studying individual differences in memory and intelligence are to

identify which processes show variation across individuals, and which of those processes are

correlated with IQ. A common approach in the individual differences literature has been to

identify a cognitive process that may be critical in both memory and intelligence tasks.
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Researchers then administer several tasks designed to measure memory ability, intelligence,

and the putative mediating process and derive a summary measure from each task. These

summary measures are then used to extract latent variables, which are taken as indices of the

underlying constructs. An assumption here is that although the putative mediating process

contributes to all three types of tasks, the latent variable extracted from the third set of tasks

provides a purer measure of that process. Researchers can then test if statistically controlling

for variation on that new, purer measure eliminates (i.e., mediates) the correlation between

memory performance and IQ. This logic has been applied to testing the idea that episodic

memory processes explain the correlation between memory tasks and IQ. For example,

Mogle et al. (2008) showed that the correlation between span tasks and fluid intelligence

was no longer significant when variation in episodic memory tasks, including free recall,

was controlled for. Unfortunately, this approach has failed to provide consistent results. For

example, Unsworth et al. (2009) have shown evidence for partial but not complete

mediation.

One reason for this difficulty may be that the mediation approach attempts to infer the

internal factor structure of memory from the pattern of correlations among summary

measures derived from a variety of different memory and non–memory tasks. As such, the

approach is highly theory driven in that the researcher must have some prior hypothesis

about which processes are critical and use this to decide which tasks to administer. The need

for prior theories is, in part, due to the reliance on summary measures. Summary measures

reflect the final outcome of all the contributing cognitive processes. In other words, they

take the output of multiple processes and compress them into a single number. This

compression makes it difficult to directly determine how many processes contributed to the

summary measure, forcing the researcher deduce the underlying processes from correlations

among different tasks.

The Recall Dynamics Functions, however, allow us to take a more data–driven approach to

studying individual differences. Instead of inferring the internal factor structure of memory

from correlations across different tasks, we can examine detailed measures of performance

derived from a single task. Essentially, the recall dynamics functions uncompress the

summary measure of overall recall, providing a window on the cognitive processes that

produce overall performance.

Some important facts about individual differences in recall dynamics have already been

discovered: temporal and semantic contiguity seem to be universal principles across

individuals (Healey & Kahana, in press), temporal contiguity is positively correlated with

overall recall (Sederberg et al., 2010; Spillers & Unsworth, 2011), and individuals who

exhibit both strong primacy and strong recency effects tend to have higher fluid intelligence

scores than individuals who exhibit either weak primacy or recency (Unsworth, Brewer, &

Spillers, 2011). Although important first steps, these studies have not fully embraced the

idea of moving beyond summary measures to examine the full richness of the Recall

Dynamics Functions and have instead used summary measures such as temporal contiguity

scores and latency to first recall (e.g. Sederberg et al., 2010; Unsworth, 2009).
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An advantage of summary measures is that they provide a single variable on which to

compare individuals. By contrast, the Recall Dynamics Functions of Figure 1 include 36

separate variables (16 points in the PFR, and 10 points each in the lag-CRP and semantic-

CRP). Directly examining individual differences on these 36 dimensions would be

intractable. Instead, we use factor analysis as a tool to reduce the Recall Dynamics

Functions to a manageable number of dimensions while retaining the richness of the data.

This approach allows us to address three questions.

First, how many sources of variance underlie individual differences in the Recall Dynamics

Functions, and what do these sources mean in terms of cognitive processes? Answering this

question will place constraints on models of memory search (Underwood, 1975). Intuitively,

one may predict that separate sources of variance contribute to each of the Recall Dynamics

Functions (i.e., an initiation factor, a temporal contiguity factor, and a semantic contiguity

factor). Under most models of memory, however, each of the Functions results from

multiple interacting mechanisms, making it unclear how many factors a model predicts. For

example, under retrieved context models (e.g., Polyn, Norman, & Kahana, 2009), one

parameter governs the influence of new temporal associations, another governs existing

semantic associations, and both are scaled by a third parameter. In principle, individuals

could differ on any or all of these parameters; thus, the model could predict that as few as

one and as many as three sources of variance underlie the temporal and semantic Recall

Dynamics Functions. The predictions of other models are similarly ambiguous (see the

Discussion for more on this issue).

Second, do the Recall Dynamics Functions provide a complete description of the processes

governing memory search? If so, they should contain all of the information needed to

reconstruct an individual’s overall probability of recall, which represents the outcome of all

memory search processes. Answering this question will help identify gaps in our

understanding of recall dynamics; if a substantial proportion of the variance in overall recall

is unexplained, it suggests that the Recall Dynamics Functions miss important memory

processes.

Finally, which memory processes are related to intelligence? Knowing which aspects of the

Recall Dynamics Functions correlate with intelligence will allow modelers to test whether

the corresponding parameter in a model is also correlated with intelligence. For the

individual differences literature, knowing how the internal factor structure of recall

dynamics relates to intelligence will advance the goal of understanding why memory

predicts intelligence.

Methods

Participants

The data reported here are from the Penn Electrophysiology of Encoding and Retrieval

Study (PEERS). PEERS aims to assemble a large database on the electrophysiological

correlates of memory encoding and retrieval. The present analyses are based on the 141

college students (age 17–30) who had completed Experiment 1 of PEERS as of September

2013. Participants were recruited through a two–stage process. First, we recruited right-

Healey et al. Page 5

J Exp Psychol Gen. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



handed native English speakers for a single session to introduce participants to EEG

recordings and the free recall task (EEG data are not reported here). Participants who

completed this introductory session were invited to enroll in the full study, on the condition

that they did not make an excess of eye movements during item presentation epochs of the

experiment and their probability of recall was less than 0.8. Approximately half of the

subjects recruited for the preliminary session qualified for, and agreed to participate in, the

multi-session study. Participants were consented according the University of Pennsylvania’s

IRB protocol and were compensated for their participation.

PEERS Experiment 1

For completeness, we provide a full description of PEERS Experiment 1, but note that our

primary analysis was conducted on the immediate free recall data. Participants performed a

free recall experiment consisting of 1 practice session and 6 subsequent experimental

sessions (the practice session is not included in the analyses reported below, though we note

that including it produces almost identical results and does not change any conclusions).

Each session consisted of 16 lists of 16 words presented one at a time on a computer screen.

Each study list was followed by an immediate free recall test and each session ended with a

recognition test. The practice session and half of the experimental sessions were randomly

chosen to include a final free recall test before recognition, in which participants recalled

words from any of the lists from the session.

Words were either presented concurrently with a task cue, indicating the judgment that the

participant should make for that word, or with no encoding task. The two encoding tasks

were a size judgment (“Will this item fit into a shoebox?”) and an animacy judgment (“Does

this word refer to something living or not living?”), and the current task was indicated by the

color and typeface of the presented item. Using the results of a prior norming study, only

words that were clear in meaning and that could be reliably judged in the size and animacy

encoding tasks were included in the pool. There were three conditions: no-task lists

(participants did not have to perform judgments with the presented items), single-task lists

(all items were presented with the same task), and task-shift lists (items were presented with

either task). The first two lists were task-shift lists, and each list started with a different task.

The next fourteen lists contained four no-task lists, six single-task lists (three of each of the

task), and four task-shift lists. List and task order were counterbalanced across sessions and

participants.

Each word was drawn from a pool of 1638 words. Lists were constructed such that varying

degrees of semantic relatedness occurred at both adjacent and distant serial positions.

Semantic relatedness was determined using the Word Association Space (WAS) model

described by Steyvers, Shiffrin, and Nelson (2004). WAS similarity values were used to

group words into four similarity bins (high similarity: cosθ between words > 0.7; medium–

high similarity, 0.4 < cosθ < 0.7; medium-low similarity, 0.14 < cosθ < 0.4; low similarity,

cosθ < 0.14). Two pairs of items from each of the four groups were arranged such that one

pair occurred at adjacent serial positions and the other pair was separated by at least two

other items.
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For each list, there was a 1500 ms delay before the first word appeared on the screen. Each

item was on the screen for 3000 ms, followed by jittered (i.e., variable) inter-stimulus

interval of 800–1200 ms (uniform distribution). If the word was associated with a task,

participants indicated their response via a keypress. After the last item in the list, there was a

jittered delay of 1200–1400 ms, after which a tone sounded, a row of asterisks appeared, and

the participant was given 75 seconds to attempt to recall aloud any of the just-presented

items.

If a session was selected for final free recall, following the immediate free recall test from

the last list, participants were shown an instruction screen for final free recall, telling them to

recall all the items from the preceding lists. After a 5 s delay, a tone sounded and a row of

asterisks appeared. Participants had 5 minutes to recall any item from the preceding lists.

After either final free recall or the last list’s immediate recall test was a recognition test,

which is not considered here (for full details see Lohnas & Kahana, 2013).

PEERS Experiment 2

PEERS Experiment 2 was used to test the generalizability of our factor analysis. Of the 141

participants included in our main analyses, 127 also completed Experiment 2, which differed

from Experiment 1 as described below. There was one practice session (not analyzed)

followed by 6 experimental sessions each consisting of 12 study lists of 16 words.

Experiment 2 included a mix of immediate recall lists, delayed recall lists (in which the final

word was followed by a distractor task), and continual distractor lists (in which each word

was followed by a distractor task). Distractor tasks consisted of answering math problems A

+ B + C =?, where A, B, and C were positive, single-digit integers, though the answer could

have been one or two digits. When a math problem was presented on the screen, the

participant typed the sum as quickly as possible. The task was self-paced, such that a

participant may have been presented with, but not responded to, a problem at the end of the

distraction interval. Participants were given a monetary bonus based on the speed and

accuracy of their responses. In the first two trials, participants performed free recall with one

trial having a distractor period following the last word presentation for 8 s. For the other of

the first two trials, participants performed the distractor task for 8 s prior to and following

each word presentation. In the remaining 10 trials, participants performed free recall with 5

possible time durations for the between-item and end-of-list distractor tasks. As listed here,

the first number indicates the between-list distractor duration and the second number

indicates the end-of-list distractor duration, both in seconds: 0-0 for immediate recall, 0–8 or

0–16 for delayed recall, and 8–8 or 16-16 for continual distractor recall. A 0 s distractor

refers to the typical, non-filled duration intervals as described for Experiment 1. Within each

session, 50% of the lists were randomly chosen to be task-switch lists, and the other half

were single-task lists.

Intelligence Testing

The Wechsler Adult Intelligence Scale (WAIS) IV (Wechsler, 2008) was administered to

101 of the participants who completed Experiment 1. WAIS testing was conducted by a

trained clinical psychologist in one–on–one sessions after completing all free recall sessions.
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We omitted the working memory index of the WAIS as we were concerned that

participants’ extensive practice with free recall would artificially inflate their scores.

Results

Identifying Sources of Variance in Recall Dynamics

The Recall Dynamics Functions are composed of 36 variables (16 points in the PFR, and 10

points each in the Lag-CRP and Semantic-CRP). We want to know how many cognitive

processes contribute to individual differences on these 36 variables. If we call the true

number of underlying process m, then we should be able to represent most of the variability

in the Dynamics Functions by using a factor analysis to extract m statistical factors from the

data. Extracting fewer than m factors will fail to capture all of the variability in the dataset,

whereas extracting more than m factors will overestimate the number of contributing

processes. The question then becomes, what is the value of m.

To find the appropriate value of m, we use a Monte Carlo method (Glorfeld, 1995; Horn,

1965) that starts with the intuition that a dataset with m underlying sources of variance (i.e.,

factors) will look different than a dataset with uncorrelated variables. Given a particular

dataset, we can start by extracting a single factor and seeing how much of the variance in the

data is accounted for by that factor. As we increase the number of factors extracted, the total

amount of variance accounted for will tend to increase. If the data contain no true factors,

then each factor should account for only a small proportion of the variance (i.e., each factor

should have a small eigenvalue). By contrast, if the data actually have m factors, then the

first m factors should account for a considerable proportion of the variance (i.e., should have

large eigenvalues), and factors > m should account for less variance. In other words, the first

m eigenvalues of a dataset with m factors should be higher than the corresponding

eigenvalues for uncorrelated datasets. Thus, to find the value of m we need to determine

what the eigenvalues would be if there were no true factors, and then compare these with the

eigenvalues obtained from the participants’ data.

We determined the expected eigenvalues for uncorrelated data by running a factor analysis

on a simulated dataset that has the same means and variance as the actual data, but in which

the variables are uncorrelated. Taking the PFR as an example, the value of a person’s PFR at

serial position 1 will likely be correlated with the value of their PFR at serial position 2. To

create a simulated PFR that has the same shape as the original, but lacks its correlation

structure, we started with serial position 1 and drew values (one for each actual participant)

from a random distribution with a mean and variance equal to the mean and variance of the

actual PFR at serial position 1. We did the same for serial position 2, and so on. Because

each serial position is drawn from an independent random distribution, there will be no

correlation between serial positions. We created simulated lag-CRPs and simulated

semantic-CRPs in the same way, providing us with a full set of simulated Recall Dynamics

Functions.

We then ran a factor analysis on the simulated dataset and saved the eigenvalues. We

repeated this procedure for 1000 simulated datasets to build a distribution of expected

eigenvalues for uncorrelated data. We then compared eigenvalues computed from the actual
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data with this distribution: If the data have m factors, the eigenvalues for the first m factors

should lie above the 97.5th percentile of the simulated distribution but those for factors

greater than m should not. Figure 2 indicates that 4 factors underlie the Recall Dynamics

Functions.1

Linking Factors to Memory Processes

Once we have identified the correct number of factors, extracting those factors from the data

provides two key sets of numbers that can help to link the factors to cognitive processes. The

first is a set of factor loadings that describe how much each factor contributes to variation on

each of the 36 original variables (e.g., a process that controls recall initiation would likely

have strong loadings for the PFR, but weaker loadings for the Lag-CRP and the Semantic-

CRP). The second is a set of factor scores, one for each factor, that shows where in the

distribution of variation on that factor each individual lies and can be used to compare sub–

groups of participants (e.g., those that show different patterns of recall initiation).

The initial set of loadings returned by the factor analysis algorithm requires the factors to be

orthogonal. However this initial solution can be “rotated” to make it more theoretically

meaningful (Kline, 2005). Because there is no strong theoretical reason to believe that

memory processes should be uncorrelated, we applied an oblique rotation (the Promax

rotation), which allows factors to correlate. To ensure that the factor loadings are not biased

by outliers and to provide confidence intervals on the loadings, we ran a jackknife procedure

in which we ran the factor analysis multiple times, each time leaving one participant out of

the sample (Clarkson, 1979). We used the distribution of loadings across samples to create

99% confidence intervals around the mean loadings. These mean loadings were then used to

calculate factor scores using the Bartlett (1937) method. Next, we examined the factor

loadings and scores to link the factors to memory processes.

Each point in the Recall Dynamics Functions has one loading for each of the factors, and the

square of these loadings tells us how much of the variance in that variable is explained by

the factor (analogous to the R2 in a regression). Figure 3 shows squared loadings mapped

onto the original variables and Table 1 shows the non–squared loadings.

The PFR loads primarily on factors 2 and 3, suggesting two major sources of individual

differences in recall initiation. As discussed above, we have recently identified sub–groups

of participants that exhibit distinct patterns of recall initiation (Healey & Kahana, in press).

To provide a clearer interpretation of the two recall initiation factors, we divided participants

into these sub–groups using the same k-means clustering procedure we employed in that

earlier work. Figure 4 shows the average PFR curves for each subgroup: the strong recency

sub–group shows a strong tendency to initiate recall from the final item, the moderate

recency sub–group shows a more moderate tendency to initiate from the final item, the

primacy sub–group shows a strong tendency to initiate from the very first item, the final

sub–group shows a tendency to initiate 3–4 items back from the end of the list. We argue

1All of the factor analyses reported in this paper were conducted in MATLAB Release 2013a using the factoran function of the
Statistics Toolbox. All path analyses reported here were conducted in R Version 3.0.1 using the lavaan package (Rosseel, 2012).
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that this sub-group encodes the last few items as a chunk (Farrell, 2012), and thus label it the

chunking sub–group.

We focus first on interpreting factor 2. Table 2 shows the average factor scores for reach of

the recall initiation sub–groups. Looking at the factor 2 row of the table, we see that the

chunking sub–group has the highest factor scores, the recency sub–groups have the lowest

scores and the primacy sub–group has scores near zero. This pattern suggests that factor 2

captures a tradeoff between the recency and chunking patterns (participants with high scores

on this factor tend to initiate recall several items back from the end of the list, whereas those

with low scores tend to initiate from the very last item). This interpretation is bolstered by

examining how the loadings for factor 2 vary across serial positions (Figure 3A). The

loadings are lowest for early serial positions and largest for late serial positions (those

greater than 9), suggesting that the factor describes a tendency to initiate from the recency

portion of the list. Note, however, that it is serial position 14 and not the very last serial

position (position 16) that loads most strongly on Factor 2. Moreover, the non–squared

loadings in Table 1 indicate that whereas serial positions 9–15 have strong positive loadings

on Factor 2, serial position 16 actually has a strong negative loading. In other words, a large

positive score on factor 2 predicts a high probability of initiating from somewhere near, but

not at, the end of the list, whereas a large negative score on factor 2 predicts initiating from

the very end of the list. Together, the differences in factor scores across initiation sub–

groups and the differences in factor loadings across serial positions indicate that factor 2

captures two patterns of initiating from recency items. We therefore label this factor the

recency factor.

Focusing on factor 3, we see that factor scores are highest for the primacy sub–group and

lowest for the strong recency sub–group (Table 2) and intermediate for the moderate recency

and chunking groups (participants in these groups very occasionally initiate from the

beginning of the list; see Figure 4). This pattern of scores across sub–groups suggests that

factor 3 captures the tendency to initiate recall from primacy items. Supporting this

interpretation, early serial positions (positions less than 9) loaded most strongly onto Factor

3 (Figure 3A and Table 1). We therefore label factor 3 the primacy factor.

The finding that there are distinct primacy and recency factors is consistent with models that

assume primacy and recency derive from separate mechanisms. For example, retrieved

context models (e.g., Lohnas, Polyn, & Kahana, submitted; Polyn et al., 2009) assume

primacy is due to increased attention to early list items whereas recency is due to mental

context states at retrieval providing strong cues for recently presented items. We return to

this point in the discussion.

Post–initiation dynamics, as described by lag-CRP and semantic-CRP, load primarily on

factors 1 and 4 (Figure 4B and C). Factor 1 is strongly related to near temporal transitions

and far semantic transitions. By contrast, factor 4 loads most strongly on near semantic

transitions and distant temporal transitions. Therefore we label factor 1 and factor 4 as the

temporal and the semantic Process Factors respectively. The fact that the temporal factor has

high loadings not just for near temporal transitions but also for far semantic transitions (and

that the semantic factor has high loading not just for near semantic transitions but also for
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distant temporal transitions), likely reflects a natural tradeoff between temporal and

semantic clustering. Take the extreme example of a participant who shows perfect temporal

clustering (i.e., recalls in perfect serial order) and makes no use of semantic associations.

Because our lists are arranged so that most words with strong semantic associations are not

temporally contiguous, such a participant would tend to make few transitions between close

semantic associates, which necessarily means they will show stronger contiguity for items

with low semantic similarity than for items with strong semantic similarity2.

For each participant, we can use their factor scores as measures of their primacy, recency,

temporal, and semantic processes. Before we use the scores as individual differences

measures, however, we must ensure they are reliable. To assess reliability we used the split–

half technique. Specifically we used the factor loadings from the full dataset to compute a

set of factor scores for half of the 6 sessions and another set of factor scores for the other

half of the six sessions and correlated the two sets of scores. We repeated this procedure for

100 split–half samples to compute average split-half reliability. These reliabilities for the

Primacy, Recency, Temporal, and Semantic factors (± a 95% confidence interval computed

across the samples) were .86 ± .005, .88 ± .005, .82 ± .007, and .68 ± .006, respectively. The

reliability of overall recall, computed using the same procedure, was .90 ± .005. These

values are well above the common threshold of .6 for acceptable reliability. To determine

how the 4 factors relate to each other, we correlated participants’ scores across the factors

(Figure 5). Despite our use of an oblique factor rotation, the factor scores remain largely

uncorrelated. The lack of a correlation between temporal and semantic factors (see also

Sederberg et al., 2010) suggests that temporal and semantic clustering arise from two

distinct cognitive processes.

Using recall dynamics to predict overall accuracy

Overall accuracy reflects the outcome of all the processes that contribute to memory search.

If the Recall Dynamics Functions provide a complete description of recall dynamics, we

should be able to use the factors derived above to predict overall recall. Because none of

these Recall Dynamics Functions reflect recall success directly, there is no a priori reason

for the factors to correlate with recall success (Sederberg et al., 2010).

As shown in Figure 5, the temporal and semantic factors are both predictive of overall recall

success, but the initiation factors are not. In a meta-analysis, Sederberg et al. (2010) found

that for random word lists a temporal clustering summary score was moderately correlated

with recall success, but that a semantic summary score was not, whereas in lists that include

pairs of semantically related words, as did our lists, semantic clustering was predictive of

recall success. This pattern of results suggests that the relationship between clustering and

recall success depends on the content of the lists. As we elaborate in the discussion,

participants may dynamically tune their memory systems to up–weight associations that

facilitate performance and down–weight those that do not.

2Table 2 suggests that the recall initiation sub–groups do not show much difference on the temporal and semantic factors. Ignoring the
Primacy sub–group, there are no significant differences among the recency and chunking sub–groups. The Primacy sub–group does
show some trends, but we suggest these differences be interpreted with caution given the small number of participants in that sub–
group.
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To determine how well the factors account for overall recall accuracy, we can use all four

factors to simultaneously predict recall. Figure 6 shows the results. The figure is essentially

a simultaneous regression but we present it as a path analysis model to maintain consistency

with more complex analyses we present later. Each box in the figure represents a variable,

and the arrows connecting the boxes represent the influence of variables on each other, with

the direction of the arrow giving the presumed direction of the effect (e.g., we assume that

the process factors cause variance in overall recall). The numbers next to the paths are

analogous to standardized beta weights in a regression. Note that in this and all subsequent

path analyses the factors were allowed to correlate, but because these correlations are very

similar to those in Figure 5 they are omitted from the path diagrams to improve clarity. The

figure shows that together the four factors account for 83% of the variability in overall

recall, suggesting that the Recall Dynamics Functions provide a near–complete description

of recall dynamics. No doubt other factors (e.g., idiosyncrasies in semantic relationships not

captured by LSA) account for some proportion of overall recall, but apparently not more

than 17%. Examining the individual paths, we see that the temporal and semantic factors

were significant predictors of overall recall (solid lines represent significant paths), but that

the primacy and recency factors were not. Participants who initiate recall from the beginning

of the list will tend to experience output interference that lowers recall of items from later

serial positions, whereas participants who initiate from near the end of the list will

experience interference that lowers recall of early items (Cowan, Saults, Elliott, & Moreno,

2002). To ensure that these opposing interference effects were not obscuring any true

correlation between overall recall and either the primacy or recency factors, we recalculated

the correlations excluding the 8 participants in the primacy sub–group (see table 2), leaving

only participants who initiate recall from near the end of the list. Excluding these

participants did not change the direction or significance of the correlations among the

factors, overall recall, and IQ. That is, variation in how participants initiate recall (which

item they start with) does not predict overall recall success. Instead it is how participants

transition among items after initiating that is critical.

Validating the factor structure

A strong test of the validity of the factor structure would be to use the factors computed

above to predict performance on a second dataset. Of the 141 participants who completed

Experiment 1 of PEERS, 127 also completed Experiment 2. We can use the data from this

second experiment to validate the factor structure we discovered in the Experiment 1 data.

One approach would be to independently rerun the entire factor analysis on the Experiment

2 data. A more stringent test, however, would be to use the factors derived in Experiment 1

to predict Experiment 2 performance.

Figure 7 shows the Recall Dynamics Functions for Experiment 2. Figure 8 shows the

squared correlations between each Experiment 1 factor and the Experiment 2 Recall

Dynamics Functions, which can be interpreted in the same way as the squared factor

loadings in Figure 3. Examining Figure 8 reveals that the loading patterns are quite similar

across the three versions of free recall in Experiment 2, and also quite consistent with the

loading pattern observed in Experiment 1. The most notable deviation is that the primacy

and recency factors explain less of the variability in the PFRs from Experiment 2 than they
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did for Experiment 1. Why would the recall initiation factors show less generalization across

experiments than the post–initiation transition factors? We have recently shown that whereas

all participants show qualitatively similar lag– and semantic–CRP functions, there is more

variability in the shape of PFR functions, with most participants showing a recency heavy

function but a minority showing either a non–monotonic “clustering” pattern or a primacy

pattern (Healey & Kahana, in press). We suggested that the variability in PFR functions may

reflect, in part, differences in strategy. It is possible that because Experiment 2 intermixes

immediate recall trials, which tend to show a recency initiation pattern, with delayed trials

which tend to show a shift toward a primacy initiation pattern (compare the PFR curves in

Figure 7). Participants may vary in the extent to which they show this shift, reducing the

predictive power of the initiation factors derived from Experiment 1. In contrast, the fact

that the temporal and semantic factors tend to correlate with the same Recall Dynamics

Function points across all three recall tasks suggests that the same processes govern post–

initiation dynamics regardless of distractor condition.

This interpretation of the relative consistencies of the factors across task type is supported

by examining the ability of the Process Factors derived from Experiment 1 to predict overall

recall on the three Experiment 2 tasks. Figure 9 shows path diagrams of these predictions.

For immediate free recall (Figure 9A), the pattern is very similar to that seen in Experiment

1 (Figure 6), with the temporal and semantic factor both being significant predictors but the

primacy and recency factors being non-significant. This strengthens our claim that variation

in post recall dynamics is more diagnostic of episodic memory ability than variation in recall

initiation patterns. An even stronger test is to use the factors from immediate free recall to

predict delayed and continual distractor tasks. If the three tasks rely on the same

mechanisms, as predicted by retrieved context models (e.g., Polyn et al., 2009), we would

expect the quality of prediction to be quite high. If, however, the tasks rely on different

processes (e.g., short– versus long–term memory; Davelaar, Goshen-Gottstein, Ashkenazi,

Haarmann, & Usher, 2005) the quality of prediction should suffer. Panels B and C of Figure

9 show that the quality of prediction is, in fact, excellent: The immediate free recall factors

predict 62% of the variability on delayed free recall, and 51% of the variability on continual

distractor free recall. Once again, the temporal and semantic factors were significant

predictors, but the primacy and recency factors were not.

The ability of the factor structure derived from IFR in Experiment 1 to predict delayed recall

in Experiment 2 is particularly striking in that it suggests that any sources of variance

uniquely related to a short–term buffer, which should be emptied by the distractor, account

for a relatively small proportion of the variance in both overall recall and the dynamics

functions. We note that the R2 for continual distractor free recall is somewhat lower than for

the other two conditions. This suggests the possibility that continual distractor recall may

capture a source of individual differences that is not (as fully) captured by immediate free

recall. One possibility is that participants may vary in the extent to which mental context

drifts during distractor intervals.
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Using recall dynamics to illuminate the memory/intelligence correlation

The distribution of IQ scores in our sample (Figure 5), while roughly normal, is above the

population average. Despite this abbreviated range, which will tend to produce

underestimates of the true correlations between memory and IQ, we found a correlation

between overall recall and IQ of .39 (see Figure 5), within the range reported in meta–

analyses (Ackerman et al., 2005). Translating this correlation into proportion of variance,

overall recall accounted for 15% of the variability in IQ (Figure 10A). One of the main goals

in the study of individual differences in memory is to determine which memory processes

are responsible for the variance shared between overall recall and IQ. That is, why does

overall recall success predict IQ? Do the Process Factors we have identified here help

answer this question?

The first step is to examine the correlations between the factors and IQ. Figure 5 shows that

both the temporal and the semantic factor are significantly correlated with IQ but that

neither the primacy nor the recency factors are. Next we ran a simultaneous regression using

the four factors to predict IQ. Together, the factors accounted for 14% of the variability in

IQ scores (Figure 10B), with the temporal factor being the strongest predictor. Note that

overall recall and the process factors account for almost identical proportions of variance in

IQ (i.e., 15% and 14% respectively). If the processes factors are measuring individual

differences in the memory processes that drive the correlation between overall recall and IQ,

we should find that the factors and overall recall account for overlapping portions of the

variability in IQ.

To test if our factors fully account for the relationship between memory and IQ we

conducted a commonality analysis (Nimon, Lewis, Kane, & Haynes, 2008). A commonality

analysis takes the total variance in one variable explained by a set of predictor variables and

attempts to break it down into variance that is uniquely accounted for by one predictor (but

not others), and variance that is explained by several predictors (i.e., shared variance).

Commonality analysis has previously been used to partition the variance in IQ explained by

working memory versus episodic memory tasks (Unsworth & Spillers, 2010). If you

imagine all of the variation in IQ as a pie, the variability accounted for by overall recall

would be a slice (15%) of the pie. The bar in Figure 11 represents that slice of the pie. We

can further divide the slice into parts that represent variability uniquely explained by recall

(but not the factors) and variance that is common to overall recall and the factors. Our

prediction is that the portion unique to overall recall will be small. Consistent with our

prediction, less than 20% (i.e., less than 3% of the entire IQ pie) of the variance was unique

to overall recall. That is, overall recall and the factors account for almost completely

overlapping variance in IQ suggesting that recall dynamics capture the processes that allow

memory to predict IQ.

This view of the relationship among the factors, overall recall and IQ is made explicit in the

path analysis model in Figure 12. As we discussed in the introduction, the standard approach

to determining whether a particular cognitive process accounts for the relationship between

memory and IQ is to statistically control for variation in a third task that measures the

process in question. This mediation logic assumes that the third task provides a purer, or
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more sensitive, measure of the process in question than does either memory or IQ. By

contrast we have extracted measures of memory processes directly from detailed measures

of task performance rather than using a non–memory proxy task. That is, overall recall

contains the same information as our process factors but compresses the information into a

single measures; our factors uncompress the data.

Consistent with the logic that the factors represent the processes contributing to overall

performance, the path model in Figure 12 includes direct paths (i.e., single-headed directly

connecting boxes) from each factor to overall recall, which in turn has a direct path to IQ.

Each factor also has an indirect path to IQ via their influence on overall recall. In the

language of path analysis, our prediction is that these indirect effects of the process factors

on IQ via overall recall should account for the bulk of the direct effect of overall recall on

IQ. As expected, the direct effects of the factors on IQ are all non-significant. Indeed,

constraining the direct paths from each of the factors to IQ to be equal to zero, provided a

very good fit to the data (χ2(4) = 2.3, p = 0.68). That is, none of the factors directly

contribute to variation in IQ. Instead their effects are mediated by their influence on overall

recall.

Discussion

Performance on memory tasks predicts many other cognitive abilities (Daneman &

Carpenter, 1980; Jacobs, 1887; Mogle et al., 2008). To better understand which memory

processes underlie these correlations we examined individual differences in measures of

recall dynamics. We found that four distinct factors contribute to individual differences in

memory search: a tendency to initiate recall from near the end of the list (recency), a

tendency to initiate from near the beginning of the list (primacy), a temporal factor

corresponding to transitions mediated by temporal associations, and a semantic factor

corresponding to transitions mediated by long–standing semantic associations. We show that

the four factors account for 83% of the variability in overall recall, suggesting that they

provide a near–complete description of the processes that contribute to individual

differences in recall success. To validate this factor structure, we used the factors computed

from immediate free recall in PEERS Experiment 1 to predict recall performance in PEERS

Experiment 2: the Experiment 1 factors accounted for 60%, 62%, and 51% of the variance in

Experiment 2 immediate, delayed, and continual distractor recall, respectively. Moreover,

the factors accounted for over 80% of the relationship between memory and IQ, with the

temporal factor being the most important single factor.

Implications for Models and Theories

The factor structure reported here places a new class of constraints on memory models. The

dominant approach to model validation has been to fit models to data averaged across

participants. An accurate model of memory search, however, should also account for

differences among individuals: That is, the covariance of the data. To our knowledge, no

attempt has been made to fit the covariance structure of recall dynamics. Some preliminary

observations are possible, however. For example, under dual–store models, temporal

contiguity effects emerge from items spending time together in short-term memory; short-
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term memory also powerfully influences the tendency to initiate recall from the end of list,

which may suggest temporal contiguity and initiation would share variance. Under retrieved

context models, which assume memory is mediated by associations between items and a

drifting internal context representation, there is also reason to predict contiguity and

initiation should be correlated, as both mechanisms are influenced by a common context

drift rate parameter. Contrary to these intuitive predictions, we found that recall initiation

and temporal contiguity are largely independent. Future modeling work should explore

whether existing models can simulate the factor structure discovered here.

For the individual difference literature, our results provide a fresh perspective on which

memory processes correlate with IQ. Most of the correlation between memory and IQ is

accounted for by individual differences in temporal contiguity: Individuals who show

stronger temporal clustering tend to recall more items and have higher IQs. This finding is

not an obvious prediction of theories that assume that individuals with higher IQs can recall

more items because they can hold more items in working memory (Kane et al., 2007;

Oberauer, 2002). Indeed, it is difficult to predict how variation in working memory storage

capacity would impact temporal clustering. Under most dual–store memory models (e.g.

Kimball, Smith, & Kahana, 2007; Raaijmakers & Shiffrin, 1981; Sirotin, Kimball, &

Kahana, 2005), temporal associations are formed between items that spend time together in

working memory (see Cowan, Donnell, & Saults, 2013, for empirical evidence of this

assumption). Therefore one possible prediction is that individuals who hold more items in

working memory at a time will form longer–range temporal associations. Longer–range

temporal associations would lead to more transitions at longer lags (i.e., a shallower lag-

CRP curve) and fewer transitions at the short lags that load strongly on the temporal factor.

Therefore, one would expect individuals with large working memory capacities to have

lower temporal factor scores. An alternative prediction is that having more items in working

memory at once will allow the formation of longer chains of associated items. For example,

a small working memory capacity individual may form associations between two items (A

and B), whereas a large working memory capacity individual may form associations among

four (A, B, C, and D). If participants tend recall items in serial order within such chains

(e.g., because each item serves as a cue for the next item in the chain; Lohnas & Kahana,

2014), then the higher capacity individual would make more short–lag transitions (A to B, B

to C, C to D) than would the lower capacity individual (A to B), leading to a steeper lag-

CRP curve.3 In our view, rigorous modeling will be required to clarify these predictions and

determine if dual–store models are consistent with the factor structure we have described

here.

The ability of the factors derived from immediate free recall in Experiment 1 to account for

roughly equal amounts of variance in both immediate and delayed recall in Experiment 2

(i.e., 60% and 62% respectively) is also challenging for theories that emphasize working

memory. From a dual–store perspective, one may have predicted that variance related to the

short–term buffer would be more important in predicting performance in immediate than

3We thank Nelson Cowan for suggesting this alternative prediction
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delayed recall because the distraction filled delay would empty the buffer, forcing

participants to rely on other memory processes.

The data are more easily interpreted within frameworks that assume that, although working

memory capacity is an important correlate of IQ, the ability to efficiently search long–term

memory is also key (e.g., Unsworth & Engle, 2007). Spillers and Unsworth (2011) found

that individuals with large working memory span scores showed more temporal clustering

than individuals with lower span scores. Drawing from retrieved context models that assume

memory is mediated by associations between items and a drifting mental context

representation, they argued that this difference resulted from low–span individuals being

less able to use contextual information associated with a just–recalled item to guide retrieval

of the next item. Promising theories such as this highlight the value of bringing the

individual differences and episodic memory modeling literatures into closer contact. Below

we sketch how episodic memory models might further illuminate the connections between

temporal contiguity, memory ability, and IQ.

Temporal Contiguity and Intelligence

The temporal factor, corresponding to a tendency to make near temporal transitions, was

most predictive of memory accuracy and IQ. What does the importance of temporal

contiguity tell us about memory and IQ?

One possibility is that the degree of temporal contiguity a participant shows in free recall is

a measure of their ability to adapt to the demands of the task. Such adaptation may be

achieved by dynamically tuning the relative influence of different types of associations as

required by the demands of different tasks (Healey & Kahana, in press). For example, when

recalling lists that contain pairs of words with moderate semantic associations, such as those

used here, it is likely beneficial to allow both existing semantic associations and new

temporal associations to guide recall. Consistent with this suggestion, we found that

although the temporal factor was the most important in predicting recall success and IQ, the

semantic factor was also correlated with recall (r = .56) and was the second most important

factor in predicting IQ. Free recall of completely random lists is likely to benefit from

increasing the influence of temporal associations and down–tuning the influence of

semantics, consistent with the finding of Sederberg et al. (2010) that temporal but not

semantic clustering correlated with recall for random lists. Dynamically tuning the memory

system to adapt to the demands of a task likely occurs outside of conscious awareness in

response to experience with the task. For example, Golomb, Peelle, Addis, Kahana, and

Wingfield (2008) used the serial recall task, in which relying on existing semantic

associations is likely to impair recall and it would be optimal to have temporal associations

dominate recall. They found that across multiple learning trials, young adults progressively

came to rely on temporal associations, showing stronger temporal clustering but weaker

semantic clustering across trials. Intelligence tasks likely require a similar ability to quickly

tune cognitive systems to optimally meet the task demands.

Although the ability to dynamically adapt to task demands is likely part of why strong

temporal clustering predicts recall success and IQ, retrieved context models of the contiguity

effect (e.g., Polyn et al., 2009) suggest a deeper connection between clustering and
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intellectual ability. To illustrate, we must first describe how temporal contiguity arises in

such models: When an item is presented it becomes associated with an internal context

representation. The context representation drifts through a high–dimensional space as items

are presented, but in an autocorrelated fashion so that items presented in temporal proximity

become associated with similar contextual states. During retrieval, context is used as a cue.

When item i is recalled, its associated context is retrieved and integrated into the context

representation that cues the next item. This retrieved context is a strong cue for items

presented near i as those items were associated with similar contexts, giving rise to the

temporal contiguity effect.

Recall success may depend on a participant’s ability to regulate the drift of their context

representation such that each recalled item retrieves a context that serves as an effective cue

for another list item. We can picture the current state of context as a point in multi–

dimensional space. When context drifts, it moves to another part of the space. Some parts of

the space (i.e., different possible states of context) were active during the study phase and

became associated with list items. Other parts of the space were not active during study and

are not strongly associated with list items. Therefore, allowing mental context to drift to

some parts of this space will result in a highly effective cue for list items, whereas allowing

it to drift to other parts of the space will provide a very poor cue. Participants may vary in

the ability to guide context toward favorable parts of the space, perhaps by using the current

state of context to weight the retrieved state of context, preventing it from drifting too far

from the context associated with list items. The converse of guiding context to favorable

states is preventing it from drifting to states that make non-list items, such as those that were

presented on earlier lists or those that are semantically related to true list items, more

accessible. Such “context gating” could be used to demarcate list boundaries, making task-

irrelevant memories inaccessible, and may reflect the computational basis of the ability to

resolve interference (Healey, Campbell, Hasher, & Ossher, 2010).

How do context regulation and gating relate to intelligence? A simple answer is that any

complex task requires selective memory access. A deeper answer, however, is suggested by

Duncan’s (2010) idea of a multiple demand system. Under this view, frontal neurons

instantiate distinct connection patterns reflecting current task demands, with orthogonal

connection patterns across different phases of an experiment forming boundaries between

different tasks. This notion of rapidly changing frontal networks is closely related to the

notion of an internal context representation that dynamically modulates the accessibilities of

various memories. It may be that the ability to use internal contextual representations to

dynamically gate access to relevant memories and response tendencies is a basic

computational principle across tasks and a key component of intelligence.
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Figure 1.
The Recall Dynamics Functions. Data are from the 141 participants who completed

Experiment 1 of the Penn Electrophysiology of Encoding and Retrieval Study. Participants

studied multiple 16–item lists for immediate free recall (see the Methods section for details).

A. Probability First Recall curve. B. Lag-Conditional Response Probability curve. C.

Semantic-Conditional Response Probability curve. See the text for details on how these

curves are computed. Error bars are 95% within-subject confidence intervals (Loftus &

Masson, 1994).
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Figure 2.
Results of Monte Carlo factor identification procedure (Glorfeld, 1995; Horn, 1965). The

shaded region represents the middle 95% of the distribution of eigenvalues from 1000

simulated datasets that contained no factor structure. The line represents eigenvalues for the

actual data. Only Factors 1–4 in the actual data fall above the shaded region indicating they

explain more variability than expected by chance, and that the data contain 4 significant

sources of variance.
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Figure 3.
Squared loadings mapped onto the Recall Dynamics Functions: A. Probability First Recall

curve. B. Lag-Conditional Response Probability curve. C.

Semantic-Conditional Response Probability curve. The values at each point indicate the

percentage of variance across participants that is accounted for by each factor. Error bars

represent 99% confidence intervals (see text for details on how confidence intervals were

computed). N = 141.
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Figure 4.
Mean Probability First Recall curves for each of the four clusters of participants identified

by Healey and Kahana (in press). K-means with k = 4 was used to assign each participant to

a cluster. A. The strong recency cluster. B. The moderate recency cluster. C. The primacy

cluster. D. The chunking cluster. Error bars are 95% within-subject confidence intervals

(Loftus & Masson, 1994).
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Figure 5.
Correllelogram for the Process Factors (Factor T = Temporal Factor, Factor R = Recency

Factor, Factor P = Primacy Factor, Factor S = Semantic Factor), overall recall, and WAIS-

IV IQ. All correlations involving IQ have N = 101; all other correlations have N = 141. Plots

on the diagonal show histograms of each variable; plots in the bottom triangle are scatter

plots; the upper triangle shows the correlation coefficients. For correlation coefficients, the

size of the typeface is proportional to the absolute size of the coefficient. Correlation values

in italics are non–significant.
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Figure 6.
A path analysis model predicting overall recall from the four process factors. Each box

represents a variable. The single-headed arrows connecting the variables represent

hypothesized direct effects of one variable on another; the numbers next to single-headed

arrows are standardized path coefficients and can be interpreted as standardized regression

coefficients. In fitting the model, the process factors were allow to correlate but the paths are

omitted from the diagram for clarity. The R2 value is the proportion of variance in overall

recall accounted for by the process factors. N = 141.
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Figure 7.
The Recall Dynamics Functions from the 127 participants who completed Experiment 2 of

the Penn Electrophysiology of Encoding and Retrieval Study. A. Probability First Recall

curve. B. Lag-Conditional Response Probability curve. C. Semantic-Conditional Response

Probability curve. Within each panel the three lines correspond to Immediate Free Recall

(IFR), Delayed Free Recall (DFR), and Continual Distractor Free Recall (CDFR). See the

text for details on how these curves are created. Error bars are 95% within-subject

confidence intervals (Loftus & Masson, 1994).
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Figure 8.
Squared loadings mapped onto the Recall Dynamics Functions of Experiment 2 of the Penn

Electrophysiology of Encoding and Retrieval Study: A. Probability First Recall curve. B.

Lag-Conditional Response Probability curve. C. Semantic-Conditional Response Probability

curve. The first row shows Immediate Free Recall (IFR), the second row shows Delayed

Free Recall (DFR), and the third row shows Continual Distractor Free Recall (CDFR). The

values at each point indicate the percentage of variance across participants that is accounted

for by each factor. N = 127
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Figure 9.
Path analysis models predicting overall recall from the four process factors for each

condition of Experiment 2: A. Immediate Free Recall, B. Delayed Free Recall, and C.
Continual Distractor Free Recall. Each box represents a variable. The single-headed arrows

connecting the variables represent hypothesized direct effects of one variable on another; the

numbers next to single-headed arrows are standardized path coefficients and can be

interpreted as standardized regression coefficients. In fitting the models, the process factors

were allow to correlate but the paths are omitted from the diagram for clarity. The R2 values

are the proportion of variance in overall recall accounted for by the process factors. N = 127.
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Figure 10.
Path analysis model predicting IQ from Overall Recall (A) and the four process factors (B).

Each box represents a variable. The single-headed arrows connecting the variables represent

hypothesized direct effects of one variable on another; the numbers next to single-headed

arrows are standardized path coefficients and can be interpreted as standardized regression

coefficients. In fitting the models, the process factors were allow to correlate but the paths

are omitted from the diagram for clarity. The R2 values are the proportion of variance in

overall recall accounted for by the process factors. N = 101.
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Figure 11.
Commonality analysis of correlation between overall recall and IQ. The bar represents all of

the variability in IQ that is accounted for by overall recall (i.e., 15%). The shaded regions

represent the portion of that variability that is uniquely accounted for by overall recall, and

the portion that is shared with the process factors. There is a small unique contribution of

overall recall, but most is shared with the temporal and semantic factors. A small portion

(the white region at the top of the bar) is shared with the primacy or recency factors or with

multiple factors. N = 101.
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Figure 12.
Path analysis model of the effects of the process factors and overall recall on IQ. Each box

represents a variable. The single-headed arrows connecting the variables represent

hypothesized direct effects of one variable on another; the numbers next to single-headed

arrows are standardized path coefficients and can be interpreted as standardized regression

coefficients. The direct paths from the factors to IQ were constrained to zero in the final

model, the estimates from the non–constrained model are provided in italics for

completeness. In fitting the model, the process factors were allow to correlate but the paths

are omitted from the diagram for clarity. The R2 values are the proportion of variance in

Overall Recall accounted for by the process factors. N = 101.
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Table 1

Promax rotated factor loadings.

Factor 1(T) Factor 2(R) Factor 3(P) Factor 4(S)

Serial position PFR

1 0.40 −0.16 0.75 −0.18

2 0.07 −0.09 0.63 0.08

3 −0.01 0.02 0.65 0.11

4 0.05 −0.15 0.73 0.10

5 0.03 0.04 0.59 0.13

6 −0.03 0.11 0.59 0.08

7 −0.12 0.14 0.45 −0.06

8 −0.05 0.24 0.41 −0.06

9 −0.05 0.32 0.27 0.07

10 −0.14 0.57 0.22 0.00

11 −0.01 0.67 0.03 −0.01

12 −0.10 0.78 −0.00 0.02

13 0.22 0.67 −0.12 −0.14

14 −0.01 0.93 −0.15 −0.12

15 −0.13 0.55 −0.19 0.15

16 −0.17 −0.77 −0.43 0.08

Lag Lag-CRP

−5 −0.08 −0.09 −0.02 0.41

−4 −0.20 0.03 0.02 0.44

−3 −0.05 0.28 −0.10 0.22

−2 0.49 0.06 −0.09 0.24

−1 0.69 −0.09 −0.07 −0.09

1 0.95 −0.01 0.20 −0.22

2 0.39 0.15 −0.05 0.31

3 −0.20 0.04 −0.00 0.59

4 −0.49 −0.01 −0.11 0.35

5 −0.51 −0.04 0.15 0.45

Similarity Bin Sem-CRP

1 0.42 0.11 0.10 −0.05

2 0.35 0.17 0.04 −0.15

3 0.47 0.07 0.03 −0.13

4 0.54 0.08 −0.11 −0.02

5 0.52 0.09 −0.06 0.14

6 0.43 −0.02 −0.04 0.02

7 0.44 0.04 0.15 −0.04

8 0.52 −0.09 0.03 0.26

9 0.37 −0.06 0.17 0.51

10 0.05 −0.28 0.04 0.58
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T = Temporal; R = Recency; P = Primacy; S = Semantic

J Exp Psychol Gen. Author manuscript; available in PMC 2015 August 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Healey et al. Page 37

Table 2

Mean (± 95% CIs) factor scores, overall recall, and IQ by PFR cluster.

Cluster

Strong Recency Moderate Recency Primacy Chunking

n total (n with IQ) 35 (24) 57 (44) 8 (5) 41 (28)

Factor 1(T) −0.30±0.33 −0.05±0.21 1.03±1.04 0.12±0.37

Factor 2(R) −1.19±0.10 −0.17±0.11 −0.10±0.27 1.28±0.20

Factor 3(P) −0.73±0.09 −0.13±0.16 2.47±0.97 0.32±0.34

Factor 4(S) −0.28±0.35 0.21±0.33 −0.88±0.83 0.13±0.28

Overall Recall 0.59±0.04 0.61±0.03 0.70±0.10 0.63±0.04

IQ Score 128.88±3.96 127.50±3.22 129.40±14.97 126.79±3.91

T = Temporal; R = Recency; P = Primacy; S = Semantic
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