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This paper, written by members
of the International Union of
Basic and Clinical Pharmacology
Committee on Receptor
Nomenclature and Drug
Classification (NC-IUPHAR)
subcommittees for the
lysophospholipid
(lysophosphatidic acid and S1P)
receptors, confirms the existing
nomenclature for these receptors
and reviews our current
understanding of their structure,
pharmacology and functions,
and their likely physiological
roles in health and disease. More
information on these receptor
families can be found in the
Concise Guide to
PHARMACOLOGY
(http://onlinelibrary.wiley.com/
doi/10.1111/bph.12445/abstract)
and for each member of the
family in the corresponding
database (http://www
.guidetopharmacology.org/
GRAC/FamilyDisplayForward
?familyId=36&familyType=GPCR;
and http://www
.guidetopharmacology.org/
GRAC/FamilyDisplayForward
?familyId=135&familyType=GPCR).

Lysophospholipids encompass a diverse range of small, membrane-derived
phospholipids that act as extracellular signals. The signalling properties are
mediated by 7-transmembrane GPCRs, constituent members of which have
continued to be identified after their initial discovery in the mid-1990s. Here we
briefly review this class of receptors, with a particular emphasis on their protein and
gene nomenclatures that reflect their cognate ligands. There are six
lysophospholipid receptors that interact with lysophosphatidic acid (LPA): protein
names LPA1 – LPA6 and italicized gene names LPAR1-LPAR6 (human) and Lpar1-Lpar6
(non-human). There are five sphingosine 1-phosphate (S1P) receptors: protein
names S1P1-S1P5 and italicized gene names S1PR1-S1PR5 (human) and S1pr1-S1pr5
(non-human). Recent additions to the lysophospholipid receptor family have
resulted in the proposed names for a lysophosphatidyl inositol (LPI) receptor –
protein name LPI1 and gene name LPIR1 (human) and Lpir1 (non-human) – and
three lysophosphatidyl serine receptors – protein names LyPS1, LyPS2, LyPS3 and
gene names LYPSR1-LYPSR3 (human) and Lypsr1-Lypsr3 (non-human) along with a
variant form that does not appear to exist in humans that is provisionally named
LyPS2L. This nomenclature incorporates previous recommendations from the
International Union of Basic and Clinical Pharmacology, the Human Genome
Organization, the Gene Nomenclature Committee, and the Mouse Genome
Informatix.

Abbreviations
DRG, dorsal root ganglia; CNS, central nervous system; HGNC, Gene
Nomenclature Committee; HUGO, Human Genome Organization; LPA,
lysophosphatidic acid; LPI, lysophosphatidyl inositol; LysoPS, lysophosphatidyl
serine; MGI, Mouse Genome Informatix; MS, multiple sclerosis; PSNL, partial
sciatic nerve ligation; SC, Schwann cell; S1P, sphingosine 1-phosphate; VZ,
ventricular zone
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Table 1
Links to online information in the IUPHAR/BPS Guide to PHARMACOLOGY

Targets Ligands

Akt [3H]-LPA

Cannabinoid receptors 1-Oleoyl-LPA

COX-2 2-Oleoyl-LPA

EGF receptor AFD (R)

ERK1/2 Alkyl OMPT

GPR34 AM966

GPR55 AUY954

GPR174 Bupivacaine

LPA1 receptor CYM5181

LPA2 receptor CYM-5442

LPA3 receptor EGF

LPA4 receptor Oestrogen

LPA5 receptor Farnesyl diphosphate

LPA6 receptor Farnesyl monophosphate

Lysophospholipid (LPA) receptors Fingolimod

MAPK FTY720

Metalloproteinases FTY720-P

MMP9 IL-13

P2Y10 IL-17

PLC IL-6

Protease-activated receptor 1 IL-2

ROCK JTE-013

S1P receptors Ki16425

Sphingosine kinase 1 LPA

S1P1 receptor LP)

S1P2 receptor LPC

S1P3 receptor LysoPS

S1P4 receptor S1P

S1P5 receptor VEGF

Sodium/NHE3 VPC12249

Urokinase-type plasminogen activator VPC23019

VPC44116

W146

This table lists protein targets and ligands that are hyperlinked to corresponding entries in http://www.guidetopharmacology.org, the
common portal for data from the IUPHAR/BPS Guide to PHARMACOLOGY (Pawson et al., 2014) and the Concise Guide to PHARMACOLOGY
2013/14 (Alexander et al., 2013a,b,d).

Introduction
The biological and pathophysiological functions of the small
signalling lipids known as lysophospholipids continues to
expand, with roles that involve virtually every vertebrate
organ system (Fukushima et al., 2001; Ishii et al., 2004; Choi
et al., 2010; Mutoh et al., 2012; Choi and Chun, 2013).
The overwhelming majority of effects, and all activities that
have led to actual medicines or to compounds that have
entered late-stage clinical trials, rely mechanistically on lys-

ophospholipid receptors. All bona fide receptors are of the
7-transmembrane, GPCR class (Table 1 and Figure 1).

Various orphan receptor names have been used over the
years; however, receptor identities have led to two nomen-
clatures: the first used in pharmacological fields and sup-
ported by the International Union of Basic and Clinical
Pharmacologists (IUPHAR), and the second used in genetic or
genomic fields, as represented by the Human Genome
Organization (HUGO), Gene Nomenclature Committee
(HGNC), and the Mouse Genome Informatix (MGI) Guide-
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lines for Nomenclature of Genes, based upon the 2011 Inter-
national Committee on Standardized Genetic Nomenclature
for Mice. We briefly review these lysophospholipid receptors
and their names, and suggest use of a hybrid nomenclature
wherein protein names are referred to by their original
IUPHAR names (Chun et al., 2002; 2010; Davenport et al.,
2013), while HGNC nomenclatures are used to identify the
human genes, and MGI nomenclatures for mice are extended
to cover non-human genes (Table 2). In each subheading of
this review, the protein name is followed by the human and
non-human gene names. Recent additions to the lysophos-
pholipid receptor family include glycerophospholipid species
lysophosphatidyl inositol (LPI) and lysophosphatidyl serine
(LysoPS); names for these newer receptors and genes have
been proposed, which generally follow the receptor protein
and gene for other lysophospholipid receptors and have been
incorporated in this review. The names of established recep-
tors and their human and non-human gene names start each
subsection, while new receptors are treated under a separate
heading.

Lysophosphatidic acid (LPA) receptors

The many effects of LPA are mediated through the six
currently recognized LPA receptors, LPA1–6. These 7-
transmembrane GPCRs couple to one or more of the four
classes of heterotrimeric G-proteins, commonly defined by
their Gα proteins (Gα12/13, Gαq/11, Gαi/o, and Gαs). Less explored is
possible signalling through these receptors that do not
require heterotrimeric G-proteins (Rajagopal et al., 2005).
Activation of these receptors and G-proteins can initiate
myriad downstream pathways that in turn, produce a simi-
larly diverse range of biological and pathological effects
(Gilman, 1987). The agonists and antagonists for these recep-
tors and their efficacy are summarized in Table 3.

LPA1/LPAR1/Lpar1
The first receptor identified for any lysophospholipid came
from studies on the brain, which identified LPA1 (Hecht et al.,
1996), a receptor that mediates the effects of LPA. LPAR1

Figure 1
Lysophospholipid receptors and their intracellular signalling pathways. Lysophospholipid ligands (LPA, S1P, LPI and LysoPS) bind to their specific
GPCRs, which activate heterotrimeric G-proteins (defined here by their α subunits) to initiate downstream signalling cascades. R in the chemical
structures is a variable acyl side chain.
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encodes a receptor of 364 amino acids, with a molecular mass
of ∼41 kDa. The human gene is located on chromosome 9
(9q31.3), and consists of at least five exons. A gene variant of
Lpar1 (Lpar1-mrec1.3) lacks a predicted 18 amino acids from
the amino terminus (Contos and Chun, 1998); however, its
function and significance remain unclear. This receptor
couples to three Gα proteins – Gαi/o, Gαq/11, and Gα12/13, which
can result in the activation of a range of well-known, down-
stream pathways that include Akt, Rho, MAPK, and PLC.
These pathways in turn can account for many of the cellular
responses initiated by LPA1 such as changes in cell shape
through alterations in the actin cytoskeleton, cell migration,
adhesion and cell–cell contact, and Ca2+ mobilization
(reviewed in Contos et al., 2000b; Fukushima et al., 2001;
Ishii et al., 2004; Choi et al., 2010; Mutoh et al., 2012; Choi
and Chun, 2013).

Expression of Lpar1/LPAR1 is widespread, and can be
found in most tissues at various stages of development albeit
with non-uniform expression (An et al., 1998; Contos et al.,
2000b; Ohuchi et al., 2008; Ye, 2008), particularly within the
developing nervous system (reviewed in Contos et al., 2000b;
Ishii et al., 2004) where it is found in the neuroproliferative
ventricular zone (VZ) as well as superficial marginal zone and
meninges (Hecht et al., 1996). By birth, the VZ dissipates as
does the expression of Lpar1 in this region; however, it reap-
pears in oligodendrocytes that are involved in myelination.

Knockout mice have provided important insights for
most of the lysophospholipid receptors, beginning with
Lpar1−/− mice that exhibit ∼50% perinatal lethality (Contos
et al., 2000a) attributable to olfactory deficits that affect suck-
ling as well as possible central mechanisms that show back-

ground strain dependence (Weiner et al., 2001; Estivill-Torrús
et al., 2008; Matas-Rico et al., 2008). The developing cerebral
cortex in particular is affected by LPA signalling including
overall organization (Kingsbury et al., 2003), cell survival,
migration, proliferation and process outgrowth (Contos et al.,
2000b; Fukushima et al., 2000; 2002; Campbell and Holt,
2001; Kingsbury et al., 2003; Yuan et al., 2003).

Effects on the normal development and organization of
the brain have pointed towards LPA influences on central
nervous system (CNS) disorders. In particular, neuropsychi-
atric disorders that could arise prenatally and that could
involve bleeding, hypoxia and immunological challenge, as
proposed for autism and schizophrenia (Hultman et al., 1999;
Cannon et al., 2002; Brimacombe et al., 2007; Byrne et al.,
2007), could involve LPA signalling. Proof-of-concept for this
idea comes from studies of congenital or fetal hydrocephalus
(Yung et al., 2011), one of the most common neurological
disorders of newborns and young children, wherein models
of FH can be rescued by removal of LPA signalling.
Schizophrenia-relevant signals include Lpar1−/− mutant mice
that show deficits in pre-pulse inhibition 5-HT levels and
glutamatergic synapses (Harrison et al., 2003; Santin et al.,
2009; Musazzi et al., 2010; Roberts et al., 2005), while a
variant mutant, maLPA1−/−, display a range of other defects
(Harrison et al., 2003; Estivill-Torrús et al., 2008; Santin et al.,
2009; Castilla-Ortega et al., 2010).

Glia are also influenced by LPA1 signalling. Astrocytes
express most LPA receptors (LPA1–5; Shano et al., 2008), and
upon treatment with LPA, initiate a wide range of effects in
vitro including morphological changes and stabilization of
stress fibres (Manning and Sontheimer, 1997; Suidan et al.,

Table 3
Pharmacological tools for LPA receptors and their efficacy

Compoundsa Units (nM) LPA1 LPA2 LPA3 LPA4 LPA5 LPA6 Assay References

1-Oleoyl-LPA Kd 69 64 N/A 100 89 N/A Binding Yanagida et al., 2009

EC50 64∼200 9∼10 75∼321 26 11 1495 Ca2+ Bandoh et al., 2000;
Yanagida et al., 2013

2-Oleoyl-LPA EC50 ∼200 ∼10 ∼10 N/A N/A N/A Ca2+ Bandoh et al., 2000

AGP EC50 1500 101 N/A 303 2 N/A Ca2+ Williams et al., 2009

Alkyl OMPT EC50 794 N/A 62 N/A N/A N/A Ca2+ Qian et al., 2006

VPC31143(R) EC50 59 16 130 341 126 1484 Ca2+ Yanagida et al., 2013

EC50 8 117 322 N/A N/A N/A GTPγS Heise et al., 2001

VPC31144(S) EC50 461 2592 7123 18 16 4835 Ca2+ Yanagida et al., 2013

EC50 >5000 2645 4349 N/A N/A N/A GTPγS Heise et al., 2001

Farnesyl diphosphate IC50,EC50 N/A 2100 4600 1980 40b N/A Ca2+ Williams et al., 2009

Farnesyl monophosphate IC50,EC50 N/A 161 517 1450 49b N/A Ca2+ Williams et al., 2009

Ki16425 (Ki) (250) (5600) (360) N/A N/A N/A GTPγS Ohta et al., 2003

VPC12249 (Ki) (137) N/A (428) N/A N/A N/A GTPγS Heise et al., 2001

IC50 (Ki) 109 (18) N/A 175 N/A N/A N/A GTPγS Heasley et al., 2004

AM966 IC50 17 1700 1600 7700 8600 N/A Ca2+ Swaney et al., 2010

N/A, not applicable.
aHyperlinks are provided to online information in the IUPHAR/BPS Guide to PHARMACOLOGY.
bBoth farnesyl diphosphate and farnesyl monophosphate are reported to be antagonists for LPA2, 3, 4, but agonist for LPA5.
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1997; de Sampaio et al., 2008) that may contribute to astro-
gliosis (Sorensen et al., 2003, reviewed in Noguchi et al.,
2009). Neuronal differentiation can also be influenced by
LPA1 and LPA2 (Spohr et al., 2008). Myelinating cells, oligo-
dendrocytes (Allard et al., 1998; Weiner et al., 1998; Yu et al.,
2004) and Schwann cells (SCs) all, express LPA1 and LPA2

(Weiner et al., 2001; Kobashi et al., 2006) and Lpar1(−/−)
mutants show increased survival via the Gαi-PI3K-Akt
pathway (Weiner and Chun, 1999) and higher levels of
Schwann cell apoptosis within the sciatic nerves (Inoue et al.,
2004). Myelinating cells, oligodendrocytes, and Schwann
cells all express LPA1 and LPA2, and Lpar1(−/−) mutants show
increased survival via the Gai-P13K-Akt pathway and higher
levels of Schwann cell apoptosis within the sciatic nerves.

LPA receptors have also been linked to neuropathic pain
(Inoue et al., 2004) using an animal model of partial sciatic
nerve ligation (PSNL) in Lpar1−/− mutants, which may involve
demyelination (Inoue et al., 2004; Fujita et al., 2007). Other
LPA receptors also appear to participate, including LPA5 (Lin
et al., 2012). Moreover, autotaxin (gene name ENPP2/Enpp2)
that converts lysophosphatidylcholine (LPC) into LPA (Inoue
et al., 2008a,b) also affects neuropathic pain animal models,
such that Enpp2+/− mice show protection in a PSNL model
(Inoue et al., 2008a). These observations support roles for LPA
signalling in neuropathic pain.

LPA signalling is also found to play a role in obesity and
fibrosis. LPA signalling can affect both proliferation and dif-
ferentiation of pre-adipocytes (Valet et al., 1998; Ferry et al.,
2003; Simon et al., 2005; Nobusue et al., 2010), and LPA’s
effects have been observed in adipocytes, including those
from db/db mice (type II diabetes obese-diabetic mice; Ferry
et al., 2003; Boucher et al., 2005). Fibrosis links to LPA include
in the lung, kidney, and liver (Ikeda et al., 1998; Wu and Zern,
2000; Pradere et al., 2007; 2008; Watanabe et al., 2007; Tager
et al., 2008). LPA1 is expressed on both cancer cell lines and in
tumours, where it can have a variety of effects, both cancer
promoting and inhibiting (Yamada et al., 2004; Yu et al.,
2008; Li et al., 2009; Shin et al., 2009). LPA1 mutations have
been reported in an osteosarcoma cell line (Okabe et al.,
2010) and in rat lung and liver tumours (Obo et al., 2009).

LPA2/LPAR2/Lpar2
LPA2 is encoded by LPAR2 on chromosome 19 (19p12) and
encodes 348 amino acids for a calculated molecular mass of
∼39 kDa (Contos and Chun, 2000). It is ∼50% identical at the
amino acid level to LPA1. Lpar2/LPAR2 is expressed at relatively
high levels in leukocytes, kidney, testis, and uterus (An et al.,
1998; Contos and Chun, 2000). Relatively low levels are
present in most other organs, including the brain (Ohuchi
et al., 2008). LPA2 couples to the same heterotrimeric
G-proteins as LPA1: Gαi/o, Gαq/11, and Gα12/13 (Contos et al.,
2000b), and like LPA1, can promote cell migration and survival
(Goetzl et al., 1999; Zheng et al., 2000; 2001; Deng et al., 2002;
Panchatcharam et al., 2008). LPA2 may also produce effects via
TRIP6, a focal adhesion molecule (Lai et al., 2005; 2007), and
both zinc finger or PDZ-domain protein interactions have
been reported (Lin and Lai, 2008), along with MAGI3 and
Na+/H+ exchanger regulatory factor 2 (NHERF) interactions
(Lee et al., 2011). LPA2 signalling may inhibit EGF-induced
migration of pancreatic cancer cells through Gα12/13/Rho
(Komachi et al., 2009). SCs up-regulate myelin markers like P0

protein via LPA2, including after insult by injury, nerve
transection, and in PSNL models of neuropathic pain (Weiner
et al., 2001; Inoue et al., 2004). It has also been reported to
modulate hippocampal excitatory synaptic transmission
(Trimbuch et al., 2009). LPA2, in conjunction with LPA1, can
also alter cerebral cortical architecture in ex vivo cultures after
exposure to exogenous LPA (Kingsbury et al., 2003), effects of
which are lost in Lpar1−/−/Lpar2−/− mutant mouse cultures.

Links to cancer have been reported for LPA2 in promoting
neoplasms based upon designed or observed overexpression
(Kitayama et al., 2004; Lee and Yun, 2010). LPA2 signalling
has also been associated with cancer metastasis and colon
endometrial, mesothelia, and ovarian cancer cells (Shida
et al., 2003; Jeong et al., 2008; Hope et al., 2009). Instances of
cancer inhibition in pancreatic cells have also been reported
(Komachi et al., 2009). This influence may involve regulation
of a range of factors including Akt/Erk1/2, COX-2, epithelial
growth factor receptor, metalloproteinases, VEGF, and
urokinase-type plasminogen activator (Huang et al., 2004;
Yun et al., 2005; Estrella et al., 2007; Jeong et al., 2008; Shida
et al., 2008). Loss-of-function for LPA2 generally appears to be
protective against tumourgenesis (Masiello et al., 2006;
Estrella et al., 2007; Yu et al., 2008; Zhao et al., 2013).

In the immune system, Lpar2 (similar to Lpar1) is
expressed in a variety of immunological organs like the
spleen and thymus (Ishii et al., 2004; Kotarsky et al., 2006; Oh
et al., 2008), and in lymphocytes (Komachi et al., 2009). LPA2

is expressed in unstimulated T-cells, as compared with LPA1

that is predominantly within stimulated T-cells that can
influence cell survival (Goetzl et al., 1999). In unstimulated
T-cells, LPA2 is upregulated while LPA1 is downregulated,
leading to LPA-induced chemotaxis and inhibition of (Goetzl
et al., 2000; Zheng et al., 2000; 2001). In contrast, activated
T-cells upregulate LPA1 and downregulate LPA2, leading to
inhibited chemotaxis, increased proliferation, and increased
IL-2 and IL-13 production upon LPA stimulation (Zheng
et al., 2000; Rubenfeld et al., 2006). LPA2 is also expressed on
dendritic cells (Panther et al., 2002; Chen et al., 2006).

LPA3/LPAR3/Lpar3
LPAR3/Lpar3 was identified based upon homology to defined
LPA receptor genes and cloned using a degenerate, PCR-based
cloning strategy (Bandoh et al., 1999; Im et al., 2000b). LPAR3
(human chromosomal locus 1p22.3-p31.1) encodes a 353
amino acid, ∼40 kDa GPCR, which in mice is ∼50% identical
in amino acid sequence to LPA1 and LPA2. LPA3 couples to
the heterotrimeric Gα proteins Gαi/o and Gαq/11 to mediate
downstream signalling pathways including adenyl cyclase
activation, PLC activation and Ca2+ mobilization, and MAPK
activation (Ishii et al., 2000). LPA3 appears to prefer 2-acyl-
LPA containing unsaturated fatty acids (Bandoh et al., 1999;
Sonoda et al., 2002).

LPAR3 is expressed in multiple human organs including
the brain, heart, lung, ovary, pancreas, prostate, and testis
(Bandoh et al., 1999; Im et al., 2000b), as well as mouse lung,
testes, kidney, small intestine, spleen, stomach, and heart
(Contos et al., 2000b), and during development (Ohuchi
et al., 2008). While Lpar3 null mice are viable, they have
defects in the immune system reflecting in part LPA3-specific
dependent activation of chemotaxis of immature, but not
mature, dendritic cells (Chan et al., 2007). They also have
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effects on zebra fish body asymmetry (Lai et al., 2012) and
probably are involved in effects of the nervous system includ-
ing those involving pain (Ma et al., 2009) and possibly other
modalities. However, the most dramatic effect is on embryo
implantation and fertility.

Lpar3−/− null female mutants have a prominent reproduc-
tive system phenotype whereby normal embryo implanta-
tion is disrupted (Ye et al., 2005). Within the uterus, Lpar3 is
specifically expressed in luminal endometrial epithelial cells
where it is markedly up-regulated during the brief window of
embryo implantation, following which its expression is
rapidly down-regulated (Ye et al., 2005). The hormones oes-
trogen and progesterone influence this expression pattern
(Hama et al., 2006), and may play a role in allowing embryos
to implant within the uterus. Lpar3 null mutant mice were
found to have abnormal, delayed implantation of embryos
that included crowding along the uterine horn and subse-
quent reductions in live births that could be attributed to
maternal effects of LPA3 loss (Ye et al., 2005). Mechanistic
studies demonstrated that LPA3 promotes COX-2 expression;
COX-2 is a rate-limiting enzyme for the production of PGs
that are known to be important for fertility, although there is
evidence that COX–2-independent functions are involved as
well (Hama et al., 2007). This may be relevant for the embryo

spacing phenotype in Lpar3−/− mice that could interface with
cytosolic PLA2α (cPLA2α) or Wnt/β-catenin signalling, in view
of the reminiscent phenotypes in null-mutants for these
genes (Song et al., 2002; Mohamed et al., 2005). In addition to
this maternal phenotype, combined loss of LPA1–3 that are
expressed in the testis (Ishii et al., 2004; Ye, 2008) results in
loss of germ cells and progeric azoospermia (Ye, 2008), adding
to the reproductive spectrum of effects produced by LPA
receptor loss from reproductive tissues (reviewed in Ye, 2008).

LPA4/LPAR4/Lpar4
LPA4 is notable because it shares less than 20% amino acid
sequence identity with LPA1–3 and S1P1–5, and is phylogeneti-
cally far from them and located near the P2Y receptor family
(Figure 2). Identification of LPA4 was made by screening
orphan receptors, including purine receptor families, using
calcium mobilization as a readout for ligand-induced signals
(Noguchi et al., 2003). P2Y9 has ∼20% sequence identity to
LPA1–3 (Noguchi et al., 2003), yet it responds to LPA and not to
assayed nucleosides or nucleotides (Noguchi et al., 2003).
LPAR4 is located on chromosome Xq21.1 and encodes a 370
amino acid protein of ∼42 kDa, with mouse Lpar4 being
present on the D-region of chromosome X. Lpar4 gene expres-
sion is observed in the brain, heart, lung, skin, thymus, and

Figure 2
Phylogenetic tree of related GPCRs and amino acid sequence identities. (A) A molecular phylogenetic tree of human GPCRs. The selected GPCR
protein sequences were analysed for the phylogenetic reconstruction by the ‘All against All’ sequence programme at the Computational
Biochemistry Research Group server of the ETH Zürich. (B) Pair-wise matrices comparing amino acid sequences of lysophospholipid receptors. The
upper and lower matrices specify identities among lysophospholipid receptors in human and mouse respectively. The amino acid sequence
identities are shown in a gray-to-white gradient. The numbers in the boxes were calculated by Clustal Omega (Sievers et al., 2011).
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uterus (Ishii et al., 2009b). It is also developmentally expressed
within the embryonic brain branchial arches, limb buds, liver,
maxillary processes, and somites (Ohuchi et al., 2008).

LPA4 couples to Gα-proteins Gαs, Gαi, Gαq, and Gα12/13 (Lee
et al., 2007), the latter of which activates Rho/ROCK to
induce neurite retraction and stress fibre formation seen with
activation of other LPA receptors (Lee et al., 2007; Yanagida
et al., 2007). It can also induce cell aggregation and adhesion
through N-cadherin (Yanagida et al., 2007) and was the first
LPA receptor activating Gαs activity (Lee et al., 2007) to
promote intracellular cAMP accumulation. LPA4 can trans-
form cells when co-expressed with oncogenic-promoting
genes like c-Myc or Tbx2 (Taghavi et al., 2008). It has also
been reported to affect immortalized hippocampal progenitor
cells (Rhee et al., 2006).

Null mutant mice for Lpar4 do not show overt abnormali-
ties (Lee et al., 2008) aside from some prenatal loss, probably
produced by blood vessel defects that result in abnormal
haemorrhage (Sumida et al., 2010). Lymphatic vessels and
lymph sacs are also affected during development of the cir-
culatory system (Sumida et al., 2010). Osteoblast differentia-
tion is also inhibited based on cell culture analyses in
experiments that knocked down LPAR4 (Liu et al., 2010).
Cells from Lpar4−/− mice show reduced cell motility (Lee et al.,
2008).

LPA5/LPAR5/Lpar5
LPA5 was the fifth LPA receptor to be reported (Kotarsky et al.,
2006; Lee et al., 2006), sharing ∼35% homology with LPAR4,
while being more dissimilar to LPAR1–3 (Lee et al., 2006).
LPAR5 has a chromosomal location of 12p13.31 and encodes
a 372-amino acid protein with a molecular mass of ∼41 kDa,
and Lpar5 is located on chromosome 6. LPA5 couples to Gα12/13

and Gαq (Lee et al., 2006) and is expressed broadly, with high
expression in dorsal root ganglia (DRG), gastrointestinal lym-
phocytes, heart, platelets, and spleen (Kotarsky et al., 2006;
Lee et al., 2006; Amisten et al., 2008). It is also expressed
developmentally in the embryonic mouse brain (Ohuchi
et al., 2008).

LPA5-expressing cell lines can induce both neurite retrac-
tion and stress fibre formation in response to LPA via the
Gα12/13 pathway, including clear receptor internalization (Lee
et al., 2006). It also activates Gαq, Gai, leading to intracellular
calcium levels (Lee et al., 2006), while also increasing cAMP
accumulation via a non-Gαs mechanism, based upon mini-
gene experiments, which implicates other G-protein involve-
ment (Kotarsky et al., 2006; Lee et al., 2006). LPA5 signalling
also appears to affect intestinal water absorption (Lin et al.,
2010) through effects on intestinal epithelial cells, whereby
LPA induces Na+-dependent water absorption via Na+/H+

exchanger 3 (NHE3; see Alexander et al., 2013c) and the
NHERF2 that recruits NHE3 to intestinal microvilli (Lin et al.,
2010). This receptor has also been implicated in neuropathic
pain models through mechanisms that appear to be distinct
from effects mediated by LPA1 (Lin et al., 2012).

LPA6/LPAR6/Lpar6
The latest member of the LPA receptor family is LPA6. LPA6 is
encoded by LPAR6 on chromosome 13 (13q14) and encodes
344 amino acids for a calculated molecular mass of ∼39 kDa.

It is a member of the P2Y receptor family like LPA4, and was
known originally by its orphan name P2Y5, which was iden-
tified as a human mutation affecting hair growth (Pasternack
et al., 2008). Use of a chimeric Gα13 protein enabled detection
of LPA6-mediated cAMP accumulation and Rho-dependent
morphological alterations, as well as [3H]-LPA binding
and LPA-induced [35S]-guanosine 5′-3-O-(thio)triphosphate
binding (Yanagida et al., 2009). LPA6 has some preference for
2-acyl-LPA rather than 1-acyl-LPA. The receptor is distinct
from the other five in being somewhat refractory to many
cell-based tests, as evidenced by the much higher concentra-
tions of LPA required to get a signal (Yanagida et al., 2009).
When co-expressed with a promiscuous Gα protein, which
activates Gαi, LPA6 stimulated with LPA increased intracellular
Ca2+, reduced forskolin-stimulated cAMP and ERK1/2 activa-
tion (Lee et al., 2009).

LPA6 was initially identified as being an autosomal domi-
nant genetic factor for hypotrichosis simplex, a complex of
rare diseases characterized by familial hair loss in humans.
Independent studies identified LPA6 mutations in hypotri-
chosis patients (Pasternack et al., 2008; Shimomura et al.,
2009; Nahum et al., 2011). Conceptually linked reports have
implicated lipase member H, associated with decreased LPA
production in culture studies that then fail to activate LPA6

(Pasternack et al., 2009; Shinkuma et al., 2010). More recent
analyses of this receptor by use of a TGFα shedding assay
(Inoue et al., 2012) validate it as an atypical, but legitimate,
LPA receptor.

Sphingosine 1-phosphate
(S1P) receptors

S1P is a pleiotropic bioactive lipid that is an important regu-
lator of many physiological processes including proliferation,
migration, survival, and differentiation and plays important
roles in disorders of the immune system and CNS (Maceyka
et al., 2012). Most of the actions of S1P are mediated by five
specific cognate GPCRs, designated S1P1-S1P5 (Chun et al.,
2010; Blaho and Hla, 2011). These receptors bind S1P and
dihydro-S1P with high affinity and there is very little evi-
dence for additional endogenous ligands. We have summa-
rized the experimental pharmacological tools for S1P
receptors in Table 4.

S1P1/S1PR1/S1pr1
S1P1 was one of the first S1P receptors to be functionally
identified (Lee et al., 1998b) and it is the most well studied.
Early studies suggested that it might mediate actions of LPA
based on its sequence and function (Lee et al., 1998a);
however, it is now known to be a selective S1P receptor. S1PR1
is located on chromosome 1 (1p21) and encodes a 382-amino
acid of ∼43 kDa that is highly conserved and has 94%
sequence identity with the murine receptor. S1PR1 is the only
S1PR that couples exclusively to Gαi/o. Although S1PR1 is
ubiquitously expressed (Zhang et al., 1999; McGiffert et al.,
2002), its most important functions are in the regulation of
trafficking of lymphocytes and other haematopoietic cells
and vascular development and integrity. Genetic and phar-
macological approaches, together with sophisticated intravi-
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tal staining, have established that S1P1 controls the trafficking
and migration of numerous types of haematopoietic cells,
including T and B lymphocytes, NK T-cells, dendritic cells,
macrophages, neutrophils, haematopoietic progenitors, mast
cells, and osteoclasts (Matloubian et al., 2004; Spiegel and
Milstien, 2011; Cyster and Schwab, 2012), in both homeo-
static and disease settings. Blood and lymph contain high nM
levels of S1P, which form a gradient between the much lower
levels in tissues (Pappu et al., 2007; Pham et al., 2010). When
S1P1 on lymphocytes recognizes high levels of S1P in the
blood and lymph, egress of the cells from lymphoid organs
into the blood is promoted through activation of the Gαi-
phosphatidylinositol-3-kinase pathway and the small GTPase
Rac (Spiegel and Milstien, 2011; Cyster and Schwab, 2012).
Down-regulation or desensitization of S1P1 enables lympho-
cytes to subsequently migrate from the blood into tissues
(Schwab and Cyster, 2007).

The immunomodulatory drug FTY720/fingolimod, which
has been approved by the Food and Drug Administration for
the treatment of relapsing forms of multiple sclerosis (MS)
(Chun and Hartung, 2010; Chun and Brinkmann, 2011;
Cohen and Chun, 2011), is phosphorylated in vivo to
FTY720-P, producing the active form of the drug (Brinkmann
et al., 2010). FTY720-P is a structural analogue of S1P and an
agonist of S1P1, S1P3, S1P4, and S1P5. However, persistent
activation of S1P1 by FTY720-P causes its internalization and
degradation and thus it acts as a functional antagonist
(Graeler and Goetzl, 2002; Matloubian et al., 2004; Oo et al.,
2007; Brinkmann et al., 2010; Gonzalez-Cabrera et al., 2012).
Down-regulating surface expression of S1P1 on lymphocytes
prevents their egress from lymphoid organs and reduces

peripheral blood lymphocyte levels (Brinkmann et al., 2010;
Gonzalez-Cabrera et al., 2012). Concomitantly, direct CNS
actions may be relevant to MS through S1P1 expressed on
astrocytes, since conditional removal of this receptor reduces
MS-like disease in animals and attenuates FTY720 activity
(Choi et al., 2011). Expression of this and other S1P receptors
in the CNS supports other activities relevant to MS, and
perhaps other CNS disorders (Gardell et al., 2006; Herr and
Chun, 2007; Noguchi and Chun, 2011; Soliven et al., 2011;
Mutoh et al., 2012; Choi and Chun, 2013; Groves et al.,
2013).

S1P1 maintains the integrity of the vascular system (Liu
et al., 2000; Camerer et al., 2009; Wang and Dudek, 2009;
Abbasi and Garcia, 2013), which is critical for homeostasis
and to prevent extravasation of plasma during infections,
sepsis and anaphylactic shock, which can be life threatening.
Blood S1P enhances vascular barrier function by ligation of
S1P1 with subsequent downstream activation of the Rho
family of small GTPases, cytoskeletal reorganization, adher-
ens junction and tight junction assembly, and focal adhesion
formation (Wang and Dudek, 2009; Abbasi and Garcia, 2013).
Depletion of blood S1P in mice induces basal vascular leak
and increases lethal responses in anaphylaxis induced by
administration of platelet-activating factor or histamine
(Camerer et al., 2009). It has been suggested that either S1P
continuously activates luminal endothelial S1P1 to maintain
tight cell–cell junctions or alternatively, following entry of
S1P into the sub-endothelial space via ‘leaky’ endothelium,
dynamic S1P1 signalling activates abluminal surface S1P1 to
close intercellular gaps. Furthermore, the S1P/S1P1 axis also
attenuates LPS-induced acute lung injury in murine and

Table 4
Pharmacological tools for S1P receptors and their efficacy

Compoundsa Units (nM) S1P1 S1P2 S1P3 S1P4 S1P5 Assay References

S1P EC50 0.4–79 3.8–8.9 0.16–2 8.6–794 0.5–20 GTPγS Brinkmann et al., 2002; Sanna
et al., 2004; Pan et al., 2006

FTY720-P EC50 0.3–6.3 N/A 3.1–4.0 0.6–63.1 0.3–6.3 GTPγS Brinkmann et al., 2002; Pan
et al., 2006

AUY954 EC50 1.2 N/A 1210 N/A 340 GTPγS Pan et al., 2006

SEW2781 EC50 13–28.8 N/A N/A N/A N/A GTPγS Sanna et al., 2004;
Gonzalez-Cabrera et al., 2008

AFD (R) EC50 2.5 N/A 4 4 1.3 GTPγS Brinkmann et al., 2002

CYM5181 EC50 3.4 N/A N/A N/A N/A GTPγS Gonzalez-Cabrera et al., 2008

CYM-5442 EC50 1.2 N/A N/A N/A N/A GTPγS Gonzalez-Cabrera et al., 2008

W146 EC50 (Ki) 398 (77) N/A N/A N/A N/A GTPγS Sanna et al., 2006

NIBR-0213 (Ki) (2) N/A N/A N/A N/A GTPγS Quancard et al., 2012

VPC03090-P EC50 (Ki) (21–24) N/A (51–58.7) 17.7b 2.4b GTPγS Kennedy et al., 2011

VPC23019 (Ki) (1) N/A (7.6) N/A N/A Bindingc Davis et al., 2005

VPC44116 EC50 (Ki) (30) N/A (300) 6100b 33b GTPγS Foss et al., 2007

JTE-013 IC50 N/A 17 N/A N/A N/A Bindingc Osada et al., 2002

N/A, not applicable.
aHyperlinks are provided to online information in the IUPHAR/BPS Guide to PHARMACOLOGY.
bBoth VPC03090-P and VPC44116 are reported to be antagonists for S1P1, 3, but agonist for S1P4,5.
cKi and IC50 was estimated by determining the competitive binding of radioisotope-labelled S1P.
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canine models (Wang and Dudek, 2009; Abbasi and Garcia,
2013). Deciphering the mechanisms by which the S1P1 sig-
nalling pathway regulates endothelial barrier integrity will
help our understanding and treatment of acute inflammatory
diseases.

The vital role of S1P1 in vascular maturation and devel-
opment was demonstrated by knockout of the S1pr1 gene in
mice that die in utero because of a defect in the association of
mural cells with nascent vessels and incomplete coverage (Liu
et al., 2000; Allende et al., 2003). More recently, the role of
S1P1 in angiogenesis, the development of new blood vessels,
has been slightly revised. It was shown that S1P1 in fact
acts independently of mural cells in an endothelial cell-
autonomous manner to inhibit sprouting angiogenesis
(Shoham et al., 2012). Endothelial S1P1 stabilizes the primary
vascular network during development and homeostasis
(Gaengel et al., 2012; Jung et al., 2012).

Recently, the crystal structure of S1P1 fused to
T4-lysozyme in complex with an antagonist was solved to
2.8 Å resolution (Hanson et al., 2012). Intriguingly, this
receptor has a novel N-terminal fold that blocks access of S1P
to the binding pocket from the extracellular environment.
Therefore, S1P must gain access by entering laterally between
helices I and VII within the transmembrane region of S1P1.
This work provides the first view of the molecular recognition
of S1P (Hanson et al., 2012; Rosen et al., 2013) and may aid in
the development of S1P1-specific drugs as well as providing a
basis for determining the structure of the other S1P receptors.

S1P2/S1PR2/S1pr2
Now denoted as S1P2, this receptor was previously known as
Edg-5, H218, AGR16, and lpB2 and was one of the first to be
identified as an S1P receptor (An et al., 1997). The human
gene, S1PR2, is located on chromosomal locus 19p13.2 and its
sequence is highly conserved across species, with the human
receptor containing 353 amino acids and a receptor of
∼39 kDa compared with the murine transcript with 352 (also
∼39 kDa). The S1P2 gene is expressed in a variety of tissues
(Zhang et al., 1999; McGiffert et al., 2002) and can couple to
multiple G-proteins, although it most efficiently utilizes
Gα12/13 to activate the small GTPase Rho. Thus, S1P2 typically
inhibits motility through inhibition of Rac. S1P2 has been
shown to be involved in S1P-induced cell proliferation, motil-
ity and transcriptional activation, usually acting in opposi-
tion to S1P1 (Skoura and Hla, 2009; Chun et al., 2010).

S1P2 was initially shown to be required for heart develop-
ment in zebrafish (Kupperman et al., 2000). It was subse-
quently reported that S1P2 signals through the Gα13/RhoGEF
pathway to promote the migration of myocardial precursor
cells (Ye and Lin, 2013), although S1pr2 knockout mice are
viable (Ishii et al., 2002), demonstrating species differences.
However, these null mutants have multiple severe inner ear
defects, leading to deafness and balance problems (Herr et al.,
2007; Kono et al., 2007). Using an S1P2 antagonist, JTE013, it
was shown that S1P2 promotes vasoconstriction of the spiral
modiolar artery, which protects the stria vascularis capillary
bed of the inner ear from high perfusion pressure. Several
other studies have linked S1P2 to vascular development and
remodelling. S1P2 is induced in endothelial cells undergoing
hypoxic stress and mice lacking both S1pr1 and S1pr2 exhibit
substantially more vascular defects than S1pr1 knockout

alone, suggesting that the two receptors may act coordinately
during vascular development (Kono et al., 2004). Experi-
ments in developing zebrafish, which have S1PR homologues
and S1P levels in the blood that are higher than the KD of the
receptors, showed similar results. S1pr1 knockdown interfered
with the development of the intersegmental vessels, and this
phenotype was enhanced when S1pr2 was suppressed
(Mendelson et al., 2013).

S1P2 has also been suggested to play a role in endothelial
barrier integrity. In an LPS-induced model of acute lung
injury, S1P2 deletion reduced oedema while activation of S1P1

with a specific agonist also reduced oedema (Sammani et al.,
2010), suggesting that S1P2 reduces endothelial barrier func-
tion in contrast to S1P1, which enhances it. In mice, S1P2

can also promote the recovery from anaphylactic shock, at
least in part through counteracting the histamine-induced
vasodilatation responsible for hypotension (Olivera et al.,
2010; 2013). Accordingly, histamine initiates a negative feed-
back loop, stimulating production of S1P that acts through
S1P2 to increase clearance of histamine by the kidney through
excretion.

S1P2 also plays a role in bone maintenance. Bone is
remodelled throughout life, with osteoblasts forming bone
and osteoclasts resorbing it. Osteoclast precursor cells migrate
dynamically between bone and blood, which is controlled by
the balance between S1P signalling through S1P1 versus S1P2.
While S1P1 promotes osteoclast migration from bone towards
high blood levels of S1P (Ishii et al., 2009a), migration away
from bone is negatively controlled by S1P2 (Ishii et al., 2010).
Insight into how the balance of S1P receptor expression con-
trols bone remodelling was provided by the demonstration
that calcetriol, the active form of vitamin D that promotes
bone growth, reduces S1P2 expression on osteoclasts (Kikuta
et al., 2013). This balance between S1P1 and S1P2 that controls
traffic of cells into and out of tissues is becoming paradig-
matic. Cyster and colleagues showed that S1P2 promotes the
retention of B cells in the germinal centres of lymphoid
follicles at the low end of an S1P gradient (Green et al., 2011).
Moreover, S1P2 also plays a role in controlling growth and
apoptosis of germinal centre B cells through inhibition of Akt
(Green et al., 2011).

S1P also has an important role in muscle regeneration
through activation of muscle stem cells called satellite cells
(Rapizzi et al., 2008). Saba and colleagues demonstrated that
S1P biosynthesis is up-regulated following muscle injury (Loh
et al., 2012) and activation of S1P2, but not S1P1, promoted
muscle regeneration by activating STAT3, which in turn
down-regulates the cell cycle inhibitors p21 and p27 allowing
for satellite cell growth (Loh et al., 2012). Moreover, Mdx
mice, a model for muscular dystrophy, have higher levels of
S1P-metabolizing enzymes and lower circulating levels of S1P.
However, using a different model of muscle injury induced by
bupivacaine, S1P2 was not found to be involved in muscle
regeneration (Danieli-Betto et al., 2010). It was suggested that
S1P3 promoted, while S1P1 inhibited, muscle regeneration.
The conflicting data concerning the specific S1P receptors
involved may be due to the different models used or the
timing of S1P receptor activation.

S1P2 has also recently been implicated in promoting
metastasis. Using genetic and pharmacological approaches, it
was shown that bladder cancer xenografts increased systemic
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S1P levels. This S1P in turn activated S1P2, leading to the
down-regulation of Brms1, a known suppressor of metastasis
(Ponnusamy et al., 2012). Thus, inhibition of systemic sphin-
gosine kinase 1 and production of S1P and/or S1P2 signalling
increased Brms1 expression suppressing lung metastasis
(Ponnusamy et al., 2012).

S1P3/S1PR3/S1pr3
S1P3, previously known as Edg-3 and lpB3, was also an early
identified S1P receptor (An et al., 1997), with human S1PR3
located at chromosomal locus 9q22.1-q22.2, encoding a 378-
amino acid protein of ∼42 kDa, with seven predicted trans-
membrane domains. It shares 87% identity with the murine
S1P3 receptor.

Like S1P2, S1P3 can couple to multiple G-proteins, includ-
ing Gαi/o, Gαq, and Gα12/13 (Chun et al., 2010), although in cells
it most commonly couples to Gαq, leading to the generation
of inositol trisphosphate and diacylglycerol with subsequent
calcium mobilization and activation of PKC respectively.

Despite fairly broad gene expression (Zhang et al., 1999;
McGiffert et al., 2002), global deletion of S1pr3 in mice did
not reveal an obvious phenotype or developmental defects
(Ishii et al., 2001), although the S1pr2/3 double knockouts
have reduced fertility (Ishii et al., 2002). Initially, S1P3 was
reported to be highly expressed in breast cancer models
where it plays a positive role in cell migration (Chun et al.,
2010). Moreover, increased expression of S1P3 in oestrogen
receptor (ER)-positive tumour samples correlated with
decreased disease-free survival times (Watson et al., 2010).
One possible explanation for this is the intriguing finding
that in breast cancer cells, oestrogen stimulates S1P release
and activation of S1P3 (Sukocheva et al., 2006). This then
increases the activity of MMP9, resulting in the release of EGF
to signal in an autocrine manner. Additionally, in this system,
S1P3 also activates Cdc42 and decreases degradation of, and
increases signalling from, the EGF receptor (Sukocheva et al.,
2013). Interestingly, an S1P3-blocking monoclonal antibody,
7H9, has been developed that blocks the growth of breast
cancer tumours in a xenograft model (Harris et al., 2012).

S1P3 has also been implicated in sepsis. Signalling of the
protease-activated receptor 1 on dendritic cells promotes the
inflammatory response in sepsis syndrome. Treatment with
S1P3-specific antagonists, as well as S1P3 deletion, protects
from LPS-induced lethal sepsis (Niessen et al., 2008; Sammani
et al., 2010). Although activation of S1P1 increases endothe-
lial barrier enhancement, S1P3 disrupts it (Sammani et al.,
2010). Indeed, recent studies associate increased S1P3 expres-
sion with sepsis and mortality of intensive care patients (Sun
et al., 2012). Finally, several studies indicate that S1P3 is
involved in liver fibrosis. S1P, acting through both S1P1 and
S1P3, promotes the motility of hepatic stellate cells and their
differentiation into hepatic myofibroblasts (Liu et al., 2011),
and enhances liver angiogenesis associated with fibrosis
(Yang et al., 2013).

S1P4/S1PR4/S1pr4
S1PR4 is located at chromosomal locus 19p13.3, previously
known as Edg-6 and lpC1 (Contos et al., 2002) and encodes a
384-amino acid protein of ∼42 kDa in humans that is highly
homologous across mammalian species (Van Brocklyn et al.,
2000).

S1P4 couples to Gαi and Gα12/13 and promotes cell migra-
tion (Graler et al., 2003; Kohno et al., 2003). S1P4 has a
restricted tissue distribution and is expressed mainly in
haematopoietic tissue, though it was recently reported to be
in other tissues, such as the muscle satellite cells, where
together with S1P1, it promotes migration in response to S1P
(Calise et al., 2012). Expression of S1pr4 has also been
reported in rat lungs, but not in renal or mesenteric arteries,
and the S1P4 agonist VPC23153 promoted vasoconstriction of
both normotensive and hypertensive pulmonary arteries (Ota
et al., 2011). Moreover, expression of S1P4 in ER-negative
breast cancer cells correlated with poorer prognosis (Ohotski
et al., 2012).

S1P4 is also important in megakaryocytes where it is
highly induced upon differentiation. Although S1P4 knock-
out mice have normal platelet levels, their ability to generate
platelets after experimentally-induced thrombocytopenia is
delayed, suggesting a role for S1P4, in thrombopoiesis (Golfier
et al., 2010). Also in these mice, T-cell proliferation and
cytokine secretion are not significantly altered (Schulze et al.,
2011). Interestingly, S1pr4 knockout mice also have differen-
tial responses in various models of inflammation with exac-
erbated Th2-mediated responses, but reduced Th1-mediated
responses. These changes were linked to altered dendritic cell
functions, including decreased IL-6 production and IL-17
secretion. S1pr4 deletion also decreased neutrophilia, suggest-
ing a potential role for this receptor in neutrophil migration
(Allende et al., 2011).

S1P5/S1PR5/S1pr5
Previously known as Edg-8, lpB4, and Nrg-1, S1PR5 is located at
chromosomal locus 19p13.2 and encodes a highly conserved
398-amino acid protein with a calculated molecular mass of
∼39 kD with tissue expression primarily restricted to brain
and spleen (Im et al., 2000a; Malek et al., 2001). Like other
S1P receptors, it couples to multiple G-proteins, although in
its common role of inhibiting migration and promoting cell
retraction, it couples to Gα12/13. S1P5 knockout mice are viable
and fertile. Intriguingly, they show greatly decreased
numbers of circulating NK cells (Walzer et al., 2007). Similar
to the role S1P1 plays in T and B cell trafficking, S1P5 promotes
the egress of NK cells from bone marrow and lymph nodes
into blood and other tissues. Moreover, S1P5 is required for
NK recruitment to sites of inflammation (Walzer et al., 2007;
Jenne et al., 2009). Furthermore, during NK cell differentia-
tion, S1P5 is expressed, allowing exit from the bone marrow
(Mayol et al., 2011). S1P5 knockout mice also lack circulating
Ly6C-negative peripheral monocytes, but have normal levels
in the bone marrow (Debien et al., 2013). Interestingly,
although S1P5 is required for egress of these cells, S1P is not a
chemoattractant, suggesting that S1P5 may act during their
differentiation.

New lysophospholipid receptors
Efforts to de-orphanize GPCRs led to the identification of
putative new members of the lysophospholipid receptor
family. These receptors interact with two distinct glycerophos-
pholipids: LPI and LysoPS. Newer technologies to identify
receptors, such as the TGFα shedding assay, are being devel-
oped and used successfully for both de-orphanization and
correction or augmentation of lysophospholipid identities.
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LPI receptor: LPI1/LPIR1/Lpir1
(orphan GPR55)
Orphan receptor GPR55 had originally been reported to be a
novel cannabinoid receptor (Lauckner et al., 2008); however,
it appears that this receptor may in fact act as a LPI receptor
based upon recent evaluations (Kotsikorou et al., 2011; Inoue
et al., 2012; Aoki, Inoue and colleagues, unpublished). In
view of these data, we consider GPR55 as a provisional LPI
receptor with receptor name LPI1 and gene names LPIR1/Lpir1
for human and non-human genes respectively. LPIR1 is
located on human chromosome 2 (2q37) and encodes a 319-
amino acid protein (∼37 kDa). It is currently unclear whether
this receptor genuinely acts as a cannabinoid receptor, and
efforts are underway to better determine the ligand specificity
of this GPCR.

Proposed LysoPS receptors
The following receptors have shown activity using a TGFα
shedding assay (Inoue et al., 2012), which strongly support
their identity as LysoPS receptors; however, this identity
should be considered provisional. In addition, the name of
the receptors may require future modification: LysoPSx is uti-
lized here to avoid confusion with lipopolysaccharide that is
commonly referred to as LPS. The lysophospholipid LysoPS,
has been known as an immune cell stimulus, leading to
identification of the first LysoPS receptor from mast cells via
de-orphanization of the P2Y family of GPCRs known as
GPR34 (Sugo et al., 2006). LyPSR1 is located at chromosomal
locus Xp11.4 and encodes a 381-amino acid protein for a
calculated molecular mass of ∼44 kD. Receptor identity was
confirmed using the TGFα shedding assay (Inoue et al., 2012;
Kitamura et al., 2012; Makide and Aoki, 2013), although there
is some disagreement in the literature on the veracity of this
identity (Ritscher et al., 2012). Genetic deletion of GPR34
does result in immunological dysfunction (Liebscher et al.,
2011), consistent with the immunological effects of LysoPS,
and combined with positivity in the TGFα assay, its designa-
tion as LysoPS1 appears to be warranted. LysoPS1 has been
implicated in other cell types such as microglia in the brain
(Bedard et al., 2007), and has been linked to diseases or dis-
orders, including a form of night blindness (Jacobi et al.,
2000) and cancers of both immune (Ansell et al., 2012) and
non-immune origin (Yu et al., 2013). Through the use of the
TGFα shedding assay as a screening tool, three other receptors
were identified, the first of which was another P2Y orphan
receptor, P2Y10. LyPSR2 is located on human chromosome X
(Xq21.1) and encodes a 339 amino acid protein (∼39 kDa).
Consistent with the biological effects of LysoPS on the
immune system and data from analyses of LysoPS1, LysoPS2

also influences the immune system, and appears to show
restricted expression in dendritic cells derived from mono-
cytes (Berchtold et al., 1999) and lymphoid lineages (Rao
et al., 1999). LysoPS3/LyPSR3/Lypsr3, another orphan receptor
(formerly GPR174), was identified as a third LysoPS receptor
by TGFα assay (Inoue et al., 2012) and independently sup-
ported by classical assays (Sugita et al., 2013). LyPSR3 is
located near the LPAR4 and LyPSR2 genes (Xq21.1) and
encodes a 333 amino acid protein of ∼39 kDa, which shares
about 45% identity with LysoPS2. LyPSR3 has recently been
reported as a genetic risk locus for Graves disease (Zhao et al.,

2013). During TGFα screening analyses of orphan GPCRs, a
mouse cDNA not present in humans, A630033H20, was iden-
tified as a LysoPS receptor with predicted homology to
LysoPS2 (Inoue et al., 2012). This gene is located between
Lypsr2/p2ry10 and Lypsr3/GPR174 on mouse chromosomal
locus Xq21.1, which corresponds to the human P2RY10P2
pseudogene. Therefore, nomenclature for a mouse-specific
receptor and consequent gene names is neither proposed nor
discouraged. A number of lysophospholipid receptor mutants
or variants have been reported, such as the mRec1.3 mutant
of LPA1 (Contos et al., 2000b; Fukushima et al., 2001) or the
original sequence for S1pr3 (Edg-3) that was a variant form
present in a cancer cell line (An et al., 1997), and there is
currently no uniform recommendation for naming these
receptor variants, which could be a topic for future nomen-
clature efforts.

Concluding remarks

This nomenclature review for lysophospholipid receptors
incorporates the recommended, as well as the most common
uses of protein and gene names. For receptor proteins, the
simple use of the cognate ligand immediately followed by a
subscript to designate a receptor subtype is easily extended to
receptors for other lysophospholipid ligands, as illustrated by
the additions of LPI1 and LysoPS1–3, as was first used for this
family based upon IUPHAR recommendations. To easily
differentiate proteins from genes and provide an accurate
interface with sequence databases such as ENCODE (Maher,
2012; Skipper et al., 2012), the italicized use of the HGNC
and MGI nomenclatures are recommended for human and
non-human genes respectively. This nomenclature will
accommodate the likely addition of new members to the
lysophospholipid receptor family via both de-orphanization
and revised receptor identities.
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