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Bone morphogenetic proteins (BMPs) are members of the TGFβ superfamily of secreted cysteine knot proteins that includes
TGFβ1, nodal, activins and inhibins. BMPs were first discovered by Urist in the 1960s when he showed that implantation of
demineralized bone into intramuscular tissue of rabbits induced bone and cartilage formation. Since this seminal discovery,
BMPs have also been shown to play key roles in several other biological processes, including limb, kidney, skin, hair and
neuronal development, as well as maintaining vascular homeostasis. The multifunctional effects of BMPs make them attractive
targets for the treatment of several pathologies, including bone disorders, kidney and lung fibrosis, and cancer. This review
will summarize current knowledge on the BMP signalling pathway and critically evaluate the potential of recombinant BMPs
as pharmacological agents for the treatment of bone repair and tissue fibrosis in patients.

Abbreviations
ALK, activin receptor-like kinase; BMP, bone morphogenetic protein; DN, diabetic nephropathy; EMT,
epithelial-mesenchymal transition; Smad, sma and mothers against decapentaplegic

Introduction

Bone morphogenetic proteins (BMPs) are glycosylated,
secreted extracellular matrix-associated molecules that
regulate a wide variety of biological processes (Walsh et al.,
2010). BMPs are members of the TGFβ superfamily of proteins
(for nomenclature see Alexander et al., 2013), and they have
been shown to regulate limb and digit formation, kidney
development, cancer, angiogenesis and tissue fibrosis. The
importance of BMP signalling during development is under-
pinned by the elaborate regulatory mechanisms controlling
BMP signalling intra- and extracellularly. These processes
range from epigenetic methylation and miRNA-mediated
RNA regulation, protein ubiquitination, pseudo-receptors
and secreted extracellular antagonists that bind to BMPs,
preventing their engagement with their cognate receptors

(Walsh et al., 2010). Dysregulation of the BMP signalling
pathway can have drastic consequences during mammalian
development. Mutations in BMP receptors are implicated in
vascular conditions, such as pulmonary artery hypertension
(PAH), skeletal abnormalities, such as brachydactyly, and
polyp formation in the colon (reviewed in Miyazono et al.,
2010). These data are supported by a wide variety of skeletal
and other phenotypes in BMP pathway transgenic and
knockout mice. Herein, we will summarize current knowl-
edge on BMP signalling in cells, how BMPs are processed and
secreted, and focus on the role of BMPs in bone and cartilage
formation. In particular, we will discuss current and potential
uses for recombinant human BMPs for the treatment of com-
pound bone fractures and fibrotic diseases of the kidney and
lung. Finally, we will briefly discuss new data demonstrating
the therapeutic potential of targeting BMP antagonists in
PAH.
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Intracellular BMP processing
and secretion

There are approximately 20 members of the BMP family, and
these have been expertly described by colleagues elsewhere
(Balemans and Van Hul, 2002; Weiskirchen and Meurer,
2013). BMPs are synthesized as large inactive precursor pro-
teins that contain a signal peptide at the N-terminus and a
mature polypeptide at the C-terminus, connected by a pro-
domain that regulates proper folding (Xiao et al., 2007). In
the case of BMP-4, the precursor protein is cleaved by the
proprotein convertase furin at two sites within the prodo-
main (S1 and S2), a process thought to occur within the Golgi
network (Figure 1). Cleavage at the S1 (RXKR) site alone
results in a non-covalently associated ligand–prodomain
complex that is relatively unstable and targeted for degrada-
tion by the proteasome. The mature active BMP peptide is
generated by initial cleavage at the S1 site, which is then
trafficked to a compartment within the post-trans-Golgi
network, where the acidic environment makes the accessibil-
ity and subsequent cleavage at the S2 site (RXXR) site possi-
ble. This liberates the mature BMP peptide from the
prodomain to yield the stable, active, mature BMP protein
(Nelsen and Christian, 2009). These active, mature BMP
monomers contain seven cysteines, six of which form three
intramolecular disulphide bonds, also known as cysteine
knots. The remaining seventh cysteine amino acid facilitates

the dimerization with another BMP monomer by forming a
covalent disulfide bond, establishing a biologically active
dimeric ligand for BMP receptor activation (Bragdon et al.,
2011). BMP homodimers are the dominant signalling form of
each BMP, and these are bound by homodimeric BMP antago-
nists such as noggin and gremlin, which restrict their activity
(discussed below) (Israel et al., 1996; Zhu et al., 2006; Guo and
Wu, 2012). A role for BMP-2/7 and BMP-4/7 heterodimers in
mesoderm induction and differentiation of bone marrow
cells has also been described (Suzuki et al., 1997; Yuan et al.,
2011).

BMP signalling

BMPs elicit their effects through two classes of transmem-
brane serine/threonine kinase receptors known as type I
(BMPR-I) and type II receptors (BMPR-II). (Rosenzweig et al.,
1995). There are three type II receptors that BMPs bind to:
BMP type II receptor (BMPR2), activin A receptor type II
(ActR2) and activin A receptor type IIB (ActR2B). There are
also three type I receptors that BMPs preferentially bind to:
activin receptor-like kinase (ALK)2, ALK3 (BMPRIA) and ALK6
(BMPRIB) (Nohe et al., 2004). Certain BMPs have been shown
to have a higher affinity for certain type I receptors. For
example, BMP-4 preferentially binds to ALK3 and ALK6,
whereas BMP-6 and -7 preferentially bind to ALK2, but can

Figure 1
Model of BMP synthesis and site-specific cleavage by proprotein convertases. BMPs are synthesized within the cell as large, inactive dimeric
precursor proteins within the ER that require site-specific cleavage by proprotein convertases to produce stable, active dimers. This occurs at two
sites located within its pro-domain. Initial cleavage at S1 site is thought to occur in the TGN and results in a pro-domain–ligand complex. This
pro-domain–ligand complex is further cleaved at S2 site, which is rendered accessible due to the acidic enviroment within the post-TGN. This
releases the mature ligand from the pro-domain, yielding a stable biologically active BMP monomer. ER, endoplasmic reticulum; TGN, trans-Golgi
network; CM, cell membrane.
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also engage with ALK3 (Aoki et al., 2001). Once bound, this
ligand/receptor complex recruits the constitutively active
type II receptor, which phosphorylates the type I receptor on
its cytoplasmic domain that is rich in glycine and serine
residues (GS domain) (Miyazono et al., 2010). Upon ligand
binding, the BMP signal is transmitted from the cell mem-
brane to the nucleus via the canonical sma and mothers
against decapentaplegic (Smad)-dependent and/or non-
canonical Smad-independent pathways (e.g. MAPK and Akt
pathways).

Smad proteins: mediators of
BMP signalling

Smad proteins are the vertebrate homologues of the Dros-
ophila melanogaster mothers against decapentaplegic and
related Caenorhabditis elegans Sma gene (Riggins et al., 1996).
The Smad proteins are grouped based on their activators and
functions. Smad1/5/8 are termed as receptor Smads (R-Smads)
and are downstream targets of BMP ligands via BMPR1 acti-
vation. There is a second class of R-Smads called Smad2/3,
which mainly regulates downstream targets of TGFβ signal-
ling through TGFβ2 and ALK5 type I receptors (Massague
et al., 2005; Murakami et al., 2009). Recent data suggest that
TGFβ can also phosphorylate Smad1/5 in endothelial cells
(Liu et al., 2009). This ‘switch’ in Smad protein engagement
by TGFβ1 is facilitated by the loss of BMP and activin
membrane bound inhibitor (BAMBI) expression and may
contribute to endothelial homeostasis (Guillot et al., 2012).
Structurally, BAMBI is similar to the type I receptor; however,
it lacks an intracellular kinase domain. BMP signalling can
also be regulated through BAMBI (Figure 2). As BAMBI is
structurally similar to the type I BMP receptor, it competes
with the type I receptors for BMP ligand interaction, subse-
quently trapping BMP ligands and inhibiting signalling
(Onichtchouk et al., 1999). BMP-2 has been shown to phos-
phorylate Smad2/3 in B16 melanoma cells (Murakami et al.,
2009), thus demonstrating that the previous model of specific
activation of R-Smads by specific TGFβ family members is not
as restricted as previously thought.

Once the R-Smads have undergone phosphorylation,
interaction with their respective anchor proteins [endofin for
R-Smad1/5/8 (Shi et al., 2007) and SARA for R-Smad2/3
(Tsukazaki et al., 1998)] is destabilized, facilitating R-Smad
interaction with activated type I receptors to form a hetero-
meric complex with the common co-mediator Smad, Smad4
(co-Smad) (Xu et al., 2000; Shi et al., 2007). This interaction
takes place via the MH2 domain of the R-Smads (Chacko
et al., 2001). The MH2 domain is conserved among all
types of Smads, including the inhibitory Smads (I-Smads),
Smad6/7, which are endogenous inhibitors of this pathway.
In contrast, the MH1 domain is conserved in the R-Smads
and co-Smad4 only (Miyazono et al., 2010). The MH1 domain
is responsible for Smad-mediated DNA binding, interacting
with certain DNA binding proteins and antagonizing MH2
functions. The MH2 domain is responsible for BMP receptor
recognition [via their Ser-Ser-X-Ser (SSXS) sequence motif],
interaction with other Smads, nuclear translocation and DNA
binding (Wrana, 2000). Unphosphorylated R-Smads are inac-

tive, as their MH1 and MH2 domains interact with each
other, therefore suppressing the functions of each other.
Upon receptor activation, Smad-receptor binding occurs, the
MH1/MH2 interaction is disrupted, and the Smad is phos-
phorylated. The Smad nuclear import signal is exposed,
which increases R-Smad affinity for co-Smad4, facilitating the
formation of an R-Smad/co-Smad complex. This complex
then translocates to the nucleus and regulates the transcrip-
tion of various target genes such as Smad6, ID genes, BAMBI
and Smad7 through interaction with either Smad-binding
elements (SBEs) or GC-rich sequences found in the promoters
of BMP target genes (Figure 2; Miyazono et al., 2010). The
affinity between the Smad complex and SBE motif is rela-
tively weak due to promoters of target genes containing only
one or more SBEs (Shi et al., 1998; Massague et al., 2005). In
vitro, this can be overcome by using concatemers with mul-
tiple SBE repeats, which increase the binding affinity for
transcriptional activation (Zawel et al., 1998). Physiologically,
concatemers rarely occur, so increasing the affinity of Smad
binding to target DNA requires the association of Smads with
DNA binding cofactors (Massague et al., 2005). One example
of R-Smad/co-Smad complex DNA binding cofactor is the
forkhead family member, FoxH1. The R-Smad/co-Smad
complex binds to FoxH1 to regulate the transcription of Mix2
(Chen et al., 1997). There are, however, a number of other
DNA binding cofactors for BMP signalling, including Runx,
HOXc8 and CREB-binding protein (Li and Cao, 2006;
Miyazono et al., 2010).

Regulation of BMP signalling

The BMP/Smad signalling cascade is tightly regulated by both
intra- and extracellular processes: intracellular processes
include proteasome-mediated degradation via Smurf pro-
teins, for example, Smurf1, which has been shown to target
R-Smad1/5 for degradation (Zhu et al., 1999), and also inhi-
bition via I-Smad6 and 7 action, which act at different points
in the pathway. Smad7 resides within the nucleus, and upon
BMP/TGFβ receptor activation, it is released into the cyto-
plasm (Itoh et al., 1998). It has been shown that Smurf1/2
interacts with Smad7 to facilitate inhibition of the Smad
pathway via binding to the activated receptor, thereby com-
petitively antagonizing Smad1/5/8 binding (Suzuki et al.,
2002). Smad6 specifically inhibits the BMP pathway by inter-
acting with activated R-Smads, preventing the formation of
the R-Smad/co-Smad complex, thus inhibiting signal trans-
duction (Hata et al., 1998).

Protein phosphorylation/dephosphorylation is also
important in the tight regulation of BMP cell signalling.
Protein phosphatase-1 (PP1) regulates BMP signalling by
dephosphorylation of the TGFβ/BMP receptor. TGFβ/BMP
type 1 receptor stimulation leads to Smad7 interaction with
growth arrest and DNA damage protein (GADD34), which is
a regulatory/targeting subunit of the type 1 receptor. This
then triggers the recruitment of the catalytic subunit of PP1
(PP1c) and subsequent dephosphorylation of the TGFβ type 1
receptor, thereby reducing TGFβ receptor activation (Shi
et al., 2004). Dephosphorylation of R-Smads can also occur
through the metal ion-dependent protein phosphatases 1A
(PPM1A). PPM1A directly interacts with phosphorylated
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R-Smads, resulting in their inactivation through dephospho-
rylation (X Lin et al., 2006b). Together, both PP1c and PPM1A
act as effective ‘off’ switches for TGFβ/BMP signalling.

The BMP/Smad signalling pathway is also regulated by a
family of secreted extracellular antagonists, that directly bind
to the BMP ligand preventing their interaction with BMP
receptors. These antagonists have been extensively reviewed
previously (Balemans and Van Hul, 2002; Walsh et al., 2010;
Nakamura and Yanagita, 2012). Briefly, antagonists of BMPs
include proteins such as noggin, chordin, gremlin, crossvein-
less, USAG-1 and follistatin. Most of these proteins are
expressed in a highly regulated temporospatial manner
during development. The key role of these antagonists and
their BMP targets is highlighted by the often lethal develop-

mental defects displayed by mice lacking one or more of
these proteins (reviewed in Walsh et al., 2010). Noggin is a
potent antagonist of BMP signalling, showing high affinity
for BMP-2 and -4, although it can also antagonize BMP-7. The
co-crystal of homodimeric noggin bound to homodimeric
BMP-7 has provided the field with critical information regard-
ing the structural basis of BMP-BMP antagonist action
(Zimmerman et al., 1996; Groppe et al., 2002).

Chordin is expressed in the brains of adult rats, where
high levels of BMP-2/4 have also been reported (Mikawa and
Sato, 2013). Gremlin was originally identified as a protein
capable of inducing secondary axis formation in Xenopus
laevis embryos (Hsu et al., 1998). Gremlin has been shown to
play a critical role in kidney development, with grem1

Figure 2
Activation and regulation of BMP/Smad-dependent signalling. BMP ligands bind to and activate type I and II serine/threonine kinase receptors
(BMPR-I and BMPR-II, respectively), which triggers phosphorylation of the R-Smad1/5/8. Phosphorylated R-Smads form a heteromeric complex
with the co-Smad 4, enabling its subsequent translocation to the nucleus where it binds to specific GC rich sequences within the promoters of
several target genes in concert with various DNA binding co-factors. This cascade is tightly regulated, through pseudo-receptors such as BAMBI,
which quench BMP ligands thereby limiting their availability to interact with their receptors. Extracellular regulation occurs via direct interaction
of BMPs with their secreted antagonists, thereby preventing ligand receptor interaction. Intracellularly, this pathway is regulated by the I-Smads,
Smad6 and 7. Smad6 prevents the formation of R-Smad and co-Smad complex formation. Smad7 regulates this pathway by forming a complex
with Smurf1/2 and competing with R-Smad for type I receptor-mediated activation effectively antagonizing BMP/Smad pathway activation. This
pathway is also regulated by phosphatases such as PP1, which dephosphorylates the BMP type I receptor, and PPM1A, which dephosphorylates
R-Smads. R-Smad, receptor regulated Smads; I-Smad, inhibitory Smads; co-Smad, co-mediator Smad; ID, inhibitor of differentiation; PAI1,
plasminogen activator inhibitor-1; PP1, protein phosphatase 1; PPM1A, metal ion-dependent protein phosphatases 1A; DBC, DNA binding
co-factors; PM, plasma membrane.
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homozygous knockout mice born without kidneys as a result
of excessive BMP/Smad signalling (Michos et al., 2007). This
phenotype was rescued by reducing BMP-4 signalling
‘volume’ in grem1−/−;bmp-4+/− mice (Michos et al., 2007).
Like noggin and chordin, gremlin regulates BMP signalling
through direct interaction with BMP ligands, thereby block-
ing ligand–receptor interaction (Wordinger et al., 2008).
Gremlin can also regulate BMP signalling intracellularly
through intracellular interaction of gremlin with BMP-4 pre-
cursor protein, inhibiting the formation and secretion of the
mature and active BMP ligand (Sun et al., 2006). Levels of
gremlin are increased in fibrotic disease, and pharmacological
strategies to inhibit gremlin action will be discussed later in
this review.

BMP signalling during bone
development

The key role of BMPs in skeletal development has been
expertly summarized by others elsewhere. We provide a brief
summary of the area below. The vertebrate skeleton consists
of bone and cartilage, and contains three main cell types:
chondrocytes, osteoblasts and osteoclasts (Karsenty, 2003).
Bone formation in vertebrates involves both membranous
ossification (involving osteoblast differentiation) and endo-
chondral ossification (involving chondrocyte differentiation,
review in Karsenty, 2003; Nishimura et al., 2012). Both of
these processes are regulated by BMPs, and BMP-2 and BMP-4
are powerful inducers of osteoblast and chondrocyte differ-
entiation, which induces bone and cartilage formation
(Nishimura et al., 2012). BMPs were originally isolated from
bone by Marshall Urist in 1965, when he showed that soluble
extracts from bone extracellular matrix could stimulate bone
formation when injected into rodents (Urist, 1965).

So how do BMPs such as BMP-2 and BMP-4 drive bone
formation in vertebrates? The mechanism of BMP activation
of their type I/II receptors and the R-Smad1/5/8 canonical
signalling pathway is described earlier. This pathway is active
in both chondrocytes and osteoblasts, and is highly regulated
by a series of intracellular and extracellular mechanisms
(reviewed in Walsh et al., 2010). Mature BMPs are secreted
from osteoblasts and may either (i) activate their membrane
receptors; (ii) be bound and inhibited by one or more of their
secreted antagonists; or (iii) bind to extracellular matrix pro-
teins such as collagen and act as a ‘reservoir’ of BMP for
neighbouring cells (Miyazono et al., 2010). A series of tran-
scription factors critical to bone and cartilage formation have
been identified (reviewed in Nishimura et al., 2012). Runx2,
Osterix and Sox9 are key transcription factors that regulate
downstream BMP signalling in osteoblasts (Nishimura et al.,
2008). The conservation of BMP action and the bone forma-
tion process in vertebrates give added value to the interpre-
tation of data from the phenotypes of mouse models
displaying manipulations in BMP or BMP antagonist function
(Karsenty, 2003). Patients with mutations in the Runx2 gene
develop cleidocranial dysplasia, characterized by short stature
and defective clavicle (collar bone) formation (Otto et al.,
2002), and runx2−/− mice die shortly after birth due to a
severe defect in osteogenesis (Komori et al., 1997; Otto et al.,
1997).

Apart from the extracellular cysteine-knot containing
antagonists such as gremlin and noggin discussed earlier,
some BMP proteins themselves act as competitive antagonists
that bind to the type I/II receptors. BMP-3 is secreted from
osteoblasts and is found in the bone extracellular matrix.
BMP-3 binds to the ActR type II and inhibits BMP-2/4 binding
(Daluiski et al., 2001; Gamer et al., 2005). Mice lacking BMP-3
display an increased bone mass (Daluiski et al., 2001),
whereas transgenic mice overexpressing BMP-3 develop spon-
taneous fractures, highlighting a key role for BMP-3 in bone
development (Gamer et al., 2009). Recent data have shown
that BMP-3 can repress osteoblast differentiation from pro-
genitor cells (Kokabu et al., 2012). Inhibin is another circu-
lating antagonist of BMPR2 that also blocks BMP-2/4 action
in osteoblasts (Rosen, 2006). Negative feedback for the BMP
signal is provided by intracellular molecules such as Smad6
and Tob. Smad6 is a BMP-2 target gene, and increases in
Smad6 levels inhibit osteoblast differentiation by triggering
Smurf1-dependent proteasomal degradation of the BMP
receptor and Smad proteins (Murakami et al., 2003; Horiki
et al., 2004; Massague et al., 2005). Another inhibitor of
osteoblast function, called Tob, blocks BMP action by binding
and inhibiting R-Smads, thus preventing BMP signalling
(Yoshida et al., 2000). Other molecules such as CRIM1,
BAMBI and endoglin regulate BMP signalling in bone and
other tissues (Onichtchouk et al., 1999; Wilkinson et al.,
2003; Ishibashi et al., 2010; Pardali et al., 2011). CRIM1 inhib-
its BMP action via regulation of intracellular BMP processing,
whereas BAMBI acts a pseudo-receptor to reduce active BMP
binding to type I/II receptors (Onichtchouk et al., 1999;
Wilkinson et al., 2003). In contrast, endoglin (also known as
CD105) is sometimes referred to as the type III BMP receptor
and acts to enhance BMP action at the plasma membrane
(Ishibashi et al., 2010).

The highly complex nature of BMP action and regulation
emphasizes the critical nature of this pathway in bone (and
other tissue) development. The effect of changes in the levels
or function of proteins in the BMP pathway can be seen in the
wide array of phenotypes observed in patients. Many of these
phenotypes have been reviewed elsewhere (Rosen, 2006;
Walsh et al., 2010). Mutations in the BMP antagonists noggin
and sclerostin cause brachydactyly (lack of digits; Lehmann
et al., 2007), and sclerosteosis characterized by fused digits and
excessive bone growth (Brunkow et al., 2001). Increases in the
level of several BMP antagonists including noggin, chordin
and follistatin have been implicated in osteoarthritis (Tardif
et al., 2009). Mice overexpressing Grem1 in bone develop
osteopenia and increased bone fractures (Gazzerro et al.,
2005), whereas mice with bone-specific deletion of Grem1
develop increased bone formation and density (Gazzerro et al.,
2007). Changes in the levels of other BMP antagonists such as
noggin and twisted gastrulation have also been implicated in
bone density changes in mouse models (Wu et al., 2003; Sotillo
Rodriguez et al., 2009). All of these data and more underline
the principle that tight temporospatial regulation of BMP
action is critical for normal bone and cartilage formation in
mammals. The ‘volume’ of BMP signalling is a fundamental
parameter in determining correct bone formation during
development. With this in mind, the next section of this
review will discuss the uses of BMPs in modulating bone
formation in patients with a range of bone injuries.
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Therapeutic uses of BMPs for
bone repair

Between 5 and 10% of fractures have impaired healing due to
non-union of bone (Gautschi et al., 2007). This can greatly
increase patient morbidity due to an extended hospital stay,
infection rates concomitant healthcare costs. The gold stand-
ard of therapy for non-union fractures is bone autograft,
where bone fragments are harvested from the patient’s iliac
crest and used to heal the fracture (Cook et al., 1994). BMPs
have been shown in pre-clinical models to stimulate bone
formation (osteoinduction; Einhorn et al., 2003) and angio-
genesis (Zhang et al., 2009). Both BMP-2 and BMP-7 are now
clinically approved as adjunct therapies for the treatment of
non-union fractures (Gautschi et al., 2007). Recombinant
human BMP-2 is available from Medtronic (Minneapolis,
MN, USA) as InFUSE®, and rhBMP-7 is available from Stryker
(Kalamazoo, MI, USA) as OP-1. The efficacy of BMPs has been
tested in a number of clinical trials. The BESTT study evalu-
ated the effect of rhBMP-2 on open tibia fractures, as a sup-
plement to standard surgical intervention (Nauth et al.,
2009). In this single blind trial, all patients underwent the
standard irrigation/mechanical fixation of the fracture, fol-
lowed by placebo or rhBMP-2 treatment (Govender et al.,
2002). RhBMP-2 was delivered via an absorbable type I colla-
gen sponge, and the primary outcome of secondary surgical
intervention due to non-union of the fracture was assessed.
The study showed that patients treated with rhBMP-2 had
accelerated fracture and wound healing, as well as lower
infection rates, with few safety concerns (Govender et al.,
2002). A follow-up study by Swiontkowski et al. (2006)
looking at the effect of rhBMP-2 on open tibial fractures
supported the beneficial effects of rhBMP-2 seen above.
Others have assessed the effect of rhBMP-2 in parallel with
bone allografting and shown benefit in several cases (e.g.
Jones et al., 2006, summarized in Nauth et al., 2009). Alter-
natives to the absorbable collagen sponge carrier have been
developed. Boerckel et al. (2011) suggested that a hybrid
nanofibre mesh/alginate delivery system yielded greater bone
connectivity compared with the collagen sponge. Novel
approaches such as using mesenchymal stem cells transfected
with BMPs for the treatment of non-union fracture are being
explored (Liebergall et al., 2013).

Some caution should be noted regarding the use of BMPs
in bone repair. A Cochrane review by Garrison and colleagues
collated data from 11 clinical trials and suggested that a lack
of robust data on the use of rhBMPs in fracture healing exists.
Many of the clinical trials have been limited in terms of
unconscious bias risk due to a lack of double blinding, and
there has been considerable industry involvement to date.
Garrison et al. (2010) concluded that the high cost of rhBMP
treatment may be justified only in patients with the most
severe fractures. Others have also examined the economics of
rhBMP treatment. A single dose of rhBMP costs approxi-
mately $5000 in the USA (Nauth et al., 2009). The cost of
BMP treatment was weighed against potential savings from a
societal/healthcare perspective, with groups in the USA and
UK suggesting that rhBMP treatment was only cost-effective
when used in severe open tibia fractures and in high-risk
patients such as smokers (Jones et al., 2006; Garrison et al.,

2007; Ziran et al., 2007). rhBMP-7 is currently used ‘off-label’
for the treatment of non-union fractures (Nauth et al., 2009).
Similar to rhBMP-2, studies have shown that rhBMP-7 can
accelerate the healing time and reduce the number of second-
ary interventions when used in conjunction with surgical
repair of tibial fractures (Ristiniemi et al., 2007).

BMP-7 may also be useful in cases of osteoarthritis, where
BMP-7 induction of extracellular matrix collagen production
may oppose the degradation of the articular cartilage via
stimulation of chondrocyte function (Fan et al., 2004; Nishida
et al., 2004). BMP-7 may also provide a benefit in this situation
by reducing pro-inflammatory cytokine release (e.g. IL-1 and
IL-6), thereby inhibiting MMP-1 and MMP-13 matrix metal-
loproteinase expression (Huch et al., 1997; Koepp et al., 1999;
Im et al., 2003; Boon et al., 2011). In human patients, rhBMP-7
has entered a Stryker-sponsored phase 2 double-blind rand-
omized dose-finding trial for the treatment of osteoarthritis of
the knee. Doses of rhBMP-7 used in this trial ranged from 0.03
to 0.3 mg·mL−1, with appropriate placebo comparators (http://
clinicaltrials.gov/ct2/show/NCT01111045). Phase 1 studies by
this company suggested limited toxicity to report with
rhBMP-7 treatment of age and sex-appropriate (60 years,
female) control subjects (Hunter et al., 2010). Results on the
phase 2 study for rhBMP-7 are pending. rhBMP-7 was
approved by the Food and Drug Administration for use in
lumbar spinal fusion in patients where bone autograft was not
feasible or likely to be successful, such as in smokers or diabetic
patients. Many adverse events identified as a result of rhBMP-7
treatment, such as haematoma, swelling, neurological defects
and retrograde ejaculation, may have been underreported. A
review of these trials by Dr Nancy Epstein concluded that there
is mounting evidence that the use of rhBMP-7 in spinal fusion
surgery contributes to major perioperative and post-operative
morbidity (Epstein, 2013).

What should we conclude from the wealth of conflicting
data reporting on the therapeutic benefit versus side effects of
rhBMPs in the treatment of non-union fractures, spinal
fusions, and other bone and cartilage-related diseases? Nauth
et al. (2009) concluded that the data on the use of rhBMPs
have been disappointing so far due to the high doses
required, unresolved issues with the carrier molecules and
the limitations of the clinical trials completed to date. When
the safety concerns identified by Epstein (2013) are also
considered, it is clear that more data from well-designed
double-blind, placebo controlled, multiple dose and carrier
formulation clinical trials are required to allow clinicians to
proceed with confidence when utilizing rhBMPs in orthopae-
dic surgeries and other procedures.

Role of BMPs in tissue fibrosis

BMPs have been implicated in mammalian development,
cancer, and fibrosis or tissue scarring. Roles for BMP-2 in heart
development, BMP-4 and 7 in neural crest cell maturation
and BMP-7 in kidney formation have been demonstrated
(summarized in McCormack and O’Dea, 2013). Fibrosis or
scarring occurs in organs such as kidney, lung and heart as a
result of damage caused by hyperglycaemia, hypoxia and
ischaemic insult. Fibrosis is characterized by an increase in
the number of fibroblast cells that secrete extracellular matrix
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proteins such as collagen and fibronectin, which contribute
to the damage experienced by the organ or tissue. Scar-
forming fibroblasts may derive from the tissue itself (resident
fibroblasts), from activation of quiescent cells in the circula-
tion (fibrocytes) or from injured epithelial or endothelial cells
that undergo an epithelial/endothelial-mesenchymal transi-
tion (EMT/EndMT) to form collagen-secreting myofibroblasts
(LeBleu et al., 2013). EMT was originally proposed as a source
of myofibroblasts in kidney injury by Iwano et al. (2002), who
suggested that approximately one-third of all myofibroblasts
in the fibrotic kidney arise from EMT. More recent data using
fate mapping suggest that in the fibrotic kidney, 50% of
myofibroblasts arise from proliferation of local resident fibro-
blasts, 35% arise from infiltration of bone marrow-derived
cells, 10% arise from endothelial cells via EndMT and 5%
arise from epithelial cells via EMT (LeBleu et al., 2013).
However, there is a large body of evidence suggesting that
EMT does not contribute to renal fibrosis, and that vascular
pericytes are the source of the myofibroblast in the kidney
(reviewed in Grgic et al., 2012). Why are these details impor-
tant? Firstly, the degree of tubulointerstitial fibrosis is
inversely correlated to renal function and is a good predictor
of renal function going forward (Bohle et al., 1994). Secondly,
the development of therapeutics to delay, halt or reverse renal
fibrosis is at the forefront of many research programmes in
both academia and industry. It has been hypothesized that
the numbers of scar-forming fibroblasts in a fibrotic tissue can
be reduced by pharmacological approaches that aim to
reverse EMT or otherwise reduce fibroblast burden in the
affected tissue. Manipulation of BMP signalling is at the fore-
front of many of these strategies, and these data will be
summarized below.

Manipulation of BMPs as a strategy to
reverse tissue fibrosis

TGFβ1 was identified as the primary fibrotic cytokine that
induces EMT in multiple organs including kidney, heart, skin,
lung (Okada et al., 1997; Zeisberg et al., 2003b). Exposure of
epithelial cells to TGFβ1 leads to a decrease in adherens junc-
tion proteins such as E-cadherin and ZO-1, and an increase in
α-smooth muscle actin and collagen IV. Regardless of the
cellular context, the key inducers of EMT are a series of
transcription factors called Snai1/2 and Zeb1, which orches-
trate the wave of gene expression changes critical to EMT
progression (Peinado et al., 2007). There are a limited number
of conflicting reports on the role of BMPs in EMT in different
cell types. BMP-4 has been convincingly shown to have a
pro-EMT, pro-fibrotic effect in different epithelial cells. BMP-4
induces EMT and enhanced cell migration in airway epithe-
lium (Molloy et al., 2008; McCormack et al., 2013), as well as
EMT and invasion in squamous cell carcinoma and other
cancer cells (Hamada et al., 2007; Theriault et al., 2007; Xu
et al., 2011). BMP-4 also contributes to cardiac hypertrophy
in models of pressure overload (Sun et al., 2013). Transgenic
overexpression of BMP-4 induced glomerular damage and
proteinuria in mice, a phenotype similar to that seen in
diabetic nephropathy (DN) (Tominaga et al., 2011). BMP-2
has been suggested to enhance EMT in human skin wounds

and in human lung epithelial cells (Yan et al., 2010;
McCormack et al., 2013). BMP-2 can also increase the expres-
sion of α-SMA in hepatic stellate cells, which are thought to
undergo EMT during liver fibrosis (Shen et al., 2003). Others
have suggested that BMP-2 possesses anti-fibrotic activity by
suppressing TGFβ1-induced EMT in an in vivo model of renal
fibrosis (Yang et al., 2009). These authors subsequently
showed that BMP-2 attenuated Snail expression, thus revers-
ing TGFβ1-induced EMT (Yang et al., 2011).

In terms of EMT and fibrosis, most of the interest has
surrounded BMP-7, as it is this member of the BMP family
that appears to have strong anti-fibrotic activity. In the heart,
delivery of rhBMP-7 reduced both EndMT and associated
cardiac fibrosis induced by pressure overload in mice
(Zeisberg et al., 2007). The same report also demonstrated
that rhBMP-7 reduced fibrosis in a heart transplant mouse
model of chronic organ rejection (Zeisberg et al., 2007). Kang
et al. (2010) showed that s.c. delivery of rhBMP-7 reduced
vascular calcification in the aorta as a result of vitamin D
overload (Kang et al., 2010). Significantly, these authors dem-
onstrated that pretreatment with rhBMP-7 for 7 days could
prevent vitamin D-induced vascular calcification (Kang et al.,
2010). In an asbestos model of pulmonary fibrosis, adminis-
tration of rhBMP-7 reduced the severity of fibrosis in these
mice (Myllarniemi et al., 2008).

In the liver, BMPs have been implicated in the wound
healing response to carbon tetrachloride (CCl4)-induced fibro-
sis, and Bmpr1a+/− mice displayed retarded healing post-CCl4

treatment (Oumi et al., 2012). Oral administration of adeno-
associated virus-rhBMP-7 also suppressed CCl4-induced liver
fibrosis in mice (Hao et al., 2012). Intraperitoneal injection of
BMP-7 was similarly effective in liver fibrosis in rats (Zhong
et al., 2013). The mechanism of BMP-7-mediated repair is
suggested to be inhibition of TGFβ1 signalling in hepatic
stellate cells due to reductions of extracellular matrix collagen
I and III deposition and enhanced hepatocyte regeneration
(Hao et al., 2012; Yang et al., 2012). In models of inflamma-
tory bowel disease and colitis, i.v. administration of BMP-7
reduced the expression of TGFβ1 and pro-inflammatory
cytokines such as IL-6, causing an attenuation of colitis sever-
ity (Maric et al., 2003). Further data from this group identified
that BMP-7 administration increased BMP-2 levels and
decreased the levels of the BMP antagonist noggin, leading to
an overall recovery of BMP signalling that reversed the inflam-
matory bowel disease phenotype (Maric et al., 2012). These
data suggest that BMP-2 may also have a pro-resolution rather
than a pro-fibrosis role during fibrosis-associated inflamma-
tion in the gut and other tissues.

In the kidney, BMP-7 antagonizes TGFβ1 actions in renal
mesangial and tubular epithelial cells. Significantly, loss of
BMP-7 is associated with fibrosis associated with DN (Wang
et al., 2001; Wang and Hirschberg, 2003; 2004). Importantly,
the Hirschberg group also showed that overexpression of
BMP-7 in glomerular podocytes attenuated renal fibrosis and
improved renal function (Wang et al., 2006). Previous data
had shown that the administration of recombinant BMP-7
(OP-1) reduced the severity of ischaemic acute renal injury in
mice (Vukicevic et al., 1998). The Kalluri group demonstrated
the benefit of BMP-7 administration in a chronic model of
nephrotoxic serum nephritis (Zeisberg et al., 2003b), as well
as genetic models of renal fibrosis (Zeisberg et al., 2003a) and
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DN (Sugimoto et al., 2007). These authors also demonstrated
a BMP-7-mediated reversal of EMT in their model system, as
well as in adult renal fibroblasts, facilitating regeneration of
injured kidney (Zeisberg et al., 2005). BMP-7 gene transfer
using gold nanoparticles into rabbit keratocytes also inhibits
corneal fibrosis in vivo (Tandon et al., 2013).

In contrast, a group from Centocor, Inc., showed that
BMP-7 failed to reverse TGFβ1-induced EMT in human proxi-
mal tubular epithelial cells (Dudas et al., 2009). Similarly,
BMP-7 did not reverse EMT or protect against fibrosis in a
mouse model of lung or skin fibrosis (Murray et al., 2008).
These groups suggested that recombinant BMP-7 may not be
an optimal anti-fibrotic agent for human disease treatment.
Despite these disappointing results, the potential for anti-
fibrotic therapy based on BMP-7 is still strong. A small
peptide mimetic of BMP-7 called THR123, which activates the
BMP ALK3 receptor, has shown remarkable activity in revers-
ing renal fibrosis from a diverse range of mouse models of
acute and chronic kidney disease (Sugimoto et al., 2012).
Some authors in the field have expressed some concerns
about the interpretation of these data. For example, issues
were raised with the signalling properties of THR123 versus
BMP-7, and also whether oral delivery of a peptide such as
THR123 can be expected to deliver an effective therapeutic
dose in vivo (Whitman et al., 2013). The Kalluri group have
responded to these questions and discussions are ongoing as
to the therapeutic potential of the THR123 peptide for
human kidney disease (Sugimoto et al., 2013).

A small molecule called dorsomorphin was identified by
Yu et al. (2008b) as the first small molecular inhibitor of BMP
signalling. Using dorsomorphin, the authors identified a role
for BMP signalling in iron metabolism in the zebrafish liver
(Yu et al., 2008b). Mice expressing a constitutively activated
form of the ALK2 receptor develop ectopic endochondral
bone formation, mimicking a disease called fibrodysplasia
ossificans progressiva (FOP) in humans. Treatment of these
mice with a dorsomorphin derivative (LDN-193189) inhib-
ited BMP signalling in C2C12 cells and reduced the severity
of the FOP phenotype in mice (Yu et al., 2008a; Boergermann
et al., 2010). A recent paper by Sanvitale et al. (2013)
described a new class of ALK2 inhibitor, the lead compound
of which is called K02288. K02288 inhibits BMP-stimulated
Smad1/5/8 phosphorylation, without affecting TGFβ1 signal-
ling, suggesting an impressive degree of specificity (Sanvitale
et al., 2013). Both dorsomorphin and its analogues, together
with K02288, offer exciting tools for the development of
specific, small-molecule inhibitors of BMP signalling in
human disease.

Another small molecule called tilerone has been shown to
reduce the severity of pulmonary fibrosis in mice, by increas-
ing the expression of BMP-7 (Lepparanta et al., 2013). A
secreted molecule called kielin/chordin-like protein (KCP-1)
can bind to and inhibit TGFβ1, while enhancing BMP-7 sig-
nalling (J Lin et al., 2005; 2006a). Transgenic expression of
KCP-1 can attenuate both acute and chronic renal injury in
mice (Soofi et al., 2013), and the authors speculate that KCP-1
may have potential as a therapeutic agent if administered in
the correct context (Soofi et al., 2013). Therefore, despite the
difficulty in translating the anti-fibrotic potential of BMP-7 in
animal models to patients, alternative strategies that boost
BMP-7 signalling such as THR123 or KCP-1 may provide an

indirect route to utilize the anti-fibrotic potential of BMP-7
for the treatment of fibrotic disease in patients.

Targeting BMP antagonists for the
treatment of fibrotic disease

One of the proposed mechanisms by which BMP-7 reduced
liver fibrosis is by decreasing the expression of the secreted
BMP antagonist gremlin (Yang et al., 2012). Increased levels
of Grem1 are associated with fibrotic conditions in the
kidney, lung, heart liver and eye (Dolan et al., 2005; Lee et al.,
2007; Mezzano et al., 2007; Carvajal et al., 2008; Costello
et al., 2008; Walsh et al., 2008; Rodrigues-Diez et al., 2012;
Yang et al., 2012; Mueller et al., 2013). In parallel with data
showing that reduced BMP-7 signalling is associated with
diabetic kidney disease, mutations in the BMP receptor type II
are implicated in >70% of heritable cases of PAH (Li et al.,
2010). These data identify the targeting of Grem1 as a novel
therapeutic modality for the treatment of fibrosis in vivo.
Supporting this hypothesis, mice lacking one copy of the
Grem1 gene (grem1+/−) are partially protected from the early
sequelae of DN (Roxburgh et al., 2009). In addition, in vivo
delivery of siRNA-mediated targeting of Grem1 demonstrated
therapeutic potential for the treatment of DN by restoring
BMP-7 levels (Zhang et al., 2010). In the lung, Grem1 is over-
expressed in idiopathic pulmonary fibrosis (Koli et al., 2006).
Transient adenovirus-mediated overexpression of Grem1 in
lung led to epithelial cell activation and a reversible lung
fibrosis (Farkas et al., 2011). Grem1 levels are also elevated in
response to hypoxia in models of PAH, and haplodeficiency
of grem1 increased BMP signalling and reduced vascular
remodelling associated with PAH (Costello et al., 2008; Cahill
et al., 2012). Given the large body of data demonstrating that
elevated levels of Grem1 contribute to tissue fibrosis, phar-
macological strategies designed to inhibit Grem1 function in
vivo have been tested in a range of disease models. Data from
a group in Novartis have shown for the first time that an
anti-Grem1 antibody ameliorated PAH in a mouse model
(Ciuclan et al., 2013). Pretreatment with the anti-Grem1
monoclonal antibody reduced pulmonary vascular remodel-
ling and right ventricle hypertrophy, and increased BMP sig-
nalling in the lung (Ciuclan et al., 2013). These data provide
pharmacological proof-of-principle that this approach of tar-
geting Grem1 as a means of increasing BMP signalling is now
being explored in other fibrotic conditions of the kidney and
other tissues. Of course, other BMP antagonists may also
represent important bona fide targets in fibrotic disease. Con-
sistent with this idea, a recent paper from the Yanagita group
demonstrated that twisted gastrulation exacerbates podocyte
injury via inhibition of BMP-7 signalling (Yamada et al.,
2014).

Concluding remarks

This review has summarized a wealth of data suggesting that
pharmacological manipulation of the BMP pathway holds
great potential for the treatment of human diseases of bone,
kidney fibrosis, cancer, etc. The identification of small mol-
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ecules that specifically target the BMP pathway creates the
potential for screening these compounds in a range of in vitro
and in vivo models of disease where BMP actions are impli-
cated. The natural progression of this work is the drive
towards clinical trials for the small-molecule inhibitors of
BMP signalling in various diseases. We look forward to moni-
toring the evolution of this exciting field, which will hope-
fully generate improved targeted therapies for patients
suffering from bone disorders as well as fibrosis in the kidney,
lung and other tissues.
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