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Two-way communication between the mammalian nervous and
immune systems is increasingly recognized and appreciated. An
intriguing example of such crosstalk comes from clinical observa-
tions dating from the 1930s: Patients who suffer a stroke and then
develop rheumatoid arthritis atypically present with arthritis on
only one side, the one not afflicted with paralysis. Here we suc-
cessfully modeled hemiplegia-induced protection from arthritis using
the K/BxN serum-transfer system, focused on the effector phase of
inflammatory arthritis. Experiments entailing pharmacological inhib-
itors, genetically deficient mouse strains, and global transcriptome
analyses failed to associate the protective effect with a single nerve
quality (i.e., with the sympathetic, parasympathetic, or sensory
nerves). Instead, there was clear evidence that denervation had a
long-term effect on the limb microvasculature: The rapid and joint-
localized vascular leak that typically accompanies and promotes
serum-transferred arthritis was compromised in denervated limbs.
This defect was reflected in the transcriptome of endothelial
cells, the expression of several genes impacting vascular leakage
or transendothelial cell transmigration being altered in denervated
limbs. These findings highlight a previously unappreciated pathway
to dissect and eventually target in inflammatory arthritis.
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It has long been recognized that immune and inflammatory
processes can be influenced by signals from the nervous system

(1). For example, neuroendocrine hormones have well-known
anti-inflammatory activities, first documented for corticosteroids
in the arthritis context (2). Subsequently, motor neurons, the
sympathetic nervous system (SNS), the parasympathetic nervous
system (PNS), and sensory fibers have all been documented to
modulate inflammation (3–5).
A striking example of nervous–immune system interaction

comes from clinical observations made decades ago. As early as
1935, it was reported that patients who suffered a stroke and
then developed rheumatoid arthritis (RA), often years after the
neurologic insult, had an atypical disease presentation: Instead
of the inflammatory symmetry typical of RA, only neurologically
intact limbs developed joint inflammation (6). Later, this effect
of central denervation was extended to peripheral denervation:
Patients who were hemiplegic subsequent to polio or syphilis
developed an analogous asymmetric arthritis (7, 8).
We set out to dissect this clinical phenomenon mechanistically

by exploiting the power of the K/BxN T-cell receptor transgenic
mouse model of inflammatory arthritis (9, 10). This model is
particularly useful because of its easily distinguishable initiation
and effector stages. The initiation phase relies primarily on the
adaptive immune system. T lymphocytes displaying the transgene-
encoded T-cell receptor recognize a self-peptide derived from
GPI presented by the major MHC class II molecule, Ag7; these
autoreactive T cells provide exceptionally effective help to GPI-
specific B cells, resulting in massive, IL-17–dependent production
of anti-GPI autoantibodies (autoAbs), primarily of the IgG1
isotype. The effector phase, which can be mimicked conveniently
by transfer of serum from K/BxN into standard mice, is executed

primarily by innate immune system players. GPI:anti-GPI im-
mune complexes initiate a self-sustaining inflammatory response
that mobilizes mast cells, neutrophils, perhaps macrophages, the
alternative pathway of complement, Fc gamma receptors (FcγRs),
TNF-α, IL-1, and others.
It proved possible to model hemiplegia-induced protection

from arthritis in the K/BxN serum-transfer system: Serum recipi-
ents that had undergone unilateral transection of the sciatic and
femoral nerves developed arthritis only in the paw on the in-
nervated side. This finding prompted us to assess the roles of
diverse elements of the nervous and allied systems in arthritis
progression subsequent to serum transfer. Results from experi-
ments using genetically deficient mouse strains and pharmaco-
logical inhibitors were unable to implicate a particular nerve
quality but did point to a role for endothelial cells of the mi-
crovasculature. In accord, the endothelial cell transcriptomes of
denervated and innervated ankles from K/BxN serum-transferred
mice differed substantially and suggestively.

Results
Establishment of a Mouse Model of Asymmetric Arthritis Subsequent
to Unilateral Paralysis. To enable mechanistic dissection of the
arthritis-protective effect of hemiplegia, we adapted the K/BxN
serum-transfer system. The hindpaw on one side of 6- to 8-wk-
old C57BL/6 (B6) mice was denervated by transection of both
the sciatic and femoral nerves, and the contralateral limb underwent
a sham operation. Typically 10 d later, K/BxN serum was injected
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i.p., usually twice, 2 d apart, and inflammatory arthritis was
assessed over time.
As anticipated, control paws showed a steady augmentation

of ankle thickness over the 10-d observation period; in contrast,
denervated paws exhibited the usual increase only until day 2,
after which there was little additional ankle thickening (Fig. 1A).
Histologic examination at day 10 revealed the expected severe
inflammation of control paws: a massive influx of neutrophils
in periarticular tissues and within the synovial space and sy-
novial hypertrophy (Fig. 1B, Left). These abnormalities were
almost completely absent in the denervated paws (Fig. 1B, Right).
Cathepsin B activity, another marker of inflammatory arthritis
(11), also was greatly reduced in denervated paws, as indicated by
minimal cleavage of a cathepsin-sensitive fluorescent nanoparticle
injected on day 10 and monitored by noninvasive imaging (Fig. 1C).
Nerve-crush injury, more mild than nerve transection, afforded
protection as well, although such protection appeared to be less
robust than that resulting from severance of the nerves (Fig. 1D).
To assess the importance of motor function in the serum-

transfer system, we evaluated the effect of immobilizing hind-
paws by application of a splint. This procedure did not confer
protection from arthritis (Fig. 1E), although it is difficult to
ensure absolute immobilization using such a strategy.
There was an intriguing time-dependence to the effect of de-

nervation on the development of arthritis in the serum-transfer
model. Concurrent nerve transection and serum injection para-
doxically resulted in increased ankle swelling on the denervated
compared with the innervated side (Fig. 1F and Fig. S1). With
increasingly longer intervals between surgery and arthritis in-
duction, this proinflammatory response converted to an anti-
inflammatory, arthritis-protective mode, which was maintained
for more than 1 mo after denervation (Fig. 1F and Fig. S1).
Last, we wondered whether the denervation-induced block to

arthritis progression is reversible. Injection of a bolus of IL-1β
can bypass genetic resistance to the arthritogenic power of K/BxN
serum (12). IL-1β, administered on three consecutive days at the
time of serum injection, completely reversed the arthritis block
in denervated limbs, driving disease to the same level as in the
innervated counterparts (Fig. 1G).

Comparison of the Transcriptomes of Control and Denervated Ankles.
For additional insight into the aborted arthritis induced in the
denervated limbs, we turned to genome-wide transcriptome anal-
ysis. We began by identifying gene-expression differences in whole-
ankle tissue dissected from denervated and sham-operated limbs,
independent of the response to K/BxN serum. Even 10 d post-
surgery, the ankle-tissue transcriptomes diverged extensively: 238
genes were up-regulated, and 364 genes were down-regulated by at
least twofold in the denervated samples (P < 10−4, by permutation
analysis) (Fig. 2A and Tables S1 and S2). These changes reflected
a number of pathways involved in tissue homeostasis and de-
velopment (see Fig. 2B for top pathway “hits” from Ingenuity
analysis and Tables S3 and S4 for the actual genes involved), but
the identity of these pathways yielded no obvious explanations
for the arthritis-protective effect. Not surprisingly, and reassuringly,
the transcripts most underrepresented in the denervated tissue
encoded many myelin- and muscle-associated proteins (Table S2).
Subsequently, we compared gene-expression profiles of ankle

tissue from denervated and innervated limbs after the adminis-
tration of K/BxN serum. The analysis was focused on day 4 after
serum transfer because this time point was the first to show
a difference in ankle thickness and therefore might provide clues
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Fig. 1. Asymmetric arthritis after unilateral denervation. (A–C) B6 mice
were subject to hindlimb denervation on one side and a sham operation on
the other. Ten days later, they were injected with K/BxN serum (day 0), and
arthritis was monitored over time by diverse assays. (A) Ankle swelling. Data
shown are mean ± SD; ***P < 0.001 determined by Student t test; n = 4. (B)
Histology. Analyzed by H&E staining 10 d after serum injection. (Magnifi-
cation: Upper, 2×; Lower, 10×.) (C) Real-time protease imaging. A fluores-
cent cathepsin-B–activatable probe (ProSense) was injected on day 9 and
imaged on day 10 after serum injection. (Left) Examples of images obtained
with 2.7× magnification and color-coded in ImageJ with Fire. (Right) Sum-
mary quantification. Data shown are mean ± SD; *P < 0.05, determined by
Student t test; n = 4. (D) Crush injury. Rather than surgical denervation,
hindlimbs were subject to a milder crush, injury. Arthritis was induced and
assayed as in A. *P < 0.05; n = 3. (E) Joint immobilization. Rather than sur-
gical denervation, hindlimb joints were splint-immobilized. Arthritis was
induced as in A. n = 3. (F) Impact of time since denervation. As in A, except
varying intervals between surgery and serum transfer were tested. Area

under the curve values are plotted; full curves can be found in Fig. S1. Ctl,
sham-operated control. Data are shown as mean ± SD; n = 4. (G) Reversal of
arthritis protection. As in A, except that IL-1β was i.p. injected on days 0, 1,
and 2 (arrows) vis-à-vis serum transfer. n = 4.
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to early defective processes, before secondary effects set in.
Again the transcriptomes of denervated vs. innervated ankle
tissue diverged significantly: 136 were up-regulated, and 241
genes were down-regulated in the denervated samples (P < 10−4,
by permutation analysis) (Fig. 2C). Superimposing on this plot
the sets of transcripts over- or underrepresented in the absence
of serum challenge (red and blue in Fig. 2A) revealed that most
of the differential expression on day 4 after serum administration
carried over from the prechallenged state (day 0). Few immu-
nity- or inflammation-related genes made the twofold cutoff,
notably the gene encoding SAA-1 did, an acute-phase reactant
whose levels mount in blood and synovial fluid of arthritic
humans and rodents (13) (Tables S5 and S6).

Assessment of the Contribution of Diverse Nerve Types to K/BxN
Serum-Transferred Arthritis. We then sought to identify the type
(s) of nerve involved in this model of inflammatory arthritis. The
arthritis-protective effect detailed above was conferred by tran-
section of the femoral and sciatic nerves, severing a variety of
nerve types: motor, sympathetic, possibly parasympathetic, and
sensory. First, we examined the impact of the two components of
the vegetative nervous system, the SNS and PNS. The SNS seems
to exert pro- or anti-inflammatory activity depending on the
context, typically promoting inflammation at the outset of an
immune response and reining it in at later stages (14). For ex-
ample, blockade of β2 sympathetic signaling delayed the onset of
antigen-induced arthritis and reduced its severity (3), whereas
sympathectomy performed late in the course of collagen-induced

arthritis worsened disease manifestations (15). To test the in-
fluence of the SNS in the K/BxN serum-transfer system, we ad-
ministered, along with the serum, a set of pharmacologic agents
that operate by a diversity of mechanisms. Guanethidine, a non-
active competitive inhibitor of norepinephrine at the presynaptic
terminal, did not impact joint swelling; 6-hydroxydopamine, a
potent neurotoxin, similarly failed to have an effect, as did re-
serpine, an irreversible norepinephrine reuptake inhibitor (Fig. 3A).
The PNS and its main anatomic correlate, the vagus nerve,

have been linked to several inflammatory processes, usually exert-
ing a dampening effect. For example, increased vagus nerve
activity attenuated systemic sepsis, reducing levels of proinflam-
matory cytokines such as TNF-α, IL-1, and IL-6, whereas vagot-
omy exacerbated disease (5). The vagus nerve’s anti-inflammatory
function is mediated through acetylcholine (Ach) and a specific
nicotinic Ach receptor, nAchRa7, which is present on macro-
phages and links the nervous and immune systems (16). The PNS
was interrogated both via pharmacological inhibition and in KO
mice. Coadministration of K/BxN serum and hexamethonium, a
nondepolarizing ganglionic blocker, actually enhanced joint
swelling (Fig. 3B, Left). On the other hand, mecamylamine,
a nonselective and noncompetitive antagonist of nAchRs, did
not change the course of disease (Fig. 3B, Left). Neither of these
compounds is truly selective for the PNS, however; both inhibit
SNS function as well. Therefore, as an independent test of the role
of the PNS, we transferred serum into mice with a null mutation
for nAchRa7. Arthritis developed as usual in these recipients (Fig.
3B, Right).
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Fig. 2. Comparison of the transcriptomes of control and denervated ankles. Whole tissue from ankles of denervated or sham-operated limbs was dissected
before or 4 d after induction of arthritis, and global gene expression was analyzed by microarray. (A) Volcano plot showing changes in gene expression
induced by denervation in the absence of arthritis induction. (B) Canonical pathways (from Ingenuity) most enriched in sets of genes up- (Left) or down-
(Right) regulated by denervation. The orange line indicates the ratio, calculated as the number of genes in a given pathway that meet cutoff criteria divided
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Sensory fibers also can play an active role in inflammatory
processes, expressing a variety of relevant receptors on their end-
ings, including Toll-like, cytokine, prostaglandin, and catecholamine
receptors (14). The transient receptor potential vanilloid cation
channel 1 (TRPV1) is a proinflammatory nerve-fiber receptor
that is activated by capsaicin (4). TPRV1 and like receptors are
thought to sense activation of the immune system and to report
the information to higher nerve centers in the spinal cord and
brain. Subsequently, they release neuropeptides such as substance
P and calcitonin gene-related peptide-1 (CGRP-1), which have
powerful vasodilatory and chemotactic properties and thereby
can prime the local environment for an inflammatory response
(17, 18). To assess the influence of sensory nerves on K/BxN
serum-transferred arthritis, we tested mice bearing a null muta-
tion for TRPV1 or for substance P. Transfer of serum into each
of these KO strains could provoke inflammatory arthritis with
the usual course, and disease could be inhibited by denervation
(Fig. 3 C and D).

Demonstration of Effects on the Microvasculature. We showed pre-
viously that K/BxN serum-transferred arthritis induces and de-
pends on a rapid and joint-localized increase in microvascular
permeability, a process that requires histamine and serotonin
(19). There are manifold links between the nervous and vascular
systems: For example, VEGF, a major stimulant of angiogenesis,
also promotes axon growth (20); the SNS and PNS control car-
diovascular parameters such as blood pressure and heart rate;
and the neurovascular unit, a term encompassing endothelial
cells, neurons, astrocytes, pericytes, and extracellular matrix, is
increasingly recognized as central to neurodegenerative diseases
(21). Hence, we quantified vascular leakage in denervated and
sham-operated limbs of K/BxN-serum recipients. Using a non-
invasive, real-time method for visualizing the vasculature of live
mice via confocal microscopy of a long-circulating intravascular
imaging probe (19), we found a clear reduction and delay in the
vessel leakage that typically occurs minutes after serum injection
(Fig. 4 A and B). Because systemic administration of histamine or
serotonin had been shown previously to trigger analogous joint-
localized vasopermeability in limbs of standard mice, i.e., to
mimic the effect of GPI:anti-GPI immune complexes, we checked

whether this triggering also occurred in denervated limbs. It did
not, suggesting a defect in endothelial cell sensing (Fig. 4C).
Given the clear impact of denervation on the vasculature of

serum-transferred mice and the lack of reversal by vasoactive
amines, we looked for mechanistic clues in the transcriptomes of
hindpaw endothelial cells. Tie2-GFP mice, in which endothelial
cells are fluorescently tagged, were subjected to denervation or
a sham operation. After 10 d, hindpaw endothelial cells were
purified by flow cytometry, RNA was isolated, and gene expres-
sion was profiled using Affymetrix microarrays. To focus on genes
relevant to vascular permeability, we generated a transendothelial
migration signature using information from the Gene-Set Enrich-
ment Analysis (GSEA) Molecular Signature Database (MSigDB)
and the Ingenuity database (listed in Table S7). Superimposition
of this signature onto a plot comparing the transcriptomes of
denervated and innervated hindpaw endothelial cells revealed a
significant underrepresentation of these transcripts in the de-
nervated hindpaw (Fig. 4D). The genes most differentially
expressed (Table S7) include representatives of several signaling
pathways critical for regulating vascular permeability (Fig. S2).

Discussion
The major goals of this study were to establish a mouse model for
hemiplegia-induced protection from RA and to exploit this model
to elucidate the mechanistic underpinnings of this fascinating, but
little explored, clinical phenomenon. We turned to the well-studied
K/BxN serum-transfer system, which mimics many of the clinical
and immunological features of human inflammatory arthritis (22).
The impact of denervation on the response to arthritogenic serum
by mice was astonishingly parallel to the effect of central or pe-
ripheral denervation on subsequent RA development by humans.
For example, in both cases, denervation is initially proinflammatory,
but a long-lasting anti-inflammatory state eventually sets in (Fig. 1D
and ref. 23). Because of the simplicity of the serum-transfer system,
focused on the arthritis effector phase, and because of its trac-
tability to experimental manipulation, easily adapted for genetic
or pharmacologic intervention, we could evaluate candidate sys-
tems, pathways, and molecules rapidly. Several of our observations
merit further discussion.
First, the surgical procedure, which injures nerve fibers of the

motor, SNS, PNS, and sensory systems, resulted in extensive,

Day after serum injection

Control paws
Denervated paws

B

D

0 2 4 6 8 10

substance P-/-

Day after serum injection

C
ha

ng
e 

in
 a

nk
le

 th
ic

kn
es

(m
m

)

0 2 4 6 8 10

Trpv1-/-

Control paws
Denervated paws

C
ha

ng
e 

in
 a

nk
le

 th
ic

kn
es

(m
m

)

AChRα7-/-
AChRα7+/-

C
ha

ng
e 

in
 a

nk
le

 th
ic

kn
es

(m
m

)

0 2 4 6 8 10

Mecamylamine
HexamethoniumA

0

1

0.5

1.5

C
ha

ng
e 

in
 a

nk
le

 th
ic

kn
es

(m
m

)

Day after serum injection
0 2 4 6 8 10

Guanethidine
Vehicle

Reserpine
6OH-dopamine

0

Day after serum injection
2 4 6 8 10

Vehicle

*** ***

**

0

1

0.5

1.5

0

1

0.5

1.5
C

0

1

0.5

1.5

Fig. 3. Evaluation of the roles of various nerve types.
(A and B) Role of the vegetative nervous system in
K/BxN serum-transferred arthritis. Arthritis was induced
and assayed in innervated limbs as in Fig. 1A. Phar-
macological inhibitors of the SNS (A) or PNS (B, Left)
were administered beginning on day 0, at the time of
serum transfer. (B, Right) The response of AchRα7-KO
mice and control littermates was tested. **P < 0.01. (C
and D) Role of sensory nerves in serum-transferred
arthritis. Arthritis was induced and assayed in de-
nervated or innervated hindlimbs as in Fig. 1A. The
response of mice genetically deficient in Trpv-1 (C) or
substance P (D) that had or had not been denervated
was tested. ***P < 0.001; n = 3 for each condition.
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long-lasting transcriptome changes in the denervated limb, in-
dependent of serum transfer. The damage caused by transection
of the sciatic and femoral nerves causes what is known as
“Wallerian degeneration” (24). Nerve fibers distal to the injury
undergo rapid degeneration, with only the sheath remaining to
guide regenerative axon sprouting; some retraction of proximal
fibers also occurs. At the cellular level, the distal degeneration is
dominated by a massive accumulation of macrophages, peaking
between days 7 and 14 and then gradually clearing (25). At the
molecular level, there is an increase in perineural levels of
proinflammatory mediators such as TNF-α, IL-1β, CCL2, and
CCL3, even before the expansion of the macrophage population,
i.e., at days 1–3 (26, 27). Thus, the denervation-induced tran-
scriptome changes must reflect a complex mix of cellular and
molecular responses, of both a degenerative and regenerative
nature, as well as more distal effects. Most striking, although not
unexpected, was the underrepresentation in the denervated
limbs of a group of myelin-related and muscle-associated tran-
scripts and the overrepresentation of transcripts related to tissue
regeneration.
Second, we were unable to identify a particular nerve quality

required for K/BxN serum-transferred arthritis. This finding
contrasts with previous reports of an effect of manipulating the
SNS in other mouse models of inflammatory arthritis (sometimes
via the same inhibitors) (3, 15). A likely explanation for the di-
vergent results is that the models previously interrogated are
rather different: Unlike the K/BxN serum-transfer system, they
encompass both the initiation and effector stages of arthritis and
depend on the injection of an adjuvant to induce disease. We
only can surmise that in the system we used the overall, inte-
grated, quantity or quality of nerve signaling is the critical pa-
rameter or, alternatively, that the denervation procedure damaged
auxiliary systems.
Third, hindpaw denervation did result in vascular changes

known to be detrimental to the progression of arthritis. The
K/BxN serum-transferred disease is preceded by and depends on
a rapid increase in joint-localized macromolecular permeability
of the microvasculature (19, 28). Anti-GPI autoAbs are recog-
nized by FcγRIII, likely on mast cells, which in turn release
histamine and serotonin, thereby provoking a transient increase
in vascular permeability. Consequently, more anti-GPI autoAbs
exit the circulation and deposit in the joints, and more innate
immune cells gain access to the periarticular space. Anti-GPI–
induced vascular leak was significantly delayed and reduced in

denervated hindpaws. Interestingly, unlike the case for control
paws, injection of histamine or serotonin into denervated paws
did not elicit joint-localized vascular permeability. Because these
vasoactive amines bypass the need for anti-GPI, neutrophils,
mast cells, and FcγRIII, this result pointed to a possible defect in
endothelial cells of the joint.
Indeed, expression of a number of genes implicated in con-

trolling vascular permeability was altered, either negatively or
positively, in the endothelium of denervated hindpaws. Among
the down-regulated genes whose products promote vessel per-
meability and cell transmigration are Axl and Jam2. Axl is a ty-
rosine kinase crucial in the VEGF-A pathway, downstream of
PI3K/AKT activation; Axl-null mice showed reduced perme-
ability in several inflammatory contexts (29). Junctional adhesion
molecule 2 (encoded by Jam2) is an endothelial cell-surface
protein that promotes rolling and adhesion of immune cells,
a prerequisite for transmigration (30); blockade of this protein
abrogated transmigration of primary human peripheral blood
leukocytes across umbilical vein endothelial cells (31).
Among the up-regulated genes encoding proteins known to

dampen endothelial leak and cellular transmigration are Argptl4
and Cry61. Angiopoietin-like 4, structurally similar to the angio-
poietins, protects vascular integrity in contexts of myocardial in-
farction and tumor metastasis; Angptl4-KO mice showed altered
VEGFR2/VE-cadherin complexes and disrupted endothelial cell
adherens junctions (32, 33). Cysteine-rich angiogenic inducer 61
(encoding by Cr61), produced by fibroblasts and endothelial
cells, is considered an important matrix protein promoting tissue
repair and immune cell adhesion by binding various integrins;
high expression of this molecule inhibits transmigration of innate
and adaptive immune cells (34). Clearly, transcriptome changes
in hindpaw endothelial cells support the notion that vascular
alterations in the denervated limbs reduce access to arthritogenic
cells and molecules.
Such a scenario makes evolutionary sense. Paralyzed limbs are

prone to venous and lymphatic stasis, because of the lack of
motor activity, which normally acts as a pump to return blood
and lymph centrally to the heart and thoracic duct. Therefore the
limb tends to become edematous, increasing the likelihood of
microbial infections. Minimizing vascular leak would result in
less edema and, thereby, fewer infections.
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Fig. 4. Effects of hindlimb denervation on the ankle microvasculature. (A–C) Inhibition of K/BxN serum-induced vascular leak. The vascular probe AngioSense
680 was i.v. injected 5 min before serum transfer. (A) Single-plane confocal micrographs of control and denervated hindpaws just before and 10 min after
serum injection. (Magnification: 10×.) (B) Quantification of the change in mean fluorescence intensity (ΔMFI) of confocal micrographs obtained every 5 s for
15 min after serum injection. ΔMFI was calculated vis-à-vis the preserum value. Data shown are representative of four mice. ***P < 0.001, calculated by the
Student t test. (C) Effect of injecting vasoactive amines instead of serum on vascular leak in innervated vs. denervated hindpaws. n = 3–4. (D) Changes in
endothelial cell transcriptome. Microarray analysis of gene expression by endothelial cells isolated from paws of denervated or sham-operated limbs. Genes
from a transendothelial migration signature (Table S7) are highlighted on a volcano plot. P value was determined by a χ2 test.
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Materials and Methods
Mice.Male mice (6- to 8-wk-old) of the following strains were purchased from
Jackson Laboratory: C57BL/6J, Tie2 reporter (Tg(TIE2GFP)287Sato/J), substance
P-deficient (B6.Cg-Tac1tm1Bbm/J), TRPV-deficient (B6.129 × 1-Trpv1tm1Jul/J),
and nAchRa7-deficient (B6.129S7-Chrna7tm1Bay/J) mice. All mouse proce-
dures were approved by the institutional subcommittee on research animal
care at Massachusetts General Hospital.

Denervation and Arthritis Induction. On the same leg, the sciatic nerve was
isolated in the gluteal fossa posteriorly and the femoral nerve was isolated
anteriorly distal to the inguinal ligament. Denervation was accomplished by
transection and removal of at least 2 mm of nerve. Sham operations were
performed on the contralateral leg.

K/BxN serum-transferred arthritis was induced by i.p. injection of 150 μL
pooled serum from 8-wk-old K/BxN mice on days 0 and 2. For arthritis re-
versal, 100 μg of IL-1β was injected i.p. on days 0, 1, and 2. Clinical arthritis
was assessed by measuring ankle thickness.

For histological analysis, animals were killed at the indicated time points,
and paws were harvested. After decalcification with 9% (vol/vol) formic acid,
specimens were processed using standard paraffin embedding and were
stained with H&E.

Protease Imaging. Imaging of a fluorescent cathepsin-B–sensitive probe
(Prosense; Perkin-Elmer) was performed as described (11). Mice were injec-
ted with the probe 9 d after serum treatment and were imaged 1 d later.
Images were processed with ImageJ (National Institutes of Health) to define
regions of interest and to color-code using Fire filter.

Microarray Analysis. For whole-ankle gene expression, hindpaws of B6 mice
were harvested at various time points in the course of disease and prepared as
previously described (35). For endothelial cell gene expression, hind paws of

Tie2-GFP mice were harvested 10 d after denervation and prepared as
above. Cells then were sorted on the GFP signal and directly collected in
TRIzol (Life Technologies). All cell populations were generated in triplicate.

RNA was processed and analyzed using M430 2.0 chips (Affymetrix) as
detailed previously (35) and updated (36). The analysis of canonical path-
ways used Ingenuity Pathway Analysis (IPA; Ingenuity Systems). The trans-
endothelial migration signature was generated by extracting gene sets
relevant to this function from IPA and MSigDB (www.broad.mit.edu/gsea).

Pharmacological Manipulation. Compounds were diluted in normal saline to
the specified concentration and were administered as follows: guanethidine
at 0.5mgdaily i.p., 6-OH-dopamine at 80mg/kg every other day i.p., reserpine
at 5 mg/kg every other day i.p., hexamethonium at 5 mg·kg−1·h−1 s.c., and
mecamylamine at 1 mg/kg daily orally. Administration began on day 0, at
the time of serum transfer.

Confocal Imaging of Vessel Permeability. Vascular imaging was performed as
previously described (19) after injection of AngioSense 680 (Perkin-Elmer)
into serum-transferred or histamine (200 mg/kg)- or serotonin (10 mg/kg)-
injected mice. Microscopy was performed with a multichannel upright con-
focal microscope (Radiance 2100; Bio-Rad Laboratories).

Statistical Analysis. Statistical analysis was performed using the program
Prism 5 (GraphPad Software). One-way ANOVA and the Student t test were
performed as indicated in the figure legends.
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