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Abstract

Independent component analysis (ICA) is a data-driven approach frequently used in neuroimaging

to model functional brain networks. Despite ICA’s increasing popularity, methods for replicating

published ICA components across independent datasets have been underemphasized.

Traditionally, the task-dependent activation of a component is evaluated by first back-projecting

the component to a functional MRI (fMRI) dataset, then performing general linear modeling

(GLM) on the resulting timecourse. We propose the alternative approach of back-projecting the

component directly to univariate GLM results. Using a sample of 37 participants performing the

Multi-Source Interference Task, we demonstrate these two approaches to yield identical results.

Furthermore, while replicating an ICA component requires back-projection of component beta-

values (βs), components are typically depicted only by t-scores. We show that while back-

projection of component βs and t-scores yielded highly correlated results (ρ=0.95), group-level

statistics differed between the two methods. We conclude by stressing the importance of reporting

ICA component βs so – rather than component t-scores – so that functional networks may be

independently replicated across datasets.

Introduction

Independent component analysis (ICA) is a statistical approach for blind separation of a

composite multivariate signal into its constituent source signals. ICA has been broadly used

in functional magnetic resonance imaging (fMRI) to identify task-activated brain networks

(Congdon, et al. 2010; McKeown, et al. 1998; Stanger, et al. 2013; Worhunsky, et al. 2013).

ICA is frequently followed with general linear modeling (GLM) to assess how these ICA-

identified networks are recruited by fMRI tasks (Calhoun, et al. 2001; Kilts, et al. 2013). As

a data-driven approach, ICA does not require a priori information about the source signals

to identify them; it has thus been used to identify brain networks in the absence of task (i.e.

during wakeful rest) in independent samples (Damoiseaux, et al. 2006; Fox, et al. 2005;

Wisner, et al. 2013). Disruptions of these “resting-state networks” have been attributed to
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numerous disorders including schizophrenia, Alzheimer’s disease, and epilepsy (Bullmore,

et al. 2010; James, et al. 2013; Sorg, et al. 2009).

The growth of data-sharing initiatives such as the 1000 Functional Connectomes Project and

International Neuroimaging Data-sharing Initiative has allowed replication of ICA-derived

networks in independent datasets. For example, one may hypothesize that an anterior

cingulate network identified from the Stroop task (Stroop 1935) is also recruited by the

Flanker task (Eriksen and Eriksen 1974). To test this hypothesis, the cingulate network’s

task-related activity could be assessed by back-projecting the component beta-values

(component βs) to a participant fMRI dataset, effectively weighting each timepoint by the

component. GLM of this weighted dataset would then provide an activity beta-value

(activity βs) describing that component’s task-related activation.

However, two barriers impede the replication of ICA-derived networks. First, this approach

requires participants’ fMRI datasets. These datasets may not be accessible due to

confidentiality issues, and back-projection of ICA components to these datasets can be

computationally intensive (particularly for sample sizes > 100). Second, back-projection

should be conducted using component βs, but the neuroimaging field traditionally depicts

components by t-scores (describing the significance of βs) and rarely reports the βs

themselves. While component beta-values and t-scores are generally positively correlated, a

voxel could have a small yet highly significant contribution to the component – or

conversely, a large yet non-significant contribution.

To address the first issue, we propose an alternative approach of directly back-projecting

components to univariate (voxelwise) GLM maps, as depicted in Figure 1. Traditionally, the

relationship between component and task is determined by (1) back-projecting the

component to participant fMRI data to generate a weighted timecourse for that component

and (2) using GLM to determine if component activity significantly relates to task (Calhoun,

et al. 2001). We propose (1) first assessing task-related activity of participant’s fMRI data

with GLM, then (2) back-projecting the ICA component to the resulting GLM map to assess

task-related component activity. We assessed the feasibility of our approach by comparing

group-level results obtained by each method. To address the second issue, we contrasted

results obtained through traditional back-projection of components using (1) voxel beta

values or (2) voxel t-statistics.

Methods

Participants

Thirty-seven participants (mean±sd age=31±9.9 years; 15 male, 22 female; 21 self-reported

as Caucasian, 14 African-American, 1 Hispanic, and 1 as bi-racial; 35 right-handed and 2

left-handed) were selected from participants recruited for a parent study, the Cognitive

Connectome Project. Participants were recruited via community advertisements in

accordance with University of Arkansas for Medical Sciences Institutional Review Board

approval and oversight. Inclusion criteria for the study were healthy men and women, ages

18–50 years, without histories of psychiatric or neurologic illness and who were native

English speakers with at least an 8th grade reading and writing proficiency. Exclusion
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criteria included the presence of psychiatric disorders (with the exception of nicotine

dependence) as determined by structured clinical interview (SCID-NP), and

contraindications to the high-field MRI environment, such as ferromagnetic implants

(determined through a medical history) and pregnancy (determined through a urinalysis).

Procedures

All procedures were conducted in the Brain Imaging Research Center at the Psychiatric

Research Institute of the University of Arkansas for Medical Sciences. The Cognitive

Connectome Project consists of two MRI sessions (1 hour each), a battery of computerized

assessments (1 hour) and a comprehensive neuropsychological assessment (3–4 hours). For

this work, we analyze data acquired from the Multi-Source Interference Task (MSIT) (Bush

and Shin 2006). Of the 48 participants recruited for the Cognitive Connectome, 37 were

included in these analyses; 11 participants were excluded for not completing the MSIT scan

(n=1), not reporting handedness (n=2), having poor spatial coverage of the brain (n=4), or

having excessive head motion (n=4).

Image Acquisition

Participants were scanned using a Philips 3T Achieva X-series MRI scanner (Philips

Healthcare, USA). Anatomic images were acquired with a magnetization prepared gradient

echo (MPRAGE) sequence (matrix=256×256, 160 sagittal slices, repetition time

(TR)=2600ms, echo time (TE)=3.05ms, flip angle (FA)= 8°, final resolution=1×1×1mm3).

Functional images were acquired for the first 22 participants using an 8-channel head coil

with an echo planar imaging sequence [TR/TE/FA= 2000ms/30ms/90°, field of view=

240×240mm, matrix= 80×80, 37 oblique slices (parallel to orbitofrontal cortex to reduce

sinus artifact), slice thickness= 4mm, interleaved slice acquisition, final resolution

3×3×4mm3]. Functional data were acquired on remaining 14 participants after an equipment

upgrade to a 32-channel head coil using the same parameters, except thinner slices (slice

thickness=2.5mm with 0.5mm gap) and sequential ascending slice acquisition to reduce

orbitofrontal signal loss due to sinus cavity artifact.

MSIT

The MSIT was administered as previously described by (Bush and Shin 2006). For each

trial, participants viewed a row of three numbers, two of which were identical. Participants

indicated which number differed from the other two by pressing a button corresponding to

the number’s location (right index, middle, or ring fingers for “1”, “2”, or “3”, respectively).

For Congruent trials, the target number’s identity matched its location, and all distracter

(non-target) numbers were zeros (i.e. “100”, “020” or “003”). For Incongruent trials, the

target number’s identity (1, 2, or 3) did not correspond to its position, and the distracter

numbers were also 1s, 2s, or 3s (e.g. “211”, “232”, “331”, etc.). Participants practiced the

task to proficiency outside of the MRI scanner prior to performing it inside the scanner.

Stimuli were presented as a block design using Presentation 14.4 (Neurobehavioral Systems

Inc.). Each trial lasted approximately 2000 ms and began with a stimulus presentation,

lasting for 1750 ms or until participants responded, followed by a fixation cross shown for

the remainder of trial. Congruent (Con) and Incongruent (Incon) trials were presented in 4
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blocks of 24 trials (48 sec) each, along with three 30 sec Rest blocks. During Rest blocks,

participants were instructed to fixate their gaze upon a centrally presented fixation cross and

wait for the next trial. The experimental block order was Rest-Con-Incon-Con-Incon-Rest-

Con-Incon-Con-Incon-Rest, for a total duration of 480 sec (8 min).

fMRI data preprocessing

Unless otherwise noted, all MRI data preprocessing was performed as previously described

(Kilts, et al. 2013) using AFNI version 2011_12_21_1014 (Cox 1996). Anatomic data

underwent skull stripping, spatial normalization to the icbm452 brain atlas, and

segmentation into white matter, gray matter, and cerebrospinal fluid with FSL (Jenkinson, et

al. 2012). Functional data underwent despiking, slice timing correction, deobliquing (to

3×3×3mm3 voxels), motion correction, transformation to the spatially normalized anatomic

image, regression of motion parameters, mean timecourse of white matter voxels, and mean

timecourse of cerebrospinal fluid voxels, spatial smoothing with a 6mm full-width-half-

maximum Gaussian kernel, scaling to percent signal change, and identification and removal

of motion-related noise components with Group ICA of fMRI Toolbox (GIFT v1.3)

(Calhoun, et al. 2001) for Matlab.

General linear modeling (GLM)

GLM was conducted using AFNI’s 3dDeconvolve program (code available upon request).

The GLM modeled Congruent and Incongruent MSIT conditions as 48 sec blocks convolved

with AFNI’s default hemodynamical response function, including participant’s head motion

parameters (roll, pitch, yaw, and displacement in x, y, and z) as predictors of no interest in

the baseline model. A general linear test contrasted Incongruent and Congruent conditions.

GLMs were conducted upon fMRI timeseries and upon ICA component timeseries (see

below) as depicted in Figure 1.

ICA

ICA components were identified from the preprocessed MSIT data using Matlab and the

GIFT v1.3 toolbox. ICA was run using Infomax algorithm and solved for 30 components.

The following options were used: back-reconstruction using GICA3, subject-specific

principal component analysis using expectation maximization and stacked datasets, full

storage of covariance matrix to double precision, usage of selective eigenvariate solvers,

two-step data reduction with 50 principal components in the first step, and scaling to z-

scores. ICA was repeated 20 times using the ICASSO algorithm to identify the most reliable

and stable components across all iterations. The ICASSO stability indices (all iQ>0.95)

indicated a reliable solution using 30 components.

Comparing ICA and GLM order effects

Order effects of ICA and GLM were compared as depicted in Figure 1. The traditional

approach (shown via blue arrows) calculated the voxelwise product of the nth ICA

component (Xn) with each image of an fMRI dataset (Y) to generate an activity timeseries

for each component; these components then underwent univariate GLM to identify task-

based component activity (activity βs). An alternate approach (red arrows) conducted task-
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based GLMs for each fMRI dataset (Y), and then calculated the product of the whole-brain

spatial map to each ICA component (Xn). Correlational analyses compared similarity of

activity βs derived from these two methods.

Comparing component βs and t-scores

The ICA back-projections depicted in Figure 1 were performed using components’

voxelwise β-values as well as components’ voxelwise t-scores. Group-level t-tests calculated

task-related change in activity for each component and contrast (Congruent vs. Rest,

Incongruent vs. Rest, Congruent vs. Incongruent), with Bonferroni correction for 90

comparisons (30 components × 3 contrasts). Group results were compared between back-

projections of component βs and t-scores. Variables such as age, gender, handedness, and

acquisition parameters were not modeled as covariates of no interest, since we are

comparing results obtained via different methods, and these variables would systemically

influence all methods equally.

Univariate GLM

Subjects’ univariate GLM results were analyzed with mixed-effects meta-analysis to

generate a univariate group map of MSIT-related brain activity. MSIT-related brain

activations have been well-documented elsewhere and are beyond the scope of this study

(Bush and Shin 2006). However, these univariate maps may be valuable for interpreting

differences between the proposed methods.

Results

Table 1 describes the ICA components generated from the MSIT fMRI task. Twenty-one

components resemble neuroanatomical networks previously identified with ICA (Kalcher, et

al. 2012). The remaining networks represented noise from head motion or pulsation artifact

of cerebrospinal fluid in ventricles and subarachnoid space.

Activity βs were identical whether obtained (a) via back-projection of ICA components to

subject fMRI data then GLM or (b) via whole-brain GLM of subject fMRI data then back-

projection of ICA components. These activity βs were perfectly correlated (r=1.00) and

differed only by rounding error.

Activity βs were highly correlated whether obtained via back-projection of (a) ICA

component βs or (b) ICA component t-scores. The mean±sd correlation was 0.95±0.08

across all 30 components and 3 contrasts, with a correlation range of 0.68–0.99. Correlations

were higher for the 21 non-noise components: mean±sd= 0.98±0.04, range 0.79–0.99.

Although highly correlated, two-sample Kolmogorov-Smirnov goodness-of-fit tests showed

component βs and t-scores to arise from significantly different distributions (minimum

Kolmogorov-Smirnov statistic = 0.341 for component 22, all component p<0.001).GLT

results were largely consistent for activity βs obtained via back-projection of (a) component

βs or (b) component t-scores. Both methods found the anterior cingulate component (#28) as

significantly more active during Incongruent vs. Congruent contrast, as previously reported

(Bush and Shin 2006). The univariate GLM showed MSIT-related cingulate activation to be

more superior than typically reported, encompassing pre-SMA and peri-cingulate rather than
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anterior cingulate proper (Figure 2). By comparison, the anterior cingulate component (#28)

includes pre-SMA and peri-cingulate as well as dorsal anterior cingulate. This component

also captures some left dorsolateral prefrontal cortex, which is also present in the univariate

contrast.

However, activity βs differed between methods for two components: the ventromedial

prefrontal cortex (#8) and posterior cingulate (#9). Both were significantly less active during

Incongruent vs. Congruent contrast when back-projecting component βs but not significantly

different when back-projecting t-scores. Figure 3 depicts sagittal views of these components.

Figure 2 shows the regions encompassed by these components to be task deactivated for the

univariate contrast; the component β method (but not the component t-score method) also

found these components to be task deactivated. We attribute these differing results to the

aforementioned differences in component βs and t-score distributions, which are depicted for

Component 8 in Figure 4. The component β distribution shows higher kurtosis and lower

variance than the t-score distribution, which accounts for differences in GLM findings.

Discussion

We have demonstrated that our novel approach of back-projecting ICA components to GLM

maps yields identical results as the traditional approach. Our approach was developed as a

means for replicating ICA components in the parent Cognitive Connectome project without

requiring back-projection of each component to each timepoint of each fMRI dataset, which

is the most computationally intensive aspect of the traditional approach. For the MSIT fMRI

task with 240 timepoints and 3 GLM contrasts, our ICA approach is approximately 80-times

faster than the traditional approach. Using a 1 GHz processor, back-projecting 30

components to one MSIT fMRI dataset took 40s with the traditional approach and <1s with

the novel approach. While these savings are small, they add up with large sample sizes and

multiple fMRI tasks, as is the trend in Big Data initiatives.

These calculations assume that univariate GLM maps already exist. We estimate a single

subject’s univariate GLM to take approximately 20s, halving the estimated efficiency of the

novel approach for situations where GLM maps do not already exist. Furthermore, computer

processing speed, number of timepoints, and number of GLM contrasts can influence

computation time. But given that the typical fMRI dataset has an order of magnitude more

timepoints than contrasts (i.e. 100–300 timepoints and 1–10 contrasts), we still contend this

approach to be more efficient than the traditional approach.

A caveat of this approach is that it only provides activity βs for each participant, whereas the

traditional approach provides activity βs and t-statistics. Subject-level statistics may be

valuable for descriptive purposes, such as determining what percentage of the sample had a

significantly active component. But for group-level statistics, such as determining if

component activity significantly differs from zero, these methods produce identical results.

The same holds for individual differences research, such as asking if component activity

scales with a demographic variable such as age or education.
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We also demonstrate that, while back-projecting ICA components’ βs and t-scores yield

highly correlated activity βs (particularly for non-noise components), these approaches lead

to differing GLM results. We attribute these findings to differences in the distributions of

component βs and t-scores. For each component, the distribution of βs had less variance and

greater kurtosis than t-scores, as is depicted in Figure 4 for component 8. These distribution

differences could easily result in false positives and false negatives, reinforcing the need to

use component βs over t-scores. Furthermore, back-projection of component βs for

components 8 and 9 showed task-related deactivation of these components, which is

consistent with the univariate GLM results depicted in Figure 2 – providing additional

evidence for back-projecting component βs rather than component t-scores.

A limitation to our second finding is that GLM and ICA βs are rarely reported. We

acknowledge that the neuroimaging audience has more experience interpreting t-statistics,

and thus these may be better suited for publication than βs. Nonetheless, we encourage

authors to make GLM and ICA βs publicly available, whether as Supplementary Materials,

through data-sharing initiatives, or by request.

Conclusions

We conclude by stressing the need to replicate neuroimaging findings across independent

samples. Historically, the expense and inaccessibility of MRI scanners has caused functional

neuroimaging to garner the reputation as generating “more heat than light”. The recent

growth of data sharing initiatives provides an opportunity to refute this reputation. Toward

this aim, our research highlights advantages and pitfalls to replicating ICA findings across

samples.
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Highlights

• ICA traditionally back-projects component betas to fMRI data then estimates

GLM

• We instead back-projected ICA components to the GLMs, with identical results

• Neuroimaging publications typically report component t-scores but not betas

• We obtained different results when back-projecting component t-scores vs. betas

• Replication of ICA components should use betas rather than t-scores
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Figure 1.
Overview of methodological approach. (Blue arrows) Task-based recruitment of an ICA

component is traditionally assessed by first back-projecting the ICA spatial map (via

multiplication with the nth ICA component’s spatial map) to each timepoint in the fMRI

timeseries, thus generating a 1D timeseries weighted by the component. Univariate GLM

then determines an activity beta-value (activity βs) and t-score describing that component’s

recruitment by one or more task contrasts. (Red arrows) We propose an alternative approach

whereby the fMRI timeseries undergoes whole-brain GLM to generate a spatial map for

each GLM contrast. The ICA component is then back-projected (again via multiplication) to

produce activity βs for that component. Abbreviations: ICA, independent component

analysis; fMRI, functional MRI; 1D, one-dimensional; GLM, general linear modeling.
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Figure 2.
Contrasting overlap of cingulate ICA component with univariate GLM map. (Top) Mixed

effects meta-analysis of individual subjects’ univariate GLM generated a group map of brain

regions with differing activity between Incongruent and Congruent MSIT conditions.

Results are thresholded at uncorrected p<0.005, minimum cluster size=39 contiguous voxels

for FDR corrected α=0.05. Crosshairs depict the most significant voxel in the peri-

cingulate / pre-SMA cluster. (Bottom) Of the 30 ICA components, #28 has best spatial

coverage of anterior cingulate. This component includes peri-cingulate, pre-SMA, dorsal

anterior cingulate, and left dorsolateral prefrontal. Images are presented in neurological

convention.
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Figure 3.
Components with differing GLM contrast results when back-projecting ICA component βs

vs. component t-scores. Components 8 (ventromedial prefrontal cortex and rrostral

cingulate, left) and 9 (posterior cingulate cortex, right) showed task-related deactivation for

the Incongruent vs. Congruent contrast when back-projecting component βs, but no

difference in activation when back-projecting component t-scores. As shown in Figure 2,

these regions were deactivated for the univariate Incongruent vs. Congruent contrast,

supporting the back-projection of component βs as more reliable than back-projection of

component t-scores.
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Figure 4.
Histograms of ICA component β-values and t-scores. Histograms depict the frequency of

voxel intensities for ICA component 8 β-values (red) and t-scores (blue). The distribution of

β-values has less variance and greater kurtosis than the distribution of t-scores. These

differences in distributions account for the differing results obtained when back-projecting

component β-values compared to back-projecting component t-scores. Two-sample

Kolmogorov-Smirnov goodness-of-fit tests showed the distributions of βs and t-scores to

significantly differ for all components (p<0.001)
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