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Abstract

It is often assumed that in public goods games, contributors are either strong or weak players and each individual has an
equal probability of exhibiting cooperation. It is difficult to explain why the public good is produced by strong individuals in
some cooperation systems, and by weak individuals in others. Viewing the asymmetric volunteer’s dilemma game as an
evolutionary game, we find that whether the strong or the weak players produce the public good depends on the initial
condition (i.e., phenotype or initial strategy of individuals). These different evolutionarily stable strategies (ESS) associated
with different initial conditions, can be interpreted as the production modes of public goods of different cooperation
systems. A further analysis revealed that the strong player adopts a pure strategy but mixed strategies for the weak players
to produce the public good, and that the probability of volunteering by weak players decreases with increasing group size
or decreasing cost-benefit ratio. Our model shows that the defection probability of a ‘‘strong’’ player is greater than the
‘‘weak’’ players in the model of Diekmann (1993). This contradicts Selten’s (1980) model that public goods can only be
produced by a strong player, is not an evolutionarily stable strategy, and will therefore disappear over evolutionary time.
Our public good model with ESS has thus extended previous interpretations that the public good can only be produced by
strong players in an asymmetric game.
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Introduction

In social groups, voluntary acts play a critical role in the

maintenance and evolution of cooperation [1–5]. Volunteers

provide public goods for the group by contributing services or by

punishing cheaters. For example, in meerkats watchful sentinels

might warn other individuals of predators by using alarm calls

[6,7], or a commercial company might sanction another that is

violating the price level agreed upon by the member firms of a

cartel [8]. However, potential volunteers face a dilemma in that

volunteers produce the public good at a cost to themselves,

whereas cheaters exploit the benefits but forego the costs [9–14].

The resulting question then arises: which individuals pay the extra

cost to voluntarily produce a public good?

The volunteer’s dilemma (VD) is an N-person, binary-choice

game designed to explain why the participants would be inclined

to pay the cost of providing a public good shared by every

individual in a social group [7,15–18]. In this game, each

individual faces a binary set of options, including a costly to

volunteer and a costless no volunteer choice, and the symmetric

Nash equilibrium that involves mixed strategies which imply each

individual has equal probability to cooperate [15,19]. The

conventional form of the VD makes the basic assumption that

partners interact symmetrically, with equal payoffs in a game of

cooperative interaction [15]. However, almost all of the well-

studied inter-specific cooperation systems [20–25], and intra-

specific systems [26–29], have shown that cooperative individuals

interact asymmetrically. This asymmetric interaction could, for

example, be a difference in resource allocation among players, a

difference in the probability of winning a fight with others, or any

other similar characteristics between dominant and subordinate

individuals [30,31]. Dominant and subordinate are terms in

theoretical models more frequently referred to as ‘‘strong’’ or

‘‘weak’’ players, respectively [30]. This asymmetric interaction

leads to different payoffs of the involved players and might

therefore influence the choices of action of individuals [18,24,30–

36].

Selten (1980) developed an asymmetry model that assumed that

the distribution of the payoff is unequal between players [37].

Using evolutionary game theory with a two-person game, his

model showed that the public good would only be produced by the
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‘‘strong’’ player. However, these theoretical results were not easily

reconciled with experimental observations, because the public

good is produced by weak players in some systems [29]. The fact

that the two-person game model loses generality might be what

raises the difficulty of Selten’s (1980) model in explaining why

public goods are produced by the ‘‘weak’’ players in some

cooperative systems.

Another asymmetric volunteer’s dilemma game developed by

Diekmann (1993), but with N-persons, introduced an unequal

distribution of costs and interests among different players. Using

standard game theory, Diekmann’s model showed that players

might adopt mixed strategies. The mixed strategies of the

asymmetric game predicted that the players with lower costs

(i.e., ‘‘strong’’ players) will contribute less frequently than players

with high costs (i.e., ‘‘weak’’ players), a result contradicting many

empirical observations (e.g., Harsanyi-Selten theory, Schelling’s

‘‘prominence theory’’; see [8,37,38]).

Clearly, the multiplayer assumption of Diekman’s (1993) model

is consistent with real cooperative systems, whilst the evolutionary

game theory used by Selten (1980) is more universal. A

combination of the advantages of both approaches may thus give

further insight into the public goods dilemma.

In this paper, we follow Diekmann (1993) in enriching Selten’s

(1980) model to incorporate some important aspects of asymmetric

systems, namely that the model should contain the N-person

game, and both symmetric and asymmetric interactions. In our

model, Diekmann’s paradox disappears. We find the evolution-

arily stable strategy (ESS) of the asymmetric volunteer’s dilemma,

and describe the conditions how the public good is produced by

both ‘‘strong’’ and ‘‘weak’’ players in an asymmetric game.

Methods

Asymmetric Volunteer’s Dilemma Game
Diekmann’s (1993) asymmetric volunteer’s dilemma game

introduced an unequal distribution of costs Ki and interests Ui

among i~ 1, 2, � � � , N players, and analyzed the binary-

decision N-Person game with each player i’s decision an

alternative between Ci (cooperation) and Di (defection). Assuming

that for all i’s UiwKiw0, the payoff structure is as follows:

(i) Employing strategy Ci always yields the net payoff of

Ui{Ki; whereas

(ii) Employing strategy Di yields the maximum payoff of Ui

whenever at least one other player employs strategy Ci

(‘‘volunteering’’ for other players); otherwise

(iii) If all players employ strategy Di, they yield a payoff of 0.

Based on this structure, the asymmetric volunteer’s dilemma

game has N efficient and strict equilibriums with exactly one

‘‘volunteer’’ and N-1 ‘‘free-riders’’. Moreover, an additional

equilibrium point in mixed strategies exists [8].

In real systems, such as bees, ants or monkeys, there is a single

dominant reproductive individual. Therefore we will study a

special case of the asymmetric volunteer’s dilemma game with one

‘‘strong’’ player and N-1 ‘‘weak’’ players. This implies that the

‘‘strong’’ player will obtain either greater utility Ui or a lower cost

Ki than ‘‘weak’’ players [8]. In addition, we assume that N-1
‘‘weak’’ players have an equal degree of weakness (i.e. N-1 ‘‘weak’’

players possess an equal payoff) and the population of N-1 ‘‘weak’’

players is monomorphic in which all ‘‘weak’’ players use the same

strategy [39]. From the assumptions, we have:

KS~K1vK2~K3~ � � �~KN~KW ;

US~U1§U2~U3~ � � �~UN~UW , Nw2:
ð2:1Þ

Here KS/KW and US/UW are the cost of cooperation and unity

of public goods to the ‘‘strong/weak’’ player, respectively.

If we let bS and bW be the defection probabilities of the

‘‘strong’’ player and N-1 ‘‘weak’’ co-players respectively, and let

EC
S ,ED

S represent the payoff of the cooperation (C) and defection

(D) strategies of ‘‘strong’’ players and a similar notation for

EC
W ,ED

W for the ‘‘weak’’ players, then:

ED
S ~(1{bW

N{1)US, EC
S ~US{KS;

ED
W ~(1{bSbW

N{2)UW , EC
W ~UW {KW :

ð2:2Þ

Thus, the average payoffs for the ‘‘strong’’ and ‘‘weak’’ players

respectively are:

ES~bSUS(1{bW
N{1)z(1{bS)(US{KS),

EW ~bW UW (1{bSbW
N{2)z(1{bW )(UW {KW ):

ð2:3Þ

Equation (2.3) implies the payoffs of both ‘‘strong’’ and N-1
‘‘weak’’ players depend on the mixed strategies of the ‘‘weak’’

players and these payoff functions are non-linear.

For the mixed strategies, Diekmann’s (1993) analytical explo-

ration implies that the defection probability of ‘‘strong’’ and

‘‘weak’’ players will be: b��S ~ USKW=KSUWð Þ KS=USð Þ1=(N{1)

and b��W ~ KS=USð Þ
1

N{1 respectively, indicating that the defection

probability of ‘‘strong’’ players is greater than for ‘‘weak’’ players.

However, this result is contradictory to the concept of Schelling

(i.e. prominent solution) that the ‘‘strong’’ player produces the

public goods [8,38,40]. This is also contradictory to empirical

observations that queens (‘‘strong’’ player) police eggs in some

species of social insects, while workers (‘‘weak’’ player) police eggs

in other species [28,29], rather than the ‘‘strong’’ and ‘‘weak’’

players all produce public goods with mixed strategies.

Dynamics and Evolutionary Stability of the Asymmetric
Volunteer’s Dilemma Game

In the asymmetric volunteer’s dilemma game, we imagine a

multi-population setting for the purpose of extending the static N-

player game to an evolutionary game. This means that players in

the model described previously (section 2.1), are replaced by

populations in this model, as it has been done previously [30,41].

We present an evolutionary game that describes how the

frequencies of strategies within a population change in time

according to the success of different strategists [42–44], and

explore which equilibrium will survive over evolutionary time.

Here, we study a special case of the asymmetric volunteer’s

dilemma game with one ‘‘strong’’ population and N-1 ‘‘weak’’

populations. Each population simultaneously decides whether to

‘‘cooperate’’ or ‘‘defect’’. In addition, we assume that N-1 ‘‘weak’’

populations have an equal degree of weakness (i.e. N-1 ‘‘weak’’

populations gain equal payoffs). All ‘‘weak’’ populations are

monomorphic in which these players adopt the same strategy in

the system [39].

Combining the assumptions of the asymmetric volunteer’s

dilemma game model with the rule of replicator dynamics—that

the per capita rate of growth is given by the difference between the

payoff for the strategy type and the average payoff in the
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population [41,45–47] - we can establish the replicator dynamics

of the asymmetric volunteer’s dilemma game as follows:

dbS=dt~bS(ED
S {ES)

dbW=dt~bW (ED
W {EW )

(
, ð2:4aÞ

where bS and bW are the defection probabilities of the ‘‘strong’’

population/player and the ‘‘weak’’ populations/players respec-

tively, and ED
S /ED

W and ES/EW are respectively the payoff of the

defection and the average payoffs of ‘‘strong/weak’’ populations/

players, which are the same as described previously in section 2.1.

Substituted Equation 2.2 and 2.3 into Equation (2.4a), we can

obtain

dbS=dt~bS(1{bS)(KS{USbW
N{1)

dbW=dt~bW (1{bW )(KW {UW bSbW
N{2)

(
: ð2:4bÞ

where 1{bS and 1{bW are the cooperation probabilities of the

‘‘strong’’ population/player and ‘‘weak’’ populations/players

respectively.

Let

g(bS,bW ) ~
D

bS(1{bS)(KS{USbW
N{1)~0

f (bS,bW ) ~
D

bW (1{bW )(KW {UW bSbW
N{2)~0

(
: ð2:5Þ

From the equations (2.5), we can obtain six equilibrium points

of the system (2.4) (see Appendix) and denote them as: A(0,1),

B(0,0), C(1,0), D(1,1), E(1,b�W ), F (b��S ,b��W ), where elements

of vector ( : , : ) are respectively the frequencies of defection

of ‘‘strong’’ and ‘‘weak’’ populations/players andb�W ~

KW=UWð Þ1=(N{2)
, b��S ~ USKW=KSUWð Þ KS=USð Þ1=(N{1)

, b��W ~

KS=USð Þ1=(N{1)
.

It is noteworthy that the equilibrium point F(b��S ,b��W )

corresponds to the mixed strategy equilibrium of Diekmann’s

(1993) model, and that A(0,1), C(1,0) and D(1,1) correspond to

the pure strategy profiles of the replicator dynamics of the

asymmetric volunteer’s dilemma game (2.4). The equilibrium

point D(1,1) means all populations/players adopt the ‘‘free-rider’’

strategy. At the equilibrium point A(0,1), the ‘‘weak’’ population/

player will adopt the ‘‘free-rider’’ strategy, but at the equilibrium

point C(1,0), ‘‘strong’’ populations/players will adopt the ‘‘free-

rider’’ strategy, while the opponents adopt ‘‘volunteer’’ at these

two equilibriums points. The equilibrium point E(1,b�W ) predicts

that ‘‘weak’’ populations/players produce the public good while

the ‘‘strong’’ population/player adopts the ‘‘free-rider’’ strategy.

This equilibrium E(1,b�W ) does not appear in Diekmann’s (1993)

results.

Clearly, the replicator dynamics of the asymmetric volunteer’s

dilemma game (2.4) is a nonlinear system, and we could therefore

study the local asymptotic stability of equilibrium points by

linearization. Therefore, the linearization of the replicator

dynamics (2.4) at an equilibrium point (�bbS,�bbW ) is

b’~
Lf bS,bWð Þ=LbS Lf bS,bWð Þ=LbW

Lg bS,bWð Þ=LbS Lg bS,bWð Þ=LbW

� � D bS ,bWð Þ~ �bbS ,�bbWð Þb:ð2:6Þ

Figure 1. The slope field for replicator dynamics of the asymmetric volunteer’s dilemma. Sink points A(0,1) and E(1,b�W ) are the stable
equilibrium solutions (red diamonds), and source points B, D (green circles) and saddle points C, F (purple red stars) are unstable equilibrium
solutions. The parameters are fixed at KS~0:15,KW ~0:2,US~1,UW ~1 and N~7.
doi:10.1371/journal.pone.0103931.g001

PLOS ONE | www.plosone.org 3 August 2014 | Volume 9 | Issue 8 | e103931

ESS of the Asymmetric Volunteer’s Dilemma



Where Lf (bS,bW )=LbS~(1{2bS)(KS{USbW
N{1), Lf (bS,

bW )=LbW ~{(N{1)USbW
N{2bS(1{bS), Lg(bS,bW )=LbS~

{UW bW
N{1(1{bW ), Lg(bS,bW )=LbS~(1{2bW )KW z½NbW

{(N{1)�UW bSbW
N{2, b’~ dbS=dt,dbW=dtð ÞT , b~ bS,bWð ÞT

(here ( � , � )T is the transpose of vector ( � , � )), and

(�bbS,�bbW )represents the equilibrium point, where �bbS and �bbW are

respectively the frequencies of defection of ‘‘strong’’ and ‘‘weak’’

populations/players.

By analyzing the property of the matrices’ eigenvalues,

produced by the linearization of the replicator dynamics at these

six equilibrium points (see Appendix S1, Figure 1 and Figure 2),

we find that A(0,1) and E(1,b�W ) are sinks (stable), B(0,0) and

D(1,1) are sources (unstable), while C(1,0) and F (b��S ,b��W ) are

saddles (unstable) [41,48]. It is also noteworthy that the stability of

equilibrium point E(1,b�W ) depends on the special condition, that

is, the equilibrium point E(1,b�W ) is only stable if and only if the

cost-benefit ratio of the ‘‘strong/weak’’ player and the group size

satisfy inequality KS=USw KW=UWð ÞN{1=N{2
(see Figure 3 and

Appendix S1). Furthermore, the rest point F (b��S ,b��W ) exists in the

interior of the unit square if and only if this same inequality

KS=USw KW=UWð ÞN{1=N{2
holds and the group size N is not

too large (i.e. Nv1z
1

1zln(UW=KW )=ln(KS=US)
). Thus, the

replicator dynamics of the game are illustrated in two evolutionary

stability points A(0,1) and E(1,b�W ) (Figure 1).

These two stable points A(0,1) and E(1,b�W ) are local stability

(see Appendix S1), which each have their own basins of attraction.

Obtaining the basins of attraction of local stable equilibrium points

has proven extremely useful for analyzing the behaviors of

individuals, but they are difficult to obtain in nonlinear systems

[48–50]. Using numerical simulations, we are able to obtain the

properties of the basins of attraction in the replicator dynamics of

the asymmetric volunteer’s dilemma game. The ‘‘shadow region’’

and ‘‘blank region’’ (here, the boundary between shadow and

blank regions go through the point F) are the basins of attraction of

equilibrium points A(0,1) and E(1,b�W ) (Figure 2); in effect, the

solution trajectories will converge to the point A(0,1) if the initial

values of the system fall in the ‘‘shadow region,’’ while they

converge to the point E(1,b�W ) if the initial values of the system fall

in the ‘‘blank region’’ (see Figures 2 and Figures 3).

Results and Discussion

In the symmetric equilibrium of the volunteers’ dilemma with

symmetric costs, each player has an equal probability of

cooperation [30,41]. However, in real social dilemmas, costs

may be asymmetric, and the payoffs might therefore be unequal

[24,31,35,51]. The model we have developed is the volunteers’

dilemma with one ‘‘strong’’ population/player and N-1 ‘‘weak’’

populations/players. Using evolutionarily game theory, our results

show that the mixed strategy used by Diekmann (1993) is not

evolutionary stable, that is, the paradox that the defection

probability of the ‘‘strong’’ population/player is greater than the

‘‘weak’’ populations/players disappears in our evolutionary

analysis. Similar to our demonstration here, Selten (1980)

previously demonstrated that a mixed strategy will never achieve

an evolutionarily stable strategy in asymmetric games [37,41,52].

Furthermore, the model we present here shows that two

evolutionarily stable strategies might exists in an asymmetric

cooperation system, and whether the ‘‘strong’’ population/player

or ‘‘weak’’ populations/players produce the public good will

Figure 2. The basin of attraction of the local stable equilibrium points A (‘‘shadow region’’) and E (‘‘blank region’’). The parameters
are fixed at KS~0:1,KW ~0:2,US~1,UW ~1 and N~4.
doi:10.1371/journal.pone.0103931.g002
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depend on the initial condition of the system (Figures 2 and

Figures 3).

From the analysis presented in section 2.2, the ‘‘strong’’

population/player will produce the public good if the initial

condition of the systems fall in the basin of attraction of local stable

equilibrium points A(0,1) (the ‘‘shadow region’’ in Figure 2), and

it yields a pareto-efficient equilibrium. Conversely, if the initial

conditions of the system fall in the basin of attraction of local stable

equilibrium points E(1,b�W ) (the ‘‘blank region’’ in Figure 2), the

public good is produced by the ‘‘weak’’ populations/players.

These simulations also show that the evolutionary stability of this

system is sensitive to the initial conditions (Figure 3a,b).

In our model, the public goods of the asymmetric system is

produced by the ‘‘strong’’ population/player under some initial

conditions, and this result is similar to previous models [37,52].

Moreover, the model we developed also predicts that ‘‘weak’’

populations/players might also produce the public good under

other initial conditions. The different initial conditions correspond

with the initial states of individual strategies in our model, while

the initial states of individual strategies could be defined as the

phenotype or initial strategy of the individuals [53]. The

phenotype or initial strategy of individuals might be inherited

from parents [30,54]. For instance, the social rank of the offspring

of the spotted hyena depends on the rank of their mothers [55–

58]. The phenotype or initial strategy of individuals (i.e., initial

state of individual strategy) might also greatly be affected by the

juvenile environment, not just determined by genetics (i.e.,

inheritance from its parents) [59]. Synthesizing the above-

mentioned analysis, varying initial states might stem from the

differences of both inheritance and habitat.

It is necessary to point out that the ESS E(1,b�W ) is a boundary

strategy equilibrium, which implies that the ‘‘strong’’ population/

player always defects and the N-1 ‘‘weak’’ populations/players

defect with a probability b�W . When the ‘‘weak’’ populations/

players produce the public good, we see that the cooperation

probability of ‘‘weak’’ populations/players decreases with increas-

ing group size (N) or decreasing cost-benefit ratio (KW=UW ), since

the probability of volunteering for ‘‘weak’’ populations/players is

1{b�W ~1{ KW=UWð Þ1=(N{2)
. In the ESS E(1,b�W ), the proba-

bility of the production of the public good is 1{ b�W
� �N{1

~1{ KW=UWð Þ(N{1)=N{2
, whose limit value 1{KW=UW is

lower than the probability of the production of the public good (1)

by the ‘‘strong’’ population/player in the ESS A(0,1).

Supporting Information

Appendix S1 Supporting information for ‘‘The equilib-
rium points and Local stability analysis’’.
(DOC)
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