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Preface

The emerging field of computational morphodynamics aims to understand the changes that occur

in space and time during development by combining three technical strategies: live imaging to

observe development as it happens, image processing and analysis to extract quantitative

information, and computational modelling to express and test time-dependent hypotheses. The

strength of the field comes from the iterative and combined use of these techniques, which has

provided important insight into plant development.

One challenge increasingly faced by developmental biologists is to understand dynamic

biological processes at high spatial and temporal resolution. Time is particularly difficult to

resolve because most traditional techniques achieve high spatial resolution by sample
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fixation, thereby preventing continued observation. Live imaging, which we define as time-

lapse microscopic imaging of the same living biological sample over a defined period of

time, circumvents this problem1. Live imaging has recently advanced2, 3. Today, full three-

dimensional live imaging at cellular resolution is achieved by observing tissues with

fluorescent proteins and stains while imaging the organism every few hours using a confocal

microscope4 (Supplemental Figure 1). This method can be used to determine how cells grow

and divide, to visualize patterns and changes in gene and protein expression, and to measure

cellular responses to perturbations such as cell ablations and transient gene expression.

The resultant large data sets require sophisticated analysis. Computational image processing

(Box 1) can automatically detect features of interest in the images, while tracking

quantitative data about those features over time.

Through live imaging, image processing and experimentation, biologists develop models.

Computational models formalize these hypotheses by expressing them as a set of equations

or rules that can be simulated using a computer5–7 (Table 1). Computer simulations allow a

quantitative comparison of the model to the data. These simulations also allow visualization

of nonintuitive outcomes of complex interactions and feedback loops. Thus, computational

models allow narrowing down a diverse set of hypotheses to a few plausible ones that can be

tested experimentally.

Computational morphodynamics refers to the combined use of live imaging, image

processing and computational modelling to understand morphogenesis5. In our opinion, the

strength of this emerging field comes from the iterative and combined use of these

techniques to understand how the dynamics of molecular signalling, cellular geometry, and

mechanics dictate development.

The field of computational morphodynamics has emerged from work with many model

organisms. Insight has been gained into Dictyostelium morphogenesis8, planar cell polarity

in Drosophila9, 10, assembly of the contractile ring for cytokinesis in yeast11, growth of

pollen tubes12, and the pattern of leaf vasculature13, 14 among many others. In this Opinion

article, we focus on the work done in plants, specifically on what has been learned through

the integration of live imaging with computational modelling to better understand the role of

molecular signaling, cellular geometry and biomechanics in the multicellular morphogenesis

of plant meristems and lateral organs.

Regulatory networks in time and space

In our first section, we examine the conclusions reached by applying computational

modelling and imaging to three molecular signaling networks underlying plant

morphogenesis. These examples illustrate the different scales at which modelling and

imaging can be combined: cell, tissue, and whole plant.

Root hair patterning

The Arabidopsis root epidermis is patterned in alternating cell files of specialized hair cells,

trichoblasts (H), and non-hair cells, atrichoblasts (N). This specification is controlled both
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genetically and spatially (Figure 1a). A transcription factor complex including

TRANSPARENT TESTA GLABRA (TTG)/GLABRA3 (GL3)/ENHANCER OF

GLABRA3 (EGL3) interacts either with the transcription factor WEREWOLF (WER), to

form an active transcriptional complex specifying N cell fate, or CAPRICE (CPC), to

repress WER expression and promote H cell fate. Imaging studies have demonstrated both

CPC and GL3 move from their sites of synthesis into the adjacent cell. CPC is expressed in

the N cell and moves into the H cell where it is believed to repress WER, whereas GL3 is

expressed in the H cell and accumulates in the nucleus of the N cell. In addition to this

genetic network, N and H cell fate is determined by the position of an epidermal cell in

relation to the underlying cortex layer. Epidermal cells positioned over the junction of two

cortical cells adopt the H cell fate (trichoblasts) while those directly above one cortical cell

develop into N cells (atrichoblasts)15. Genetic evidence indicates a transmembrane receptor

protein kinase, SCRAMBLED (SCM), expressed in epidermal cells senses a signal derived

from the cortical layer to repress WER in the epidermis16. It was postulated that the

combined repression of WER by SCM and CPC results in specification of H cell fate while

the functional TTG/GL3/EGL3/WER complex in the adjacent cell specifies N cell fate.

Based on these observations two computational models have been developed to elucidate

this complex interaction between spatial position and the underlying genetic network.

Benítez et al., developed a model that was based upon the assumption of WER self-

activation. In their model stimulations, striped patterns of N and H cells were only obtained

when the SCM signal activated the WER complex17. However, there was no evidence to

support the idea of local WER self-activation. This self-activation model was recently

challenged by a model developed by Savage et al. who proposed two different models that

centered on the mode of regulation of WER18. The first assumed local WER self-activation

with CPC repressing WER indirectly (local WER self-activation model, similar to Benítez),

while the second model did not include WER self-activation but assumed uniform WER

transcription that was repressed by both CPC and SCM activity (mutual support model). In

model simulations run in a cpc mutant background the mutual support model closely

matched the experimental observation of increased WER expression in cpc trichoblast (H)

cells19. Local WER self-activation was ruled out experimentally by determining WER

expression is unchanged in wild type or wer backgrounds. The mutual support model also

correctly predicted wild type WER expression pattern in the gl3/egl3 double mutant

background. These data provide direct experimental support for the mutual support model,

ruling out WER self-activation as a mechanism for epidermal patterning in the root.

Shoot apical meristem maintenance

At the tissue level, the use of live imaging and computational modelling have recently

provided some novel insights into our understanding of the mechanisms that regulate the

balance between stem cell renewal and differentiation at the shoot apical meristem (SAM).

The SAM gives rise to the above ground structures of flowering plants20. Stem cell

maintenance in the SAM involves the function of the CLAVATA1 (CLV1) receptor kinase,

its ligand CLAVATA3, and the transcription factor WUSCHEL (Figure 1b). The genes are

expressed in a defined spatial pattern within the SAM: CLAVATA3 is solely expressed in the

central zone, a group of pluripotent stem cells in the center of the SAM, while CLV1 and
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WUS are expressed directly below the CZ in the rib meristem (RM). Activation of CLV1

signaling in the RM by CLV3 results in repression of WUS, which is required for the

production of a non-cell autonomous signal from the RM to maintain the pluripotent CLV3-

expressing stem cells in the CZ. This feedback loop is the basis for the current model to

explain the balance between stem cell renewal and differentiation. Several computational

models have explored how the WUS and CLV3 gene expression domains are localized and

interact within a static 2D longitudinal section of the meristem21–23. Although these models

achieve spatial resolution, they do not address the dynamics of growth.

Traditional molecular genetics has been successful in identifying the key components of the

signaling circuit that regulates stem cell numbers in the SAM, but does not address temporal

aspects of development4. Terminal mutant phenotypes often result from the accumulation of

defects over time. For example why is the shoot apical meristem enlarged in a clv3 loss of

function mutant? Enlargement could occur due to faster cell divisions, slower exit of cells

from the CZ or increases in the WUS-mediated CZ-inducing signal. Surprisingly, live

imaging while transiently inactivating CLV3 with RNA interference, showed that none of

these possibilities were correct. Instead, CZ expansion was caused by an immediate

respecification of neighboring PZ cells on the boundary into CZ cells24. This observation

would not have been made through static imaging of traditional genetic mutants, suggesting

that live imaging of transient perturbations is an important strategy to visualize simultaneous

changes in cell division and gene expression patterns. Geier et al. included these insights in

a population model describing the interactions between these different cell types, in which

they allowed cells to both proliferate and switch fate25. One of the challenges for the future

is to integrate the genetic networks that regulate spatial patterning and respecification into a

3D growing template.

Branching

Plant branches are formed by the outgrowth of buds. Activation or repression of bud

outgrowth integrates environmental inputs (such as light and nutrients), developmental

signals (such as hormones and age) and genetic controls. The plasticity of bud outgrowth

plays an essential role in determining plant architecture, crop yield and biomass production,

all of which are important in agriculture.

To determine the timing and location of branch outgrowth in Arabidopsis, individual plants

were photographed daily to measure growth26. These data have been used to build a

descriptive computational model that reproduce the plant architecture26; however, the model

raises the question of what molecular mechanisms controls the order in which branches

grow out.

Decades ago, bud outgrowth was shown to be repressed by the downward transport of the

plant hormone auxin from the shoot apex. However, the mechanism of auxin mediated

inhibition of bud outgrowth is complex and indirect27, 28. For example, mutants exhibiting

increased branch outgrowth can have lower (tir3), the same (axr1) or higher (max4) levels of

auxin transport than wild type29. Without computational modelling, it is hard to give a

plausible explanation for such contradictory observations. Prusinkiewicz et al. have

developed a computational model that can simulate the branching pattern of wild type
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Arabidopsis plants based on the assumption of positive feedback between the flux of auxin

through a region of the plant and the concentration of the auxin efflux-carrier

PINFORMED1 (PIN1), which transports auxin30 (Figure 1c). Altering the parameters of this

model is sufficient to produce increased branching similar to the mutant phenotypes

observed. Thus, comparison of model simulations with branching pattern revealed by time-

lapse imaging of whole plants and with mutant phenotypes led to a plausible mechanism for

the complex patterns of branch outgrowth observed in nature.

Growth at the cellular level

While regulatory networks control developmental decisions, it is the growth and division of

cells that actually leads to morphogenesis. We next illustrate how the use of computational

morphodynamics has shown that the growth and division patterns of cells determine the

morphology of a whole tissue.

Morphogenesis of the snapdragon petal

Analysis of the growth and cell division of plants has traditionally relied on measuring the

mitotic index and analyzing the size and shape of clonal sectors, patches of marked sibling

cells derived from a single progenitor cell31–33. To generate a clonal sector a random cell is

marked visibly through an induced genetic change early in the development of the organ, for

example, through the excision of a transposon near a gene controlling red pigmentation. The

rate and direction of growth is inferred from the size and shape of the patch of progeny cells

determined in the mature organ. However, sector analysis does not reveal which random cell

was marked, when the progeny cells divided or how they give rise to the final patch.

In the absence of live imaging, sector analysis together with imaging of the 3D shape of

organs using optical projection tomography formed the biological basis for a computational

model describing how simple petal primordia grow to form the complex 3D shapes of the

mouth of the snapdragon (Antirrhinum) flower34. In this model, the tissue was treated as a

continuous sheet of material that can grow in 3D. A quantitative analysis of the in vivo shape

of wild-type and mutant petals revealed the contributions of the dorsoventral polarity genes

to the growth of each region of the petal35. These data formed the basis for the hypothesis

that dorsoventral genes control local growth rates. However, a model based on this initial

hypothesis was unable to replicate either the exact shape of the flower or the pattern of

sectors generated in the real petals. When the model was revised such that the dorsoventral

genes control both local growth rates and the activity of hypothetical organizers of tissue

polarity, the model reproduced the snapdragon mouth of both wild-type and dorsoventral-

mutant flowers, as assessed by comparing the result with actual petal shapes and

sectors34, 35. This model enhances our understanding of how 3D shapes are generated during

morphogenesis, but the precise cellular basis of these shapes remains unknown.

Live imaging of cell division and growth

To determine the cellular basis of growth, live imaging has been used to track cell lineages

and record the cell division patterns in the SAMs, root meristems, floral meristems, moss

buds, moss leaves, and sepals36–40 (Supplemental Box 1). These live-imaging experiments
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confirm the conclusions from sectoring, but they extend beyond this, with actual lineage

traces showing the timing and orientation of all cell divisions from the progenitors onwards.

One of the unique insights emerging is that the timing of cell division in many tissues is

irregular36, 38, 39 and that this contributes in an important way to cellular patterning.

Cell division controls in patterning of sepals

For example, a computational morphodynamics approach has shown that irregular timing of

cell division contributes to the cellular patterning is in sepals 39. Sepals are the leaf-like

floral organs that envelop the developing bud (Figure 2a). Arabidopsis sepals are

characterized by the presence of highly elongated giant cells stretching about a fifth of the

length of the sepal in the outer epidermis (Figure 2b–c). The giant cells are interspersed

between cells in a range of sizes, which raises the question: how is a range of cell sizes

generated when cells are constrained by being tightly bound together by their cell walls?

Cells can become enlarged through endoreduplication, in which the cells replicate their

DNA but fail to divide. More than a decade ago, it was proposed that diverse cell sizes

would be produced if cells enter endoreduplication at different times41. This hypothesis was

impossible to test without live imaging. Recently, tracing the cell lineages in the developing

sepal epidermis confirmed that large cells enter endoreduplication early and small cells enter

endoreduplication later39 (Figure 2f). Based on these observations, a growing sepal was

computationally modelled as an expanding template of cells, each of which could divide or

enter endoreduplication with certain probabilities. These probabilities were estimated from

the data (Figure2d–e). However, a simple model of this hypothesis was unable to match the

actual in vivo cell size distribution (as measured using image processing (Box 2)).

A modified hypothesis arose from a detailed examination of cell divisions by live imaging,

which revealed that the length of the cell cycle is highly variable and also correlated with

cell size. A computational model in which cells both have a certain probability of

endoreduplicating and a random cell cycle length could reproduce the observed cell areas,

suggesting variability in cell division is a plausible mechanism for generating cell size

diversity (Figure 2g–j). Furthermore, by changing the probability of endoreduplication in the

first cell cycle, the model could predict the cell size distribution for loss-of-function mutants

with too few giant cells and gain-of-function mutants with too many giant cells, validating

the model (Figure 2i–j). The conclusion that the stochasticity in the timing of cell division

and in the decision to endoreduplicate together produce a range of cell sizes could be

reached only by combining live imaging, modelling and image processing39.

Mechanics influences organ initiation

The previous examples have discussed how gene regulatory networks and growth contribute

to patterning and morphogenesis; however, these processes take place in a physical

framework where mechanical forces between cells can influence the final form of the tissue.

In this section, we show that a computational morphodynamics approach has shaped our

understanding of how mechanical signaling impacts organ initiation.
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Phyllotaxis and rhizotaxis by polarized auxin transport

In both the shoot and root, local maxima in the concentration of the plant hormone auxin

specify the location of organ outgrowth. Modelling has shown that polarized auxin transport

through the auxin efflux carrier PINFORMED (PIN) proteins can generate these localized

auxin maxima 42–44.

In the root, lateral root primordia are initiated from the twin files of pericycle cells

(specialized cells, located outside the vascular tissues) at irregular intervals. Lateral root

formation commonly correlates with higher than average levels of auxin perception,

especially the outer convex side of the root45, 46: reduction in auxin perception or transport

in the root decreases the density of lateral roots, and activation of auxin synthesis in

pericycle cells initiates the formation of lateral root primordia 47–49.

Similarly, early biochemical and genetic experiments showed that transport of the hormone

auxin is necessary for the specification of organs in the SAM (Okada et al, 1991).

Experiments with the tomato SAM further confirmed that local auxin accumulation was

both necessary and sufficient for the induction of organ growth around the SAM50. But by

the end of the 20th century it was still not known how auxin acted in the SAM to form

organs. Subsequent live-imaging experiments showed that the polarization of the auxin

efflux carrier PIN1 in the SAM epidermis resulted in local auxin maxima where organs

would later arise 51–54. These live-imaging data were used to construct two separate

computer models of auxin-based patterning in the shoot. In both models the observed auxin

maxima were generated when PIN1 was polarized toward the neighbouring cell with the

highest concentration of auxin. However, these models required hypothetical mechanisms

whereby cells needed to sense the concentration of auxin in their neighbours 44, 55 The

mechanism by which this polarization could occur remained a mystery until more recent

examination of tissue mechanics using computational morphodynamics.

Mechanics orients cell polarity

Biologists have long understood that the final form of a tissue is connected with specific

genetic programmes. But how the mechanical properties of those tissues affect their final

form was hard to study due to inherent technical limitations, such as measuring cellular

stress within a tissue. In plants this is particularly relevant because cells adhere to their

neighbours; therefore, any local mechanical change is propagated throughout the tissue.

Recently, live imaging and computational modelling were used to test the hypothesis that

mechanical properties of the SAM epidermis determine the positions of new organs56, 57. It

has long been observed that the orientations of cell wall microfibrils align with the

orientation of cellular microtubules, as microtubules serve as tracks for the enzymes

involved in cellulose synthesis. Using a live imaging data set, a realistic SAM template was

extracted from a confocal image stack for modelling simulations.

Computational analysis of stress patterns revealed that the direction of stress of each cell

accurately predicted the microtubule orientations observed by live imaging56 (Figure 3a).

Furthermore, the model could predict the circumferential reorientation of microtubules

around a wound site following cell ablation (a mechanical perturbation), as observed by live
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imaging (Figure 3c). Likewise, live imaging showed that PIN1 polarized towards anticlinal

cell walls parallel to the microtubule arrays, which suggested that stress patterns have a role

in PIN polarization, and therefore in auxin transport directions57 (Figure 3a–c). Simulations

of an updated model in which PIN1 localizes towards the most stressed walls were able to

produce a phyllotactic pattern. Thus, live imaging and modelling were instrumental in

reaching the conclusion that in plants mechanics is a plausible mechanism for coordinating

the extent of growth (via auxin) with the direction of growth (via microtubules).

The observation that lateral root primordia are initiated on the outer surfaces of root

curvatures implies a role for mechanical stresses in lateral root initiation as well. A recent

study coupled live imaging with computational modelling and showed that alterations in cell

length at the sites of curvature can induce auxin maxima that are required for lateral root

initiation58. Imaging of the expression levels and patterns of PIN proteins in the different

developmental zones of the root was used to parameterize a model of root auxin flux. This

showed that the organization of PIN in the root leads to the formation of local auxin reflux

loops that are further reinforced by the flux of auxin through the root tissue at sites of

curvature. Live imaging of auxin transporter 1 (AUX1; which imports auxin into cells)

showed that it accumulates on the outer facing membrane face at sites of root curvature in

the pericycle layer (Figure 3d–g). Updating the model to include a positive feedback loop

for AUX1 in auxin accumulation indicated that auxin peaks become localized to a few outer

pericycle cells that correspond to where in silico roots are curved in model simulations

(Figure 3h–k). These studies reveal that mechanics is involved in producing local auxin

maxima and therefore in generating developmental patterns in both the root and the shoot.

Perspectives

The question of how cellular signals interact with tissue mechanics has been difficult to

address with traditional methods; therefore, morphogenesis is poorly understood.

Computational morphodynamics is a way forward in integrating aspects of physics,

chemistry and computer science with biology to understand how genes regulate the

behaviour of cells, how cells interact to give rise to tissues, and how tissues are organized

into organs within the final form of an organism.

Although the computational morphodynamic approach is still in its infancy, its use in both

plants and animals is expanding6. Many studies have used either live imaging or

computational modelling5–7 effectively, and the integration of these approaches has led to

novel conclusions that could not have been reached otherwise. Computational modelling is

helpful for examining systems with many variables or parameters that are difficult to

directly measure. Live imaging reveals dynamic processes that cannot be fully understood

by looking at fixed samples. Additionally, image processing is required to quantitatively

understand the collected data in a robust and repeatable way. Through the course of this

Opinion we have highlighted the insights gained from a few studies in plants where imaging,

image processing, and computational modelling are combined.

The limitations of the computational morphodynamics approach are both technical and

computational, but these limitations are being addressed by new methods. For example, new
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fluorescent sensors, probes and markers allow new systems such as small molecules,

hormones gradients and protein-protein interactions to be imaged. New microscopes may

allow access to cells deeper in tissues, and higher resolution. Novel image processing

strategies allow automatic or semi-automatic identification and tracking of cells such that

greater quantities of increasingly complex data can be used40, 59, 60. New modeling

methodologies may allow more accurate models of the properties of growing and dividing

cells. While technology will no doubt provide us with better tools, we must understand that

technology alone will not deliver a complete and holistic understanding of development.

Arriving at the ultimate goal of constructing “computable” plants and animals will also

require cogent experiments and creative hypotheses; progress in computational

morphodynamics needs both new technical approaches and new ideas.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1 Image processing

Post-acquisition image processing and analysis provide cell measurements that can assist

in the formulation and validation of computational models. Two important needs in

computing shape, size, connectivity and position of cells from microscope images are the

generation of high quality images and the development of robust feature extraction

algorithms. Noise, contrast, and spatial and temporal resolutions are some image quality

attributes that largely control the development of image-processing algorithms and the

effectiveness of their results. Acquired optical images are typically contaminated with

shot noise (see the figure, part a); this is especially accentuated in live imaging, in which

reduced light intensities are applied to avoid damaging live tissues and cells. Low image

contrast, which mainly occurs in deeper parts of the tissue, hinders the separation of

regions of interest from the image background. Poor spatial (few slices per 3D image)

and temporal (few images over time) resolutions are detrimental to accurately resolving

the true geometry and lineage of cells during development using a cell tracking software.

Reducing these image aberrations leads to enhanced image quality for visualization and

promotes improvements in the delineation of regions of interest (segmentation) (see the

figure, parts b, d). Automatic image segmentation is a fundamental problem in image

processing. Unfortunately, most methods usually produce partially good results with

missing regions and edges that are sometimes difficult to automatically detect and

correct. One effective approach is the semi-automatic segmentation path61, in which

faulty results are eliminated by human computation55 (manual editing which can be done

by crowds for a fee or free of charge) (see the figure, part c). In the future interactive

computer systems may be developed where users can intervene in the segmentation

process to easily and quickly repair mistakes produced by automatic programs. With the

right set of interactive tools one should be able to mass distribute data for corrections and

scale up semi-automatic solutions to large data sets.
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Figure 1. Gene regulatory networks?
aThe patterning of hair cell (H) and non-hair cells (N) in the root involves both spatial

signaling through the SCRAMBLED receptor and activation or repression of transcriptional

complexes that are influenced by the movement of proteins from one cell to another. H cell

development is initiated by the combined effect of WER repression by activation of

SCRAMBLED signaling by an unknown signal and CAPRICE (CPC) activity.

bThe SAM can be divided into the central zone (CZ), the peripheral zone (PZ) and the rib

meristem (RM)62, 63. The CZ, comprises of a pool of pluripotent stem cells. The PZ is

seated on the flanks of the SAM where new lateral organs are initiated. WUSCHEL (WUS)

is expressed exclusively in the organizing center (RM) (blue) and is required to produce an

unknown signal to specify the stem cell identity in the overlying cell layers. Stem cells in the

CZ (red) secrete the CLAVATA3 (CLV3) small polypeptide, which activates a signalling

cascade that limits the WUS transcription in the RM64. Thus, the negative feedback

regulatory circuitry composed of WUS and CLV3 forms a self-correcting mechanism to

maintain the stem cell homeostasis in the SAM.

cThe branching pattern of the plant can be understood by modelling the competition

between auxin sources at the tip of each branch to transport auxin through regions of the

plant stem (represented as large boxes). A model in which the flux of auxin (purple)

positively feeds back on the amount of PIN1 auxin efflux transporter (blue) automatically

establishes the competition between branches and reproduces the branching pattern of both

wild type and mutant plants.
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Figure 2. The iterative process of imaging, image processing and modelling in sepal patterning
A–c The sepals (marked s) of a wild-type flower have a pattern of diverse cell sizes, ranging

from giant cells (false-coloured pink) to the small cells. Scale bars: 100 µm.

d The ploidy of cells was measured using flow cytometry to determine how many rounds of

endoreduplication (a cell cycle including DNA replication without division) sepal cells had

undergone.

e The ploidy data formed the basis for a population model, in which cells can divide (arrow

down) or endoreduplicate (arrow right). The model was used to predict the probability (p)

with which each cell will enter endoreduplication at each time (subscript on p). The color

represents the ploidy of the cell: blue = 2C, green = 4C, magenta = 8C, red = 16C, and

yellow = stomata.
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f Live imaging shows the growth of the sepal over 72 hours and the lineages of the cells

(marked with the same coloured dots). Analysis of the imaging revealed that both the timing

of endoreduplication and the timing of cell division are highly variable. Scale bars: 20 µm

g–A geometric growth model of sepal giant cell development based on this timing data from

live imaging (f) and probability of endoreduplication as determined by the population model

(e) predicts the diversity of cell areas. The color represents the ploidy of the cell: blue = 2C,

green = 4C, magenta = 8C and red = 16C.

h–j A crucial step in validating the model was using image processing (h) to obtain the

distribution of cell areas in vivo (i), which was compared with the model predictions (j). The

model agreed well with measured areas for wild type (blue). In addition, perturbations of the

model matched genetically altered plants with too many (green) or too few (red) giant cells.

Modified with permission from Roeder et al. 201039.
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Figure 3. Mechanics
a At the boundaries between the shoot apical meristem and the flower primordia, the

anisotropic mechanical stress of the cells orients the microtubules (red) circumferential to

the primordia. The stress also polarizes PIN1 (blue) such that auxin is transported both

towards the new organ as well as towards the site of the next organ formation. By contrast,

in the center of the meristem, patterns of both PIN and microtubules are more irregular,

reflecting isotropic stress patterns.

b–C A model of the change in the mechanical stress pattern after the ablation of a cell (blue)

predicts that PIN1 (red) will relocalize to point away form from the ablated cell. Live

imaging (c) shows that both PIN1 (red) and microtubules (green) reorient to point away

from the ablation site (blue). Scale bar: 5 µm. Reproduced with permission from Heisler et

al., 201057.

d–g Live imaging of AUX1 (yellow) accumulation in the outer pericycle cell layer

(asterisks) at sites of curvature before and after the first cell division (time 0) marking the

formation of a lateral root primordia. Reproduced with permission from Laskowski et al.,

200858.

Roeder et al. Page 18

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2014 August 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



h–k Modelling results based on live imaging show cell elongation can cause an increase in

auxin concentration when positive feedback of AUX1 is added to the model parameters.

Reproduced with permission from Laskowski et al., 200858.
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Table 1

Modelling methodologies:

Cell Circuit
Dynamics

Describe the rates of change of interacting gene and signaling
network components. Depending on the available information they
are simulated in different ways:

1 Boolean5, 18 Individual genes are described as ON/OFF; truth tables and state
transition graphs describe gene regulatory rules. A very useful method
to describe network dynamics with insufficient information (molecular mechanisms or data). However, one cannot obtain
detailed dynamics of
gene regulatory functions.

2. Differential
Equations5

Gene regulation described by biophysically motivated rate laws, very
often represented by Michaelis-Menten type of functions. Several
analytical techniques are available for probing nonlinear network
dynamics as well as for optimizing parameters. However, some
parameters may have to be guessed.

3. Stochastic5 Simulations use probabilities based upon reaction rates to decide which
chemical transitions occur. Novel phenomena due to inherent
stochasticity of gene regulation and signaling illuminate new principles;
however, for large networks, simulations can be prohibitively
computationally intensive.

Mechanical
Forces in
Living Tissues

The forces within and between cells which ultimately are
responsible for shaping the organ, are described by various
frameworks:

1. Spring
Models5

Cell walls are described by springs, which connect to other cells at
vertices. Equilibrium is obtained by minimizing the total elastic energy.
This simplified description of cells works well with cell division and
growth, but it lacks resolution of finer cell wall details.

2. Finite
Element
Methods12, 56, 57

Discretization of a tissue in terms of elements using various geometries,
which then implement the rules of elasticity theory. This method
provides a detailed description of the elastic properties of cells, but is
computationally intensive and cannot easily be modified for growing
and dividing cells.

3. Cellular Potts
Methods42

Cells are described as a collection of similar spins, which interact with
each other and spins of neighboring cells. A Monte-Carlo scheme is
employed to minimize the energy of the system and arrive at the
equilibrium configuration. Used successfully in many biological cases;
however, not adapted completely to plant systems, which require non-migrating cells.

4. Subcellular
Element
Method65, 66

Coarse-grained description of cells in terms of interacting particles,
which move by sensing forces from the neighboring particles. This
method has excellent spatial resolution, but could be computationally
intensive for multicellular systems.
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