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Abstract

Purpose—To develop and evaluate an automatic segmentation method that extracts the 3D 

configuration of the ablation zone, the iceball, from images acquired during the freezing phase of 

MRI-guided cryoablation.

Materials and Methods—Intraprocedural images at 63 timepoints from 13 kidney tumor 

cryoablation procedures were examined retrospectively. The images were obtained using a 3 Tesla 

wide-bore MRI scanner and axial HASTE sequence. Initialized with semiautomatically localized 

cryoprobes, the iceball was segmented automatically at each timepoint using the graph cut (GC) 

technique with adapted shape priors.

Results—The average Dice Similarity Coefficients (DSC), compared with manual 

segmentations, were 0.88, 0.92, 0.92, 0.93, and 0.93 at 3, 6, 9, 12, and 15 min time-points, 

respectively, and the average DSC of the total 63 segmentations was 0.92 ± 0.03. The proposed 

method improved the accuracy significantly compared with the approach without shape prior 

adaptation (P = 0.026). The number of probes involved in the procedure had no apparent influence 

on the segmentation results using our technique. The average computation time was 20 s, which 

was compatible with an intraprocedural setting.

Conclusion—Our automatic iceball segmentation method demonstrated high accuracy and 

robustness for practical use in monitoring the progress of MRI-guided cryoablation.
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The Incidence of renal cell carcinoma in the United States has increased by 126% over the 

past 50 years (1), together with an increase in its associated mortality rates (2). Image-

guided percutaneous cryoablation is one of the most promising and prevailing minimally 

invasive techniques for treating kidney cancer (3–5). Compared with computed tomography 

(CT), MRI is considered a superior intraprocedural imaging tool to visualize the ablation 

zone, referred to as the “iceball”, the tumor, and, nearby anatomical structures (6).
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The current cryoablation procedure relies on the interventionalist’s constant qualitative 

assessment of repeatedly acquired intraprocedural MR images during the 15-min freezing 

cycle. The interventionalist has to evaluate the coverage of tumor and surrounding normal 

parenchyma by the slowly growing iceball, while at the same time tending to other 

procedural needs, such as keeping the skin entry site warm and monitoring patient’s medical 

status. At times, this may lead to inaccurate or incomplete interpretation of the progress of 

the ablation. Also, it could cause deficient tumor coverage that would later lead to 

recurrence, and injury to the surrounding critical structures with subsequent complications 

(7). Hence, there is a need for a computerized monitoring tool to aid the interventionalist by 

providing quantitative tumor ablation metrics and three-dimensional (3D) visualization of 

the iceball.

One key component of such a tool is fast and accurate segmentation of the 3D iceball 

configuration, which is displayed as an approximately ball-shaped signal void region in MR 

images. The accuracy of many semi-automatic segmentation tools, such as the ITK-SNAP 

(www.itksnap.org) (8) and the GrowCut module (9) in 3D Slicer (www.slicer.org) (10), is 

proportional to the manual operations involved, e.g., the inputting of fiducials and the extent 

of the segmented region growth, and interactive editing until segmentation is complete. The 

time required to perform these manual operations makes semiautomatic approaches 

impractical for intraprocedural segmentation during cryoablation.

Automatic iceball segmentation is challenging, as the abdominal anatomy surrounding the 

iceball, the probe artifacts, and the iceball itself have similar intensity values. This causes 

the failure of segmentation methods relying solely on intensity information. The approach of 

Liu et al (11) using graph cut (12–16) with shape priors (17–19) generated from probe 

locations (named GC-prior) showed promise. However, directly using the modeled iceball 

shape based on probe locations in the baseline scan is vulnerable to errors, such as those 

caused by inaccurate probe localization, imperfection of iceball shape modeling, or 

misregistration between the baseline scan and images obtained during the freeze cycles due 

to patient’s movement.

The purpose of this study is to develop an automatic iceball segmentation method that is 

robust to the predetected probes, so that the overall accuracy of the segmentation can be 

improved. Different from previous work (11), our segmentation method is initialized with 

semiautomatically detected 3D cryoablation probes rather than manually labeled 2D probes. 

The former probe localization method is considered more suitable for a clinical setting. We 

incorporated a pre-segmentation step using the Fuzzy C-means (FCM) classification 

paradigm (20), and a shape prior adaptation step using a Fast Marching propagation process 

(21,22). These steps provide an adapted iceball shape for modeling the priors, as well as 

initial intensity centroids, both to be input into the graph cut segmentation. In addition, we 

introduce intensity normalization and noise reduction steps for better segmentation results. 

Finally, this study reports results based on a wider selection of cases (13 subjects) compared 

with the two cases reported in (11).
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MATERIALS AND METHODS

Figure 1 illustrates the standard MRI-guided cryoablation procedure, which includes a 

Planning Phase, a Probe Placement Phase, and a Therapy Phase. During the Probe 

Placement Phase, two to five cryoprobes (average three) are sequentially inserted into the 

patient, interspersed with repeated imaging to confirm proper placement. The last set of 

scans acquired in this phase is referred to as the “baseline scan”. The Therapy Phase 

typically consists of two 15-min freeze cycles, separated by a 10-min thaw period. In the 

first freeze cycle, the iceball starts to grow near the tips of the probes until it fully 

encompasses the tumor. The Therapy Phase is monitored closely with repeated T2-weighted 

MRI (3–5 min interval) to assess coverage of tumor by the iceball and to prevent overlap of 

the ablated volume with adjacent critical structures. Guided by the detected probes in the 

baseline scan, the iceball segmentation is performed at each time-point during the first 

freeze cycle (Fig. 1). The general workflow of our segmentation method, named GC-

adapted-prior, is shown in Figure 2. Some of the steps in our new method are similar to the 

method described in (11). These steps are: the initial iceball shape modeling, the shape prior 

modeling, and the set up of graph cut segmentation framework.

MRI Protocol and Patients Data

The study was performed under an Institutional Review Board’s approved protocol. Consent 

was waived because the study used existing patient data retrospectively. Thirteen MRI-

guided kidney tumor cryoablation procedures (10M/3F; age 60 ±6) with tumor diameter 3.5 

± 1.2 cm (single tumor for all cases) were investigated. All procedures were performed 

using a 3 Tesla (T) wide-bore MRI scanner (Siemens Verio; Erlangen, Germany). Spine 

coils (receive) embedded in the scanner table-top were used in all cases. In addition, a body 

matrix coil (receive; six channel) was used in 11 cases, and an 11-cm loop coil (receive) was 

used in 2 cases. The axial T2-weighted breath-hold half-Fourier acquisition single shot turbo 

spin echo (HASTE) sequence (echo time [TE] 200 ms, 320 × 272 voxels/slice, slice 

thickness of 3–4 mm, in-plane resolution of 1.0625 mm, no gap between slices, interleaved 

slice order, 16–20 slices, acquisition time of 16–20 s, 28–34 cm field of view) was used for 

12 cases, and 1 case was scanned using the axial T2-weighted turbo spin echo (TSE) 

sequence (echo train length of 27, TE 106 ms, repetition time [TR] 4100 ms, slice thickness 

of 4 mm, no gap, 15 slices, acquisition time of 50 s, 28 cm field of view).

Two types of MRI-compatible alloy cryoprobes, the IceSeed and the IceRod from Galil 

Medical Inc. (Arden Hills, MN) were used, both 17 gauge in diameter and 17.5 cm in total 

length. An IceRod probe normally creates an ellipsoid-shaped iceball with greater volume 

than an IceSeed probe. Of the 13 cases, the numbers of cases using 2, 3, 4, 5 probes were 1, 

9, 2, 1, respectively; the numbers of cases using IceSeed and IceRod probes were 4 and 9, 

respectively. During the first 15 min freeze cycle, all cases were scanned every 3 minutes, 

i.e., at 3-, 6-, 9-, 12-, 15-min timepoints, except for one case which was scanned at 5, 10, 15 

min. This yielded a total of 63 timepoints for analysis.
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Probe Localization

The cryoprobes inserted into the patient during the Probe Placement Phase are localized in 

the baseline scan using a semiautomatic approach. Specifically, the 3D probes are first 

detected automatically using the method described in Liu et al (23). An interventional 

radiologist then visually assesses the automatic results and manually corrects the failed 

detections by deleting the failed probe label, substituting two seeds at the tip and the skin 

entry points of that probe. A 3D line segment representing the corrected probe is then 

automatically created based on the two seeds. This semiautomatic approach is efficient in 

effort and time involved, compared with manual segmentation of probes, and is, therefore, 

designated to be used during the actual procedures, following our early testing. The detected 

3D probes in the baseline scan are used to model the iceball shape (Fig. 2).

Iceball Shape Modeling

As illustrated in Figure 3, the shape of an unperturbed iceball generated from a single probe 

is modeled by a prolate ellipsoid. A voxel p in the image belongs to the ellipsoid if it 

satisfies:

[1]

where L and l are the lengths of the major and minor axes of the prolate ellipsoid, 

respectively. d1 is the Euclidean distance from p to the major axis of the ellipsoid, and d2 is 

the Euclidean distance from p to the centroid of the ellipsoid. The centroid is determined as 

the point on the probe axis with its distance to the tip of the probe being (L/2-h), where h 

denotes the distance from the probe tip to one of the farthest points on the ellipsoid’s surface 

to the centroid (Fig. 3).

We measured and recorded L, l, and h of an evolving iceball at 3, 6, 10, 15 min of freezing 

from a set of x-ray CT images taken when an individual probe of each type (IceRod and 

IceSeed) was inserted into an abdominal gel phantom (CIRS Inc., Norfolk, VA). The 

parameter values at these four timepoints were then fitted with a second order polynomial 

curve to estimate parameter values for all other timepoints. Finally, the iceball shape 

generated by all the probes was obtained by combining all individual iceball shapes modeled 

using Eq. [1], and an example is given in Figure 4b.

Fuzzy C-means Presegmentation

The HASTE images acquired during freezing are preprocessed with intensity normalization 

(Fig. 2) to compensate for intensity inhomogeneity between slices. Specifically, intensity 

values of each slice are normalized to fit the [0, 1] interval. We presegment the normalized 

HASTE image using the Fuzzy C-means (FCM) technique to estimate a membership 

function for each voxel that reflects the probability of the voxel belonging to one the two 

classes, i.e., the iceball and the background. The membership functions drive the adaptation 

of iceball shape in the next Fast Marching Propagation step. The FCM step also provides 

intensity centroids—mean intensity values of the two classes, which are used to initiate the 

final graph cut segmentation.
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For images with k desired classes, the FCM classification iterates the following two steps 

until convergence. First, compute the membership functions given the centroids ck:

[2]

where q is the fuzziness coefficient. Second, compute the centroids given the membership 

functions:

[3]

In our case, we used c1 = 0.33 and c2 = 0.67 as the initial intensity centroids for the iceball 

and the background, respectively, to initiate the FCM calculation.

FAST MARCHING PROPAGATION

We perform boundary propagation based on the Fast Marching method (21) to adapt the 

modeled iceball shape to the actual iceball location in the HASTE image. As shown in 

Figure 4, the boundary of the modeled iceball shape is propagated through a thinning and a 

growing processes. The detailed steps are summarized as follows: (A) Extract all the voxels 

on the (inside) boundary of the modeled iceball shape. (B) Reduce the iceball shape through 

the thinning process (Fig. 4c): (i) calculate values of the speed function fth (Eq. [4]) for all 

voxels inside the iceball; (ii) remove the voxel on the boundary with the lowest value of fth 

from the iceball; (iii) add its neighbors belonging to the iceball to the boundary. (C) Expand 

the iceball shape through the growing process (Fig. 4d): (i) calculate values of the speed 

function fgr (Eq. [4]) for all voxels outside the iceball; (ii) add the voxel on the (outside) 

boundary with the highest value of fgr to the iceball; (iii) add its neighbors belonging to the 

background to the boundary.

In both the thinning and growing phases, the process iterates between steps (ii) and (iii) until 

the stop criterion is met. The stop criterion for the thinning is the instance when 30% of the 

voxels belonging to the iceball are removed. The stop criterion for the growing step is the 

point when the number of voxels recovers to equal that of the initial stage. The speed 

functions, fth and fgr, are determined by the membership function of the iceball class, i.e., u1, 

resulting from the FCM segmentation. In addition, we add spatial regularization terms to 

enforce smooth propagation. The regularization terms make the propagation focus on voxels 

that are closer to the initial boundary in either the thinning or the growing process. The 

speed functions we use are:

[4]

where 0 ≤ α ≤ 1 is a parameter to control the relative importance of the regularization terms. 

T0 and T1 are the Euclidean distance transforms to the background and the iceball, 
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respectively. The adapted iceball shape is used to generate the shape priors incorporated into 

the final graph cut segmentation.

Shape Prior Modeling

The shape prior Pr(Op) is defined as the probability of a voxel being contained in the iceball 

based on its location in the adapted iceball shape binary image (Fig. 4d). Pr(Op) is expressed 

as:

[5]

where f(p) is the label function (1 denotes the iceball and 0 denotes the background), T0 and 

T1 are the Euclidean distance transforms to the background and the iceball labels, 

respectively, and N is a threshhold parameter. The function in Eq. [5] varies between 0.001 

and 1, and equals 0.5 for voxels on the boundary of the iceball. Pr(Op) has the shape of a 

hyperbolic sine function: it decreases rapidly when the voxel is far from the boundary (both 

inside and outside the iceball) and changes slowly near the boundary of the iceball. The aim 

is to let the segmentation be mainly driven by the intensity information in the region around 

the boundary. When the voxel is a great distance outside the iceball, e.g., T1(p) ≥ N, its 

shape prior assumes a minimum value (i.e., 0.001).

Graph Cut Segmentation

The graph cut technique optimally partitions an n-dimensional image with two voxel labels, 

as either the “object” (O) or a part of the “background” (B), by means of the minimization of 

a Markov Random Fields type of energy:

[6]

Here f(p) is the voxel label O or B. Rp(·) is the regional term, interpreted as the penalty of 

assigning a voxel to a label. Bp,q(·,·) is the boundary term, representing the penalty for 

discontinuity between neighboring voxels (p, q). λ is a weight parameter (i.e., λ > 0).

The regional term is often defined as the negative log-likelihood of a voxel’s fit into 

predetermined intensity histograms:

[7]

where I(p) is the intensity value at p. A common expression for the boundary term is:

[8]

where dist(p,q) is the Euclidean distance between p and q, and σ is a scale parameter to 

control the segmentation results. The minimum of energy E in Eq. [6] corresponds to the 
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optimum segmentation, and can be achieved by means of applying the min-cut/max-flow 

algorithms (13).

Several previous studies have incorporated shape priors into the standard graph cut 

formulation, e.g., by adding an additional function representing shape information to the 

regional term (18):

[9]

where 0 ≤ μ≤ 1 is a parameter to adjust the relative shape influence. In our algorithm, the 

shape prior Pr(Op) is given by Eq. [5] and Pr(Bp) = 1 − Pr(Op). In accordance with the 

boundary term (Eq. [8]), the likelihood in the regional term (Eq. [9]) is defined to be:

[10]

where ck is the intensity centroid for class k = 1,2 (O,B) obtained in the FCM segmentation 

step.

Finally, to reduce noise and fill holes resulting from graph cut segmentation, we applied 

SUSAN noise reduction (24) to the binary image of the segmented ice-ball. The SUSAN 

algorithm uses nonlinear filtering to reduce noise while preserving the edges and corners.

Implementation and Evaluation

The graph cut segmentation with shape priors was implemented using C++ with a Matlab 

(MathWorks; Natick, MA) interface, modified from a freely-available graph cut library 

(http://cbia.fi.muni.cz/projects/graph-cut-library.html), which implements the standard graph 

cut segmentation method provided by (12,13). The other parts of our algorithm were 

implemented using Matlab, including generation of the adapted shape priors. Segmentations 

were performed on a commercially available workstation (Dell T7500n; Intel Xeon CPU 

X5660, 6 × 2.8 GHz, 12 GB RAM, and Red Hat Enterprise Linux 6.0) with empirically 

determined parameter values: N = 20, q = 2, α = 0.3, λ = 2, σ= 0.08, μ = 0.9.

An expert evaluator manually segmented (mean execution time 5 min) the 3D iceball 

volumes using ITK-SNAP (www.itksnap.org) (8) for all the images. The automatically 

segmented iceball volumes were compared with the manual results using the Dice Similarity 

Coefficient (DSC) (25) as the metric to quantify image segmentation quality. The DSC 

varies between 0 and 1, and a greater value indicates a greater degree of similarity of the two 

segmentations being compared. For further analysis, we tested our GC-adapted-prior 

algorithm and the algorithm without the adaptation of shape priors, i.e., generating shape 

priors directly from the initially modeled iceball shape, as the previous GC-prior method. 

We also segmented the iceball volumes using a semiautomatic tool, the GrowCut image 

segmentation module (9) based on region growing method, in 3D Slicer (www.slicer.org) 

(10), and compared its results with the manual results using the DSC. To initiate Grow-Cut 
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segmentation, an evaluator manually input fiducials, separately labeling the interior and 

exterior of the iceball (mean execution time 40 s).

RESULTS

Table 1 shows results comparing three different methods for iceball segmentation: our GC-

adapted-prior method; the approach without the adaptation of shape priors, i.e., the GC-prior 

method; and, the semiautomatic GrowCut segmentation tool. The results are grouped based 

on five timepoints of the first freeze cycle. Because 1 of the 13 cases only had three time 

points (5, 10, 15 min), we assigned its 5- and 10-min results to the 6- and 9-min timepoints 

in Table 1. As shown in Table 1, both GC-adapted-prior and GC-prior display more accurate 

segmentation results than GrowCut results, with the average DSC of the GC-adapted-prior 

method higher than GC-prior at all 5 timepoints.

In terms of robustness, GC-adapted-prior produces more accurate segmentation results than 

GC-prior for those cases that are “hard to segment,” especially for earlier timepoints—3, 6, 

9 min. This observation is based on the average DSC of the three least accurate cases for 

each group, which is given in Table 1. Here, the cases that are “hard to segment” refer to 

those with inaccurate probe localization, such as the cases shown in Figure 5, which 

compared segmentation results between GC-adapted-prior and GC-prior. The figure 

suggests that the GC-adapted-prior method is capable of producing accurate segmentations 

even though the initially predicted iceball shape deviated significantly from the final 

computed results. An example showing the tumor location and the propagation of the 

segmented iceball using the GC-adapted-prior method is given in Figure 6.

The mean DSC of the total 63 iceball segmentations using GC-adapted-prior is 0.92 ± 0.03. 

We performed a t-test between the GC-adapted-prior DSCs and the GC-prior DSCs of the 

63 segmentations, and the two-tailed P = 0.026 indicated significant difference between the 

means of the two groups. Using GC-adapted-prior, the groups of cases with 2, 3, 4, and 5 

probes have mean DSCs of 0.92, 0.91, 0.94, and 0.93, respectively, which suggests that the 

number of probes involved in the procedure has no apparent influence on the accuracy of the 

segmentation results. Mean execution time of the entire algorithm is approximately 20 s for 

images of dimension 320 × 272 × 18. The computational speed could be further accelerated 

if all algorithms are implemented using the compiled language rather than the script 

language of Matlab.

DISCUSSION

This work presents results supporting the feasibility of using Fast Marching propagation to 

create adapted shape priors for the guidance of image segmentation. Besides the graph cut 

segmentation method, this type of approach is applicable to other state-of-the-art 

segmentation frameworks, such as active contours (26), level sets (27), and the random 

walker method (28). The thinning and growing steps in the Fast Marching propagation can 

be used iteratively to segment multiple regions, e.g., in brain segmentation (29). The spatial 

regularization terms that we added to the speed functions are capable of producing a 

smoothly propagating frontier in proximity to the initial boundary.
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We restrict our experiments to the first freeze cycle of the cryoablation, because this cycle is 

critical for the effectiveness and safety of the procedure. During this phase, the iceball grows 

to fully cover the tumor and a margin of normal tissue beyond the tumor. After a 10-min 

thaw period, the second freeze cycle usually does not reveal significant change in the 

maximum iceball volume reached, and is therefore less valuable for testing segmentation 

methods.

The performance of automated segmentation for earlier timepoints during cryoablation is 

worse than later timepoints. This is likely due to the following reasons. At earlier timepoints, 

the iceballs generated from individual probes have not fully coalesced, and segmentation 

results are more vulnerable to errors caused by the initialization, such as detected probe 

locations, iceball shape modeling, or misregistration. Later in the procedure, the iceball 

shape during propagation may be altered by perfusion, the presence of nearby vessels, tissue 

heterogeneity, and other unpredictable sources that distort tissue. These sources would 

necessarily have a larger effect on the iceball segmentation for earlier timepoints, because 

the affected volume during that period can represent a greater fraction of the relatively 

smaller iceball volume.

It is worth mentioning that our segmentation approach is capable of handling cases with 

multiple tumor masses (either treated individually or simultaneously), although all 13 cases 

reported in this study had only one tumor. The approach can be extended for treatment of 

other tumor types such as those in the liver, lung, adrenal gland bone, and soft tissues, or for 

use under other guidance modalities such as CT or positron emission tomography/CT.

One limitation of our method is that it can only be applied to cases lacking severe 

misregistration between the baseline scans and the scans acquired at each timepoint during 

freezing. In our study tests, we excluded two cases with obvious misregistration due to 

motion artifacts caused by either patient’s breathing during scanning, or by body movements 

during the therapy. However, image registration techniques (30,31) could be applied to align 

the baseline scan with the scans acquired during the freeze period, so that the probe 

locations after registration would be more accurate, allowing analysis of cases with a greater 

degree of motion.

In conclusion, we have presented an automatic ice-ball segmentation method that is based 

on the graph cut image segmentation framework, and incorporated with adapted shape priors 

generated from the predetected probe locations. The method demonstrated high accuracy 

and robustness for fast automatic segmentation of the iceball in intraprocedural images 

acquired during the freezing cycles of MRI-guided cryoablation. The proposed algorithms 

and related software can be immediately applied in practical use. By comparing the 3D 

segmented iceball volume to the tumor volume segmented initially, ablation metrics can be 

calculated and displayed in real-time for quantitative monitoring of ablation during the 

therapy.
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Figure 1. 
Flowchart of MRI-guided cryoablation.
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Figure 2. 
Workflow of our automatic iceball segmentation algorithm.
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Figure 3. 
Single iceball shape modeling as a prolate ellipsoid.
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Figure 4. 
An example of iceball shape adaptation at 6 min of the first freeze (only one slice of the 3D 

volume is displayed). a: detected probes in the baseline scan (the case has three probes but 

only two are shown in this slice). b: Initially modeled iceball shape. c: Iceball shape after 

thinning. d: Iceball shape after growing, the binary image used to generate shape prior. e: 

Final segmentation using our method. Note that b–d were internal steps of the shape 

adaptation process but not the segmentation results. [Color figure can be viewed in the 

online issue, which is available at wileyonlinelibrary.com.]
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Figure 5. 
Segmentation results using GC-adapted-prior (right column) and GC-prior (left column). a: 

A case with three probes at 3 min of the first freeze; DSC = 0.94 for GC-adapted-prior; 

DSC=0.83 for GC-prior. b: A case with four probes at 6 min of the first freeze; DSC = 0.95 

for GC-adapted-prior; DSC = 0.79 for GC-prior.
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Figure 6. 
Segmentation results using GC-adapted-prior for a case with four probes. a: Manually 

labeled tumor (red) by an expert interventionalist in the baseline scan. b–f: Automatically 

segmented iceball (yellow contour) at 3, 6, 9, 12, and 15 min of the first freeze cycle; the 

tumor label is transferred and overlaid on each image, as we assume only slight 

misregistration occurs between these images and the baseline scan.
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