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Abstract

We describe a framework to model visual semantics of liver lesions in CT images in order to 

predict the visual semantic terms (VST) reported by radiologists in describing these lesions. 

Computational models of VST are learned from image data using high–order steerable Riesz 

wavelets and support vector machines (SVM). The organization of scales and directions that are 

specific to every VST are modeled as linear combinations of directional Riesz wavelets. The 

models obtained are steerable, which means that any orientation of the model can be synthesized 

from linear combinations of the basis filters. The latter property is leveraged to model VST 

independently from their local orientation. In a first step, these models are used to predict the 

presence of each semantic term that describes liver lesions. In a second step, the distances between 

all VST models are calculated to establish a non–hierarchical computationally–derived ontology 

of VST containing inter–term synonymy and complementarity. A preliminary evaluation of the 

proposed framework was carried out using 74 liver lesions annotated with a set of 18 VSTs from 

the RadLex ontology. A leave–one–patient–out cross–validation resulted in an average area under 

the ROC curve of 0.853 for predicting the presence of each VST when using SVMs in a feature 

space combining the magnitudes of the steered models with CT intensities. Likelihood maps are 

created for each VST, which enables high transparency of the information modeled. The 

computationally–derived ontology obtained from the VST models was found to be consistent with 

the underlying semantics of the visual terms. It was found to be complementary to the RadLex 

ontology, and constitutes a potential method to link the image content to visual semantics. The 

proposed framework is expected to foster human–computer synergies for the interpretation of 
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radiological images while using rotation–covariant computational models of VSTs to (1) quantify 

their local likelihood and (2) explicitly link them with pixel–based image content in the context of 

a given imaging domain.

Index Terms

Computer–aided diagnosis; RadLex; visual semantic modeling; liver CT; Riesz wavelets; 
steerability

I. Introduction

Medical imaging aims to support decision making by providing visual information about the 

human body. Imaging physics has evolved to assess the visual appearance of almost every 

organ with both high spatial and temporal resolution and even functional information. The 

technologies to preprocess, transmit, store and display the images are implemented in all 

modern hospitals. However, clinicians rely nearly exclusively on their image perception 

skills for the final diagnosis [1]. The increasing variability of imaging protocols and the 

enormous amounts of medical image data produced per day in modern hospitals constitute a 

challenge for image interpretation, even for experienced radiologists [2]. As a result, errors 

and variations in interpretations are currently representing the weakest aspect of clinical 

imaging [3].

Successful interpretation of medical images relies on two distinct processes: (1) identifying 

important visual patterns and (2) establishing potential links among the imaging features, 

clinical context, and the likely diagnoses [4]. Whereas the latter requires a deep 

understanding and comprehensive knowledge of the radiological manifestations and clinical 

aspects of diseases, the former is closely related to visual perception [5]. A large–scale study 

on malpractice in radiology showed that the majority of errors in medical image 

interpretation are caused by perceptual misinterpretation [6]. Strategies for reducing 

perceptual errors includes the normalization of viewing conditions, sufficient training of the 

observers, availability of similar images and clinical data, multiple reporting, and image 

quantification [3]. The use of structured visual terminologies based on radiology semantics 

is also a promising approach to enable unequivocal definition of imaging signs [7], but is yet 

little used in routine practice.

Computerized assistance for image analysis and management is expected to provide 

solutions for the aforementioned strategies by yielding exhaustive, comprehensive and 

reproducible data interpretation [8]. The skills of computers and radiologists are found to be 

very complementary, where high–level image interpretation based on computer–generated 

image quantification and its clinical context remains in the hands of the human observer [9]. 

However, several challenges remain unsolved and require further research for a successful 

integration of computer–aided diagnosis (CAD) into the radiology routine [10]. A 

fundamental question for a seamless workflow integration of CAD is to maximize 

interactions between CAD outputs and human conceptual processing [9]. The latter relies 

both on the trust and intuition of the user of the CAD system. Trust can only be achieved 

when a critical performance level is achieved by the system [10]. Intuition still requires 
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extensive research efforts to design computer–generated outputs that match human 

semantics in radiology [7]. The transparency of the computer algorithms should be 

maximized so that the users can identify errors.

A. Semantic information in radiology images

Radiologists rely on many visual terms to describe imaging signs relating to anatomy, visual 

features of abnormality and diagnostic interpretation [11]. The vocabulary used to 

communicate these visual features can vary greatly [12], which limits both clear 

communication between experts and the formalization of the diagnostic thought process 

[13]. The use of standardized terminologies of imaging signs including their relations (i.e., 

ontologies) has been recently recommended to unambiguously describe the content of 

radiology images [3]. The use of biomedical ontologies in radiology opens avenues for 

enabling clinicians to access, query and analyze large amounts of image data using an 

explicit information model of image content [14].

There are several domain–specific standardized terminologies being developed, including 

the breast imaging reporting and data system (BI–RADS) [15], the Fleishner society 

glossary of terms for thoracic imaging [16], the nomenclature of lumbar disc pathology [17], 

the reporting terminology for brain arteriovenous malformations [18], the computed 

tomography (CT) colonography reporting and data system [19], the visually accessible 

Rembrandt images (VASARI) for describing the magnetic resonance (MR) features of 

human gliomas as well as others [20]. Most of the standardized terminologies do not include 

relations among their terms (e.g., synonyms or hierarchical taxonomic structures), and as 

such, they thus do not constitute true ontologies. As a result, these terminologies cannot be 

used for semantic information processing leveraging inter–term similarities. Recent efforts 

from the Radiological Society of North America (RSNA) were undertaken to create 

RadLex1, an ontology unifying and regrouping several of the standardized terminologies 

mentioned above [21], in addition to providing terms unique to radiology that are missing 

from other exiting terminologies. RadLex contains more than 30,000 terms and their 

relations, which constitutes a very rich basis for reasoning about image features and their 

implications in various diseases.

B. Linking image contents to visual semantics

The importance of ontologies in radiology for knowledge representation is well established, 

but the importance of explicitly linking semantic terms with pixel–based image content has 

only recently been emphasized2 [7]. Establishing such a link constitutes a next step to 

computational access to exploding amounts of medical image data [22]. This also provides 

the opportunity to assist radiologists in the identification and localization of diagnostically 

meaningful visual features in images. The creation of computational models of semantic 

terms may also allow the establishment of distances between the terms that can be learned 

from data, which can add knowledge about the meaning of semantic terms within existing 

ontologies.

1https://www.rsna.org/RadLex.aspx, as of March 2014.
2Liver annotation Task at ImageCLEF, http://www.imageclef.org/2014/liver/, as of March 2014.
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C. Related work

The bag–of–visual–words (BOVW) approach [23] aims at discovering visual terms in an 

unsupervised fashion to minimize the semantic gap between low–level image features alone 

and higher–level image understanding. The visual words (VW) are defined as the cluster 

centroids obtained from clustering the image instances expressed in a given low–level 

feature space. Its ability to enhance medical image classification and retrieval when 

compared to using the low–level features was demonstrated by several studies [24–28]. 

Attempts were made for visualizing the VWs, aiming at interpreting the visual semantics 

being modeled. In [24, 26], color image overlays are used to mark the local presence of 

VWs in image examples. In [25, 27–29], prototype image patches (those closest to the 

respective VWs) are displayed to visualize the information modeled. Unfortunately, VWs 

often do not correspond to the actual semantics in medical images, and they are therefore 

very difficult to interpret for radiologists.

The link between VWs and medical VSTs is studied in [30, 31]. Liu et al. used supervised 

sparse auto–encoders to automatically derive several patterns (i.e., VWs) per disease. 

However, albeit the learned patterns were derived from the disease classes, they did not 

correspond to visual semantics belonging to a controlled vocabulary and therefore did not 

have a clear semantic interpretation [31]. In the context of endomicroscopic video retrieval, 

André et al. use a Fisher–based approach to learn the links between VWs learned from 

dense–scale–invariant feature transform (SIFT) and 8 visual semantic terms (VST) [30]. 

Entire videos can be summarized by star plots reflecting the presence of VSTs, but the 

transparency of the algorithms remains limited as the occurrence of the VSTs are not 

localized in the images.

Other studies have focused on the direct modeling of VSTs from application–specific 

semantic vocabularies [32–37]. In the context of histological image retrieval, Tang et al. 

built semantic label maps that localize the occurrence of VSTs from Gabor and color 

histogram features [33]. The authors further refined their VST maps using spatial–hidden 

Markov models in [38]. In [34], the link between ad–hoc low–level image features based on 

gray–level intensity and VSTs can be tailored for each specific user for describing high–

resolution CT (HRCT) images of the lungs. Shyu et al. evaluated the discriminatory power 

of low–level computational features (i.e., gray–level intensity) for predicting human 

perceptual categories in HRCT in [39]. In [40], a comprehensive set of low–level image 

features (i.e., shape, size, gray–level intensity, and texture) was used to probabilistically 

model lung nodule image semantics. Kwitt et al. [36] defined semantic spaces by assuming 

that VSTs in endoscopic images are living on Riemannian manifolds in a space spanned by 

SIFT features. They could derive a positive–definite semantic kernel that can be used with 

support vector machine (SVM) classifiers. Gimenez et al. [37] used a comprehensive feature 

set including state–of–the–art contrast, texture, edge and shape features together with 

LASSO (Least Absolute Shrinkage and Selection Operator [41]) regression models to 

predict the presence of VST from entire ROIs.

The above–mentioned studies demonstrated the feasibility of predicting VSTs from lower–

level image features. However, both transparency and performance of most systems suffer 
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from two limitations. First, the automatic annotation of global regions of interest (ROI) can 

be ambiguous [32]. Local quantifications of the VSTs can increase the transparency of the 

system by highlighting visual features that are recognized as positive inside the ROI. 

Second, most of the studies do not allow for rotation–invariant detection of the VSTs by 

relying on low–level computational features that are analyzing images along arbitrary 

directions (e.g., SIFT, oriented filterbanks, gray–level co–occurrence matrices). VSTs are 

typically characterized by directional information (e.g., lesion boundary, nodule, vascular 

structure), but their local orientation may vary greatly over the ROI. Optimal modeling of 

VSTs requires image operators that are rotation–covariant, enabling the modeling of the 

local relative organization of the directions independently from the orientation of the VST 

[42]. The importance of the local relative orientation of directions for classifying normal 

liver tissue versus cancer tissue has also been highlighted by Upadhyay et al. using 3–D 

rigid motion invariant texture features [43].

In this work, we learn rotation–covariant computational models of RadLex VSTs from the 

visual appearance of liver lesions in CT. The models are built from linear combinations of 

N–th order steerable Riesz wavelets, which are learned using SVMs (see Section II-C). This 

allows local alignment of the models to maximize their response, which can be computed 

analytically for any order N. The scientific contribution of the VST models is twofold. First, 

the models can be used to predict and quantify the local likelihood of VSTs in ROIs. The 

latter is computed as the dot product between 12 × 12 image patch instances and one–

versus–all (OVA) SVM models in a feature space spanned by the energies of the magnitudes 

of locally–steered VST models. Second, Euclidean distances are computed for every pair of 

VST models to establish a non–hierarchical computationally–derived ontology containing 

inter–term synonymy and complementarity. This work constitutes, to the best of our 

knowledge, a first attempt to establish a direct link between image contents and the visual 

semantics used by radiologists to interpret images.

II. Methods

A. Notations

A VST is denoted as ci, with i = 1,…, I while its likelihood of appearance in an image f is 

denoted ai ∈ [0, 1].

A generic d–dimensional signal f indexed by the continuous–domain space variable x = {x1, 

x2,…, xd} ∈ ℝd is considered. The d–dimensional Fourier transform of f is noted as:

with ω = {ω1, ω2,…, ωd} ∈ ℝd.

B. Dataset: VSTs of liver lesions in CT

The institutional review board approved the retrospective analysis of de–identified patient 

images. The dataset consisted of 74 contrast–enhanced CT images of liver lesions in the 
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portal venous phase with a slice thickness of 5mm [22, 37]. There are eight diagnoses of the 

lesions: metastasis (24), cyst (21), hemangioma (13), hepatocellular carcinoma (6), focal 

nodular hyperplasia (5), abscess (3), laceration (1), and fat deposition (1). A radiologist 

(C.F.B., 15 years of abdominal CT experience) used the axial slice f with the largest lesion 

area to circumscribe the liver lesions, producing image ROIs. Each lesion was annotated 

with an initial set of 72 VSTs from the RadLex ontology [22]. The presence of a term ci did 

not imply the absence of all others, where each lesion can contain multiple VSTs. All terms 

with an appearance frequency3 below 10% and above 90% were discarded, resulting in an 

intermediate set of 31 terms. A final set of 18 VSTs describing the margin and the internal 

texture of the lesions was used, which excludes terms describing the overall shape of the 

lesion (see Table I). Each of the 74 ROIs was divided into 12 × 12 patches4 to analyze (A) 

the margin of the lesion (i.e., periphery) and (B) the internal texture of the lesion. The 

distinction between these zones of a lesion is relevant to understanding how the algorithm 

performs, and also parallels how radiologists interpret lesions, taking into consideration both 

the boundary and internal features. The peripheral patches (A) were constrained to have 

their center on the ROI boundary and the internal patches (B) had to have their four corners 

inside the ROIs (see Fig. 1). The patches were overlapping with a minimum distance 

between the centers equals to one pixel. A maximum of 100 patches were randomly selected 

per ROI (i.e., 50 peripheral and 50 internal). Each of the 18 VST were represented by every 

patch extracted from the corresponding ROIs. Peripheral or internal patches were used as 

image instances depending on the VST’s localizations (see Table I). Peripheral patches were 

used for enhancing and nonenhancing to model the transition of enhancement at the 

boundary of the lesion in the portal venous phase.

C. Rotation–covariant VST modeling

Recent work showed that the Riesz transform and its multi–scale extension constitutes a 

very efficient computational model of visual perception [44], since it performs multi–

directional and multi–scale image analysis while fully covering the angular and spatial 

spectrums. This constitutes a major advantage when compared to other approaches relying 

on arbitrary choices of scales or directions for analysis (i.e., Gabor wavelets, gray–level co–

occurrence matrices (GLCM), local binary patterns (LBP)). In a first step, we create VST 

models using linear combinations of N–th order steerable Riesz wavelets. Then, the VST 

models are steered locally to maximize their response, which can be done analytically for 

any order N and yields rotation–covariant results [42].

1) Steerable Riesz wavelets—Steerable multi–directional and multi–scale image 

analysis is obtained using the Riesz transform. Steerable Riesz wavelets are derived by 

coupling the Riesz transform and an isotropic multi–resolution framework5 [45]. The Nth–

order Riesz transform ℛN of a 2–D function f yields N + 1 components ℛ(n,N−n), n = 0, 1,…, 

N that form multi–directional filterbanks. Every component ℛ(n,N−n) ∈ ℛN is defined in the 

Fourier domain as:

3The appearance frequency of a VST is defined as the percentage of lesions in the database in which the term was present.
4Patches larger than 12 × 12 did not fit in the smallest lesion.
5Simoncelli’s multi–resolution framework is used with a dyadic scale progression. The scaling function is not used.
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(1)

with ω1,2 corresponding to the frequencies along the two image axes x1,2. The multiplication 

with jω1,2 in the numerator corresponds to partial derivatives of f and the division by the 

norm of ω in the denominator ensures that only phase information (i.e., directionality) is 

retained. The directions of every component is defined by Nth–order partial derivatives in 

Eq. (1).

The Riesz filterbanks are steerable, which means that the response of every component 

ℛ(n,N−n) oriented with an angle θ can by synthesized from a linear combination of all 

components ℛ using a steering matrix Aθ as in [42]:

(2)

Aθ contains the respective coefficients of each component ℛ(n,N−n) to be oriented with an 

angle θ.

2) Steerable VST models—VST models are built using linear combinations of multi–

scale Riesz components. Such models characterize the organizations of directions at various 

scales that are specific to each VST. At a fixed scale, a VST model  is defined as:

(3)

where wci contains the weights of the respective Riesz components for the VST ci. An 

example of the construction of a model for a synthetic pattern is shown in Fig. 2. By 

combining Eqs. (2) and (3), the response of a model  oriented by θ can still be expressed 

as a linear combination of the initial Riesz components as:

(4)

l2–norm SVMs are used to learn the optimal weights in a feature space spanned by the 

energies of concatenated multi–scale Riesz components to be optimally discriminant in 

OVA classification configurations [42, 46].

D. From VST models to a computationally–derived ontology

Once multi–scale models  are learned for every VST using OVA configurations, the 

distance between every pair of VST can be computed as the Euclidean distance between the 

corresponding set of weights wci. The symmetric matrix Φ(ci, cj) can be considered as a 

non–hierarchical computationally–derived ontology modeling the visual inter–term 

synonymy and complementarity relations.
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E. Rotation–covariant local quantification of VSTs

The orientation θ of each model  is optimized at each position xp and for each scale sj 

to maximize its local magnitude as:

(5)

The maximum magnitude of the model  steered using θdom,sj at the position xp is 

computed as:

(6)

For a given image patch, a feature vector υ can be built as the energies E of the magnitudes 

over the patch of every steered model as:

(7)

The dimensionality of υ is I × J. It worth noting that the features from Eq. (7) are not 

steerable anymore after using the energies of the steered model’s magnitudes. OVA SVM 

models ui with Gaussian kernels ϕ(υ) are used to learn the presence of every VST in the 

feature space spanned by the vectors υ in Eq. 7. The decision value of the SVM for the 

image patch υp measures the likelihood ai of a VST as:

(8)

where b is the bias of the SVM model. Likelihood maps are created by displaying ai values 

from all overlapping patches.

F. Experimental setup

The number of scales was chosen as J = ⌊log2(12)⌋ = 3 to cover the full spatial spectrum of 

12 × 12 patches. The order of the Riesz transform N = 8 was used, which we found to 

provide an excellent trade–off between computational complexity and the degrees of 

freedom of the filterbanks in [42, 47]. A leave–one–patient–out (LOPO) cross–validation 

(CV) was used both to learn the VST models and to estimate the performance of VST 

detection using OVA configurations. For each fold, the training set was used both for 

learning the models and to train the SVMs in the feature space spanned by the vectors υ in 

Eq. (7). No multi–class classification is performed since the VSTs are not considered as 

mutually exclusive [37]. The random selection of the patches was repeated five times to 

assess the robustness of the approach. The decision values ai (see Eq. (8)) of the test patches 

were averaged over each ROI and used to build receiver operating characteristic (ROC) 

curves for each VST. The values ai of the test patches were also used to locally quantify the 

presence of a VST and were color–coded to create VST–wise likelihood maps. CT 

intensities were used as additional features to model gray–level distributions in the patches, 

which we found to be complementary to Riesz models in [46]. The distribution of CT 
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intensities in [−60, 220] Hounsfield Units (HU) were divided into 20 histogram bins that 

were directly concatenated with the features obtained from Eq. (7).

III. Results

A. VST models and computationally–derived ontology

Examples of scale–wise models  are shown in Fig. 5 for six VSTs. The distributions of 

the weights wci,sj for every N + 1 Riesz component  are shown with bar 

plots. The normalized computationally–derived ontology matrix Φ(ci, cj) containing the 

Euclidean distances between every pair of VST models is represented as a heatmap in Fig. 3.

B. Automated VST detection and quantification

ROC curves were built by varying thresholds on the decision values ai. Fig. 4 compares the 

detection performance using the energies of the magnitudes of steered models (i.e., Eq. (7)) 

versus the energies of the initial Riesz components. A paired T–test on ai values is used to 

compare the two approaches. We also compared the performance of steered models 

combined with HU histogram bins with the best results obtained by Gimenez et al. on the 

same dataset as used here [37]. Examples of local quantification of the local presence ai of 

VSTs (i.e., likelihood maps) are shown in the last column of Fig. 5.

IV. Discussions and Conclusions

We built computational models of human perceptual semantics in radiology. The framework 

identifies relevant organizations of image scales and directions related to VSTs in a 

rotation–covariant fashion using steerable Riesz wavelets and SVMs. The models were used 

both to (1) detect and quantify the local presence of VST and (2) to create a 

computationally–derived ontology from actual image content. In these early applications, 

our techniques for detection and quantification of VST enable automatic prediction of 

relevant semantic terms for radiologist consideration. This is an important step towards 

improving the accuracy of lesion description and diagnosis, with the aim of reducing overall 

interpretation errors. Our approach generates VST likelihood maps (see Fig. 5), which 

provide insights on the information modeled by the system, making it possible for the user 

to evaluate the amount of trust that can be put in its outputs and maximizes the transparency 

of the methods. Avoiding a “black box” type approach, this feature of our system is likely to 

be more intuitive to the ultimate end users. The automated detection and quantification of 

visual semantics grants access to large amounts of similar images by enabling 

interoperability with semantic indexing [22, 48]. The creation of a computationally–derived 

ontology from VST models can be used to refine and complement existing ontologies, 

where relations between terms are solely encoded by their hierarchical linguistic 

organization. The proposed computationally–derived ontology allows measuring inter–term 

synonymy and complementarity in the context of a given medical application adding 

additional useful knowledge to existing ontologies [49].

The visualization of the computationally–derived ontology matrix Φ(ci, cj) in Fig. 3 reveals 

clear relationships between groups of VSTs. Two homogeneous groups are found to model 
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antonymous terms concerning the lesion margin: well– versus poorly–defined margin. 

Irregular, lobulated and poorly–defined margin are very close, and they are all distant from 

circumscribed and smooth margin. The lack of distinction between the shape of the lesion 

and the type of lesion margin shows the inability of the proposed models to characterize 

overall lesion shape. For instance, lobulated margin and poorly–defined margin are not 

expected to be close, as it is possible to have lesions with margins that are both lobulated 

and circumscribed. Shared synonymy and antonymy is also observed in VSTs describing the 

internal texture of the lesions. Heterogeneous and internal nodules are found to share 

synonymy, and they are both opposed to homogeneous, homogeneous enhancement and 

hypodense. It can also be observed that hypervascular is close to heterogeneous 

enhancement and peripheral discontinuous nodular enhancement, which all relate to the 

pattern of lesion enhancement. A few erroneous associations are observed (e.g., soft tissue 

density and hypervascular, or water density and enhancing). Overall, the computationally–

derived ontology is found to be complementary to the RadLex ontology, because it allows 

connecting semantic concepts with their actual appearance in CT images. For instance, 

heterogeneous and homogeneous are very close to each other in RadLex because they both 

describe the uniformity of lesion enhancement, but they are opposed to each other in the 

computationally–derived ontology since they are visually antonymous in terms of texture 

characterization. The combination of the RadLex ontology and the computationally–derived 

ontology was shown to significantly improve image retrieval performance in [49]. Likewise, 

we would expect our computationally–derived ontology to be useful in combination with 

existing ontologies like RadLex in image retrieval and other applications.

Figure 4 details the VST detection performance. It shows that although the steered models 

are not improving the results for all VSTs, they are always higher or close to the best 

performance of the initial Riesz components (i.e., global AUC equals to 0.8 versus 0.76, p = 

7:5446e-152). An overall complementarity of the features based on steerable VST models 

and HU intensities is observed (e.g., water density, soft tissue density, hypervascular, 

hypodense). However, the detection performance is little improved or even harmed for 

texture–related terms when compared to using only steerable VST models (e.g., 

heterogeneous, heterogeneous enhancement, homogeneous). The proposed approach 

appears to be complementary to Gimenez et al. [37], where the errors are occurring for 

different VSTs. This suggests that the inclusion of other feature types can improve our 

approach.

Fig. 5 displays the relevance of the information modeled by a subset of VST models. The 

visualization of models  reveals dominant scale–wise VSTs. The largest scale model of 

peripheral discontinuous nodular enhancement implements a detector of nodules 

surrounding the lesion boundary. The two smallest scale models of internal nodules are 

implementing circular dot detectors. These cases illustrate that the models of VSTs 

correspond to image features that actually describe the intended semantics. In general, the 

scale–wise distributions of the weights reveal the importance of Riesz components ℛ(0;N) 

and ℛ(N;0), which can be explained by their ability to model strongly directional structures 

(see Fig. 2). The stability of the models over the folds of the LOPO–CV is measured by the 

trace of the covariance matrices of VST–wise sets of weights wci over the CV folds. The 
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values of VST–wise traces are all below 0.33% of the trace of the global covariance matrix 

of all models from all folds. This demonstrates the stability, and hence the generalization 

ability, of the learned models.

We recognize several limitations of the current work, including a narrow imaging domain, a 

relatively small number of cases, and the use of somewhat thick, 5mm CT sections. In future 

work, we plan to include additional cases to limit the risk of finding erroneous associations 

between terms caused by fortuitous co–occurrences of them. We plan to include additional 

image features that model the lesion shape. This will allow us to create separate 

computationally–derived ontologies based on the type of information modeled (i.e., 

intensity, texture, margin and shape).
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Fig. 1. 
Location of the image patches for the characterization of the margin (left) and the internal 

texture (right) of the lesions.
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Fig. 2. 

Example of the construction of a model  using a linear combination of the Riesz 

templates ℛ(n,N−n).  is visually similar to the pattern [42].
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Fig. 3. 
Computationally–derived ontology matrix Φ(ci, cj) containing the normalized Euclidean 

distances for every pair of VST models. Values closer to zero (black) indicate the shortest 

distances, or most similar terms. Clear relationships between groups of VSTs are revealed 

both for terms describing lesion margin and internal texture.
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Fig. 4. 
Comparison of the automated detection performance between (A) initial Riesz components 

ℛN, (B) steered models , (C) steered models  combined with HU histogram bins, and 

(D) the best results obtained by Gimenez et al. [37] on the same dataset in terms of AUCs. 

(*) denotes p–values below 0.05 for the comparison between (A) and the (B). (B) are always 

higher or close to the best performance of the (A), which highlights the importance of 

rotation–covariance. The difference between the global AUCs of (A) and (B) (i.e., 0.76 
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versus 0.8) is associated with a p–value of 7.5446e-152. (C) and (D) were shown to be 

complementary.
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Fig. 5. 

Scale–wise models  for 5 VSTs and N = 8. The distributions of the weights wci,j learned 

by OVA SVMs are represented for each scale with bar plots. The red regions in the last 

column of the table are showing examples of likelihood maps ai computed from Eq. (8) for 

every VSTs.
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TABLE I

VSTs from RadLex used to describe the appearance of the liver lesions in CT scans. The 18 VSTs describing 

the margin and the internal texture of the lesions are marked in bold.

category VST frequency patch
location

lesion margin

1) circumscribed margin 70.3 %

peripheral

2) irregular margin 12.2 %

3) lobulated margin 12.2 %

4) poorly–defined margin 16.2 %

5) smooth margin 45.9 %

lesion substance 6) internal nodules 12.2 % internal

perilesional tissue characterization 7) normal perilesional tissue 43.2 % peripheral

lesion focality

8) solitary lesion 37.8 %

—
9) multiple lesions 2–5 21.6 %

10) multiple lesions 6–10 20.3 %

11) multiple lesions > 10 18.9 %

lesion attenuation

12) hypodense 72.2 %

internal13) soft tissue density 16.2 %

14) water density 14.9 %

overall lesion enhancement

15) enhancing 62.2 % peripheral

16) hypervascular 14.9 % internal

17) nonenhancing 29.7 % peripheral

spatial pattern of enhancement

18) heterogeneous enh. 13.5 % internal

19) homogeneous enh. 32.4 % internal

20) peripheral discont. nodular enh. 17.6 % peripheral

temporal enhancement

21) centripetal fill–in 17.6 %

—22) homogeneous retention 18.9 %

23) homogeneous fade 21.6 %

lesion uniformity
24) heterogeneous 41.9 %

internal
25) homogeneous 56.8 %

overall lesion shape

26) round 25.7 %

—
27) ovoid 45.9 %

28) lobular 25.7 %

29) irregularly shaped 12.2 %

lesion effect on liver 31) abuts capsule of liver 17.6 % —
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