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Abstract

Background: Recovering individual genomes from metagenomic datasets allows access to uncultivated microbial
populations that may have important roles in natural and engineered ecosystems. Understanding the roles of these
uncultivated populations has broad application in ecology, evolution, biotechnology and medicine. Accurate
binning of assembled metagenomic sequences is an essential step in recovering the genomes and understanding
microbial functions.

Results: We have developed a binning algorithm, MaxBin, which automates the binning of assembled metagenomic
scaffolds using an expectation-maximization algorithm after the assembly of metagenomic sequencing reads. Binning
of simulated metagenomic datasets demonstrated that MaxBin had high levels of accuracy in binning microbial
genomes. MaxBin was used to recover genomes from metagenomic data obtained through the Human Microbiome
Project, which demonstrated its ability to recover genomes from real metagenomic datasets with variable sequencing
coverages. Application of MaxBin to metagenomes obtained from microbial consortia adapted to grow on cellulose
allowed genomic analysis of new, uncultivated, cellulolytic bacterial populations, including an abundant myxobacterial
population distantly related to Sorangium cellulosum that possessed a much smaller genome (5 MB versus 13 to
14 MB) but has a more extensive set of genes for biomass deconstruction. For the cellulolytic consortia, the MaxBin
results were compared to binning using emergent self-organizing maps (ESOMs) and differential coverage binning,
demonstrating that it performed comparably to these methods but had distinct advantages in automation, resolution
of related genomes and sensitivity.

Conclusions: The automatic binning software that we developed successfully classifies assembled sequences in
metagenomic datasets into recovered individual genomes. The isolation of dozens of species in cellulolytic microbial
consortia, including a novel species of myxobacteria that has the smallest genome among all sequenced aerobic
myxobacteria, was easily achieved using the binning software. This work demonstrates that the processes required for
recovering genomes from assembled metagenomic datasets can be readily automated, an important advance in
understanding the metabolic potential of microbes in natural environments. MaxBin is available at https://sourceforge.
net/projects/maxbin/.
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Background
The development of high-throughput genomic sequencing
technologies has enabled the recovery of genomes directly
from microbial communities in natural and engineered
environments [1]. Genomes have been recovered from
microbial communities found in acid mine drainage [2,3],
permafrost [4], cow rumen [5], surface ocean water [6],
sludge bioreactors [7], acetate-amended aquifers [8], and
infant fecal samples [9]. A key step in genome recovery
from metagenomic sequence data is the classification
of sequences assembled from metagenomic reads into
discrete units, referred to as bins. These bins represent
composite genomes of individual populations that com-
prise the microbial community. A number of approaches
have been developed to bin assembled sequences from
metagenomic data [2,4-9]. Among these techniques, one
of the most widely used is emergent self-organizing maps
(ESOMs), which have been used to bin assembled
sequences by tetranucleotide frequencies [2] and read
coverage levels (time series binning) [9]. ESOMs calcu-
lated based on tetranucleotide frequencies can be ap-
plied to individual metagenomic datasets; however, time
series ESOMs require multiple datasets for accurate
binning. A related approach to time series ESOM bin-
ning is differential coverage binning, which uses plots of
differential read coverages of assembled sequences to
distinguish individual genomic bins. In both methods,
individual bins are tested for completeness (is it a
complete genome?) and distinctiveness (does the bin
only contain one genome?) using single-copy marker
genes.
For both ESOM and differential coverage binning

approaches, individual bins are chosen manually from
a graphical output. Existing automated binning algorithms,
such as AbundanceBin [10] or MetaCluster [11,12], are
designed to bin sequencing reads instead of assembled
metagenomic scaffolds. Here, we describe the develop-
ment of a novel binning method, MaxBin, which auto-
mates binning of assembled metagenomic scaffolds
using an expectation-maximization algorithm. In this
approach, tetranucleotide frequencies and scaffold cover-
ages are combined to organize metagenomic sequences
into individual bins, which are predicted from initial
identification of marker genes in assembled sequences.
The performance of MaxBin was evaluated on simulated
metagenomic datasets, individual datasets obtained
in the Human Microbiome Project and replicates of
cellulolytic consortia enriched from compost. Gen-
omic analysis of the members of the cellulolytic
consortia revealed multiple uncultivated cellulolytic
populations, including a recovered myxobacterial gen-
ome distantly related to Sorangium cellulosum that is
substantially smaller than most known myxobacterial
genomes.
Methods
A flow diagram for the operation of the MaxBin algorithm
is shown in Figure 1. Before applying the MaxBin binning
algorithm on any dataset, the sequencing reads need to be
assembled into contigs or scaffolds, which are contigs
linked by Ns based on paired-end information. Below, we
will use scaffolds to describe these assembled sequences.
MaxBin is capable of binning either contigs or scaffolds;
see the expectation-maximization algorithm section below
for details. The MaxBin algorithm utilizes two different
genomic features: tetranucleotide frequencies and scaffold
coverage levels to populate the genomic bins using
single-copy maker genes and an expectation-maximization
algorithm. After classifying the scaffolds into different
bins, MaxBin produces an optimal set of genomic bins
and reports the estimated genomic features, including:
genome sizes, GC content, genome completeness, and
genome coverage levels, and provides this information in
tabular form.

Probability estimations of genomic features
Genomic signatures have been shown to display a
species-specific pattern [13-16] and have been applied
to bin sequences from metagenomic datasets. The most
widely used genomic signature is tetranucleotide frequen-
cies, which has been used in a number of metagenomic
studies [4-8]. To distinguish whether two sequences are
sampled from the same species based on their tetranu-
cleotide frequencies, we downloaded 3,181 bacterial and
archaeal genomes from the IMG website (http://img.jgi.
doe.gov/), simulated genomic sequence fragments, and
calculated Euclidean distance between the extracted
tetranucleotide frequencies of the two sequences. The
lengths of the simulated sequences were randomly chosen
between 1,000 bps to 1,000,000 bps. The simulation was
performed one million times for intra-genome (sequences
sampled from the same genome) and one million times
for inter-genome (sequences sampled from different ge-
nomes) comparisons. The histogram of intra-genome and
inter-genome simulations, as shown in Additional file 1:
Figure S1(A) and S1(B), revealed a large difference, in
which intra-genome distances were grouped below 0.2
while inter-genome distances were more evenly distrib-
uted between 0.02 and 0.1. We estimated both the mean
and variance values separately for both intra-genome and
inter-genome Euclidean distances. The mean and standard
deviation values for intra- and inter-genome distances
were 0.015, 0.010 and 0.068, 0.034, respectively. We must
note that both distributions of intra- and inter-genome
distances were rejected by the Shapiro-Wilk test to be
normally distributed (W value is 0.81 and 0.93 for
intra- and inter-genome distances, respectively); how-
ever, because the difference between the histograms of
intra- and inter-genome distances is very clear, we still
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Figure 1 The general workflow of MaxBin. Tetranucleotude frequencies, scaffold coverage levels, and single-copy marker genes are collected
from metagenomic scaffolds. The collected information is computed by an expectation-maximization algorithm to bin sequences.
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applied their mean and standard deviation values to test
whether the measured Euclidean distances are between
sequences sampled from the same genome or between
different genomes. We discuss this circumstance and
potential improvement in the Discussion section.
After identifying the mean and standard deviation

values between the distributions of Euclidean distance,
as shown in Additional file 1: Figure S1(C), we define the
distance function between two sequences as

dist S1; S2ð Þ ¼ distEuc tetra S1ð Þ; tetra S2ð Þð Þ
where tetra (S) indicates the tetranucleotide frequency of
sequence S, and distEucðÞ function is used to calculate
the distances between the two sequences, S1 and S2, using
Euclidean distance function. The probability function that
two sequences were sampled from the same species is
defined as:

Pdist S1∈G S2ð Þð Þ ¼ Nintra dist S1; S2ð Þ jμintra; σ2intra
� �

Nintra dist S1; S2ð Þ j μintra; σ2intra
� �þ Ninter dist S1; S2ð Þ j μinter; σ2inter

� �

in which G S2ð Þ represents the genome that sequence S2
belongs to, dist S1; S2ð Þ is the distance between the
extracted tetranucleotide frequencies of S1 and S2 using
the Euclidean distance function, Nintra and Ninter are the
Gaussian distributions with estimated intra- and inter-
genome mean distance values (μintra and μinter) and
distance variance values σ2intra andσ

2
inter

� �
, respectively

(note that Pdist(S1 ∈ G(S2)) = Pdist(S2 ∈ G(S1)) since dist
(S1, S2) = dist(S2, S1). The distribution Pdist for Euclidean
distance is shown in Additional file 1: Figure S1(D). One
can easily observe from the figure that the lower the
distance, the more probable two sequences are sampled
from the same genome.
The scaffold coverage levels are also considered, as

coverage levels also carry important information and
have been applied to bin metagenomic data [7,9]. Shotgun
sequencing has been demonstrated to follow the Lander-
Waterman model, which calculates the coverage of the
sequenced nucleotides using a Poisson distribution [17]
and has been applied in the binning of metagenomic reads
[10,18]. The probability function that two sequences are
sampled from the same genome given their coverages is
modeled as:

Pcov S1 ∈G S2ð Þð Þ ¼ Poission cov S1ð Þð jcov S2ð Þ
where cov(S) indicates the coverage of sequence S, and
Poisson (cov(S1) | cov(S2)) is the Poisson probability dens-
ity function given mean value λ = cov (S2).

Expectation-maximization algorithm
MaxBin utilizes tetranucleotide frequencies and scaffold
coverage levels to estimate the probability that a scaffold
belongs to a bin using an expectation-maximization (EM)
algorithm. The algorithm consists of five steps as follows:

1. Estimate the tetranucleotide frequencies and coverage
levels for all scaffolds. Tetranucleotide frequencies are
calculated by scanning the number of all possible
tetramers (that is, four consecutive nucleotides)
using one bp sliding window on both forward and
reverse-complement strands of any scaffold.
Tetramers with non-nucleotide symbols (that is,
not A, T, C, or G) are discarded. Since DNA
fragments can be obtained from either strand of
the genomes, the frequency of one tetramer and
its reverse-complement is combined, resulting in
a total of 136 possible tetramers.

2. Initialize the total number of genomes N, their
inherent tetranucleotide frequencies tetrai and
coverage levels λi for i = 1,2…, N.
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3. Calculate the probability that any sequence Sj (j = 1,
2…, W; W is the total number of scaffolds) coming
from the ith genome Gi as

P
�
Sj∈Gi

� ¼ Pdist Sj∈Gi
� �

⋅Pcov Sj∈Gi
� �

XN

i¼1
Pdist Sj∈Gi

� �
⋅Pcov Sj∈Gi

� �

4. Calculate the new values for each tetrai and λi as

tetrai ¼
XW

j¼1
P Sj∈Gi
� �

⋅tetra Sj
� �

⋅lenght Sj
� �

XW

j¼1
P Sj∈Gi
� �

⋅lenght Sj
� �

λi ¼
XW

j¼1
P Sj∈Gi
� �

⋅cov Sj
� �

⋅lenght Sj
� �

XW

j¼1
P Sj∈Gi

� �
⋅lenght Sj

� �

5. Iterate step 3 and 4 until the parameters converge or
the number of runs exceeds a pre-defined maximum
number of runs. The maximum number of runs is
set to 50.

The EM algorithm calculates the probability that a
given scaffold belongs to any genome at the same time.
The maximum number of iterations of the EM algorithm
was determined by running MaxBin on simulated datasets
with different maximum iteration numbers and measuring
the performances of the binning results by precision and
sensitivity (see below). As shown in (Additional file 1:
Figure S2), the precision and sensitivity of the two simu-
lated datasets were very stable for all maximum iteration
number settings. We have set the maximum number to
perform EM algorithm to 50 in case some larger metagen-
omes need more iterations to achieve reasonable binning
results.
After the EM algorithm is finished, the scaffolds are

assigned to the bin with the highest probability as long
as the probability values surpass the minimum probability
threshold, which is set to 80%. Sequences that do not meet
the threshold are discarded as ‘unclassified.’
Before applying the EM algorithm on any metage-

nomic datasets, sequences shorter than minimum length
threshold are removed since these sequences are likely
to produce skewed tetranucleotide frequencies, which
confuse the binning algorithm and erroneously classify
shorter sequences into wrong bins. To find the best
minimum length cutoff threshold, we performed binning
using different length cutoff settings on simulated datasets.
The result demonstrated that MaxBin achieves the best
sensitivity and comparable precision with 1,000 bps cutoff
setting [see Additional file 1: Figure S3]. Therefore, we set
the minimum length threshold to 1,000 bps to achieve best
performances.
Initialization of the algorithm
A common practice for an expectation-maximization
algorithm is to randomize all parameters. This initial
condition permits the possibility of converging param-
eters into local maxima. At the same time, the number
of bins, which is one of the most crucial parameters, is
usually unknown. We employed the single-copy marker
genes to estimate the number of bins and initialize all
required parameters. Genes from the scaffolds were
predicted using FragGeneScan [19], and HMMER3 [20]
was used (with –cut_tc option) to scan the predicted
genes for 107 single-copy marker genes that are conserved
in 95% of all sequenced bacteria, which has been used to
determine the genome completeness of bins [7,21]. After
filtering out all mapped genes that do not meet the cover-
age threshold, which is 40%, the median number of scaf-
folds containing each of the marker genes is identified,
considering that some marker genes may be fragmented
into several pieces that may distort the estimation of
the number of bins. The shortest marker gene that
corresponds to the median number of bins is selected,
and the tetranucleotide frequencies and read coverages
of the scaffolds harboring this shortest marker gene are
extracted to generate the initialization parameters for
the algorithm. The reason we use the shortest marker
gene for initialization is that shorter genes are less
likely to be split between two scaffolds.
Recursive classification of bins
Despite careful selection of initialization conditions, the
EM algorithm sometimes may still group scaffolds from
several composite genomes into one bin. To alleviate this
problem, all bins are recursively checked for the median
number of marker genes. If the median number of marker
genes of any bin is at least 2, the bin will be treated as a
dataset waiting to be binned, and the whole EM algorithm
will be applied to split the bin. All bins (including those
created by reapplying EM algorithm on bins) will be
checked for the number of marker genes until no bins can
be split further.
Estimation of genome completeness
After the EM process, MaxBin scans the 107 marker genes
in all bins for genome completeness, which is measured as
the fraction of unique marker genes versus all marker
genes. Not all bacteria are equipped with all 107 marker
genes, such as the reconstructed genomes from the unculti-
vated TM7 lineage, in which representatives of this candi-
date phylum have only 100 out of all 107 marker genes [7].
However, the metric of 107 marker genes is maintained as
the standard in the absence of specific phylum level counts
of conserved marker genes.
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Simulation of the test metagenomes
Simulated metagenomes with 10 species and 100 species
were generated by MetaSim [22] and assembled by Velvet
assembler 1.2.07 [23] with K = 55 and coverage cutoff set
to 1. The detailed genome simulation settings can be
found in Additional file 1: Table S1 and S2. For 10-species
metagenomes, we sampled 5 million and 20 million
paired-end reads referred to as the 20X and 80X datasets,
respectively. For 100-species metagenomes, the settings
used by [24] were mimicked, and 100 million paired-end
reads were sampled to create three datasets: simLC+,
simMC+, and simHC+. The 80-bps error model was
downloaded from the MetaSim website (http://ab.inf.uni-
tuebingen.de/software/metasim/errormodel-80bp.mconf/
view) and used in simulating all metagenomes.

Performance evaluation of the binning results of
simulated datasets
We adopted precision and sensitivity from [12] to evalu-
ate the binning performances of the simulated datasets.
Assume there are N genomes in the dataset and MaxBin
yielded M bins. The overall precision and sensitivity is
given as

Precision ¼
XM

i¼1
max

j
Rij

XM

i¼1

XN

j¼1
max

j
Rij

Sensitivity ¼
XN

j¼1
max

i
Rij

XM

i¼1

XN

j¼1
max

j
Rij þ unclassified sequences

in which Rij indicate the number of sequences (in terms
of base pairs) that belong to genome j appears in bin i. If
M >N, the majority of sequences in each bin likely
belong to a single genome and the precision will be high;
however, the sensitivity will be low since some genomes
are represented by more than one bin. On the other
hand if M <N, the sensitivity will tend to be high while
precision is likely to be low. We also note that scaffolds
lower than 1,000 bps, which is our minimum length
cutoff for MaxBin algorithm, are not included in the
unclassified sequences since these sequences cannot be
binned and will be discarded in the first step of the
binning algorithm.
Besides precision and sensitivity, we also evaluated the

amount of correctly binned and mis-assigned sequences
for individual species in the simulated datasets. We evalu-
ated the number of sequences of each species that appear
in each bin, and assigned the bins to the species with the
highest amount of sequences in the bins. If two or more
bins are assigned to the same species, only the bin with
the greatest amount of sequences belonging to that spe-
cies is kept, and only sequences belonging to that species
in that bin are regarded as correctly binned; all sequences
appear in other bins and sequences that do not belong
to the assigned species in any bin are regarded as mis-
assigned. Unclassified sequences are defined as se-
quences that pass the minimum length threshold but
are not classified into any bins. Sequences lower than
the minimum length threshold are not considered
here since these sequences are not treated as part of
the binning result.

Test environment
MaxBin was tested on a Linux operation system with
128G memory space and 16 AMD Opteron™ CPU cores
at 2.2 GHz. With the exception of HMMER3, which
MaxBin utilized to extract marker gene information,
MaxBin itself and other affiliated software are not
multi-threaded. The running time of MaxBin for all
simulated and real datasets is reported in Additional
file 1: Table S8. Note that MaxBin did not consume
more than 1GB of memory space for all our test datasets
except when we map reads against scaffolds to obtain
scaffold coverage information, suggesting that the MaxBin
algorithm could be executed on a personal computer.

Sequencing the enriched cellulolytic compost samples
Green waste compost samples were obtained from the
City of Berkeley, CA, on 30 June 2012. Replicate 50 mL
cultures (37A and 37B) containing MES-buffered M9TE
minimal media [25] were established with microcrystalline
cellulose (500 mg, 1% v/v) (Sigma-Aldrich) as the carbon
substrate. These cultures were incubated on rotary shakers
for two weeks at 37°C and 200 rpm. Five milliliters of this
culture (10%) was transferred to a second replicate set
of microcrystalline cellulose-containing cultures and
incubated for an additional two weeks. After the second
passage, DNA was extracted from culture biomass using
previously described methods [26]. DNA fragments for
Illumina sequencing were created using the Joint Genome
Institute standard library generation protocols for Illumina
HiSeq 2000 platforms. Illumina sequencing was performed
on a HiSeq 2000 system. The DNA fragments were assem-
bled using the Joint Genome Institute assembly pipeline.
Raw reads were trimmed using a minimum quality cutoff
of Q10. Trimmed, paired-end Illumina reads were assem-
bled using SOAPdenovo v1.05 (http://soap.genomics.org.
cn/soapdenovo.html) with default settings (-d 1 and -R) at
different Kmer sizes (85, 89, 93, 97, 101 and 105 respec-
tively). Contigs generated by each assembly (a total of six
contig sets from the six Kmer sizes), were merged using
in-house Perl scripts as following. Contigs were first
de-replicated and sorted into two pools based on length.
Contigs <1,800 bps were assembled using Newbler
(Life Technologies, Carlsbad, CA, USA) to generate
larger contigs (-tr, -rip, -mi 98, -ml 80). All assembled
contigs >1,800 bps, as well as the contigs generated
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from the Newbler assembly, were combined and merged
using minimus2 (-D MINID = 98 -D OVERLAP = 80)
(AMOS: http://sourceforge.net/projects/amos). The ave-
rage fold coverage (or read depth) of each scaffold was
estimated by mapping all Illumina reads back to the final
assembly using BWA (version 1.2.2) [27].

Extraction of glycoside hydrolase genes from the
Sorangium sp. bin
Glycoside hydrolase (GH) genes of the Sorangium sp.
binned genomes and the two Sorangium cellulosum strains
were extracted using dbCAN [28], which was based on the
protein families generated by CAZy database (http://www.
cazy.org/) [29]. The extracted GH families were then
grouped based on [30], in which the GH families were
classified into cellulases (GH5, 6, 7, 9, 44, 45, 48), endo-
hemicellulases (GH8, 10, 11, 12, 26, 28, 53), cell wall
elongation enzymes (GH16, 17, 74, 81), de-branching
enzymes (GH51, 54, 62, 67, 78), and oligosaccharide-
degrading enzymes (GH1, 2, 3, 29, 35, 38, 39, 42, 43, 52).
A new protein class, ‘lignin-degradation enzymes,’ was
defined by including the protein families from AA1 to
AA8 as suggested by [31].

Construction of phylogenetic trees
The 16S ribosomal RNA genes were extracted and aligned
using MUSCLE [32]. The alignments were refined using
Gblocks [33] and loaded into MEGA5 [34] to construct
the maximum-likelihood tree using default settings
(Tamura-Nei model, uniform rates, and complete dele-
tion) with 1,000 bootstraps. The marker gene trees were
built using the 35 marker genes previously reported [35].
The 35 marker genes were extracted from the downloaded
or binned genomes, translated to amino acid sequences,
and aligned by MUSCLE separately. The alignments were
then concatenated and refined using Gblocks. MEGA5
was again used to build the maximum-likelihood marker
gene tree using default settings (JTT model, uniform rate,
and complete deletion) with 1,000 replicates.

Identifying clusters of orthologous groups families
Multiple alignments of all clusters of orthologous groups
(COGs) were downloaded from eggNOG website (http://
eggnog.embl.de/) [36] and converted to hidden Markov
models using HMMER3 [20]. The functional categories of
all COGs were also downloaded from eggNOG website
for counting the numbers of genes for each functional
category.

Pathway mapping
Proteins extracted from Sorangium sp. were searched for
their KEGG (Kyoto Encyclopedia of Genes and Genomes)
Orthology (KO) numbers using KEGG2 KAAS web ser-
vice [37]. The resulting KO numbers were inputted into
the Search&Color Pathway web service (http://www.
genome.jp/kegg/tool/map_pathway2.html) available on
the KEGG2 website [38] to identify the associated
pathways.

Data access
The MaxBin program is available at https://sourceforge.
net/projects/maxbin/. Metagenomic data, including raw
sequencing reads and assembled sequences, for the
enriched cellulolytic compost consortia are available at
JGI IMG/M website (https://img.jgi.doe.gov/cgi-bin/m/
main.cgi) under JGI taxon id 3300000869 (37A) and
3300001258 (37B). The MetaSim setting files, assembled
scaffolds, and coverage files for replicating the simulation
results, the binning results of HMP datasets that were
mentioned in the text, and the binning results of the
enriched cellulolytic compost metagenomes can be
downloaded from the MaxBin download page (http://
downloads.jbei.org/data/MaxBin.html).

Results
Testing MaxBin on simulated metagenomes
MaxBin has been designed as an automated metagenomic
binning software, which allows binning of assembled
metagenomic scaffolds after the assembly of metagenomic
sequencing reads with minimal human intervention. Max-
Bin was initially tested by binning several simulated meta-
genomic datasets produced by MetaSim [22] to evaluate
its effectiveness. MaxBin was applied to two simulated
metagenomes containing 10 species with different overall
sequencing coverage (20X versus 80X average coverage).
The species used in this simulation and their relative
abundance ratios, defined by the actual coverage levels
divided by summed coverage levels of all genomes, were
summarized in Additional file 1: Table S1. MaxBin was
first interrogated for its ability to classify sequences
correctly into corresponding bins. MaxBin successfully
binned the 80X metagenome into 10 bins, in which the
majority of sequences were correctly classified (Figure 2
(A)). High abundance genomes were binned almost per-
fectly; most of the erroneously binned sequences occurred
in low abundance genomic bins with similar coverage
levels. The precision was estimated to be 96.9%, as shown
in Table 1. These results demonstrated the ability of
MaxBin to estimate correctly the number of bins as well
as utilize tetranucleotide frequencies and scaffold coverage
information to bin most of the sequences accurately.
The metagenome with 20X average coverage was binned

into three bins, each consisting of sequences from the most
abundant three genomes (Figure 2(B)). Due to the lower se-
quencing coverages of the seven low abundance genomes,
the majority of assembled scaffolds that belong to these
low abundance genomes did not pass the minimum length
threshold and cannot be binned by MaxBin. Therefore,
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Figure 2 Binning performance estimated from two 10-genome
simulated datasets. Only scaffolds longer than 1,000 bps were used.
Each bar represents an individual genome; blue, red, and green parts
indicate correctly assigned, mis-assigned, and unclassified scaffolds,
respectively. In other words, the presence of red bars indicates that
part of the genome has been incorrectly assigned to bins belonging
to other species, and green bars are genome parts that are unclassified.
These do not count scaffolds shorter than 1,000 bps since these
scaffolds will be discarded before applying the expectation-maximization
algorithm and do not reflect the performance of MaxBin. Yellow lines
represent the relative abundance ratios of the corresponding species.
The Y-axis at the left and right side indicate binned genome sequences
in million bps and genome abundances in relative abundance ratio (%).
The species names of the genomes were indicated in Additional file 1:
Table S1. (A) 80X simulation. (B) 20X simulation. An entire red bar, such
as the fourth bin in the 20X simulation, indicates that scaffolds of this
species have been incorrectly assigned to other bins. Genomes with
much shorter bars indicate that these genomes were assembled
poorly and hence only a small proportion of scaffolds are longer
than 1,000 bps and show up in the figures.
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only three bins were produced from the 20X metagenome,
each belonging to the three genomes with highest
abundances. Most of the scaffolds belonging to the
seven low abundance genomes were discarded because
these scaffolds did not pass the length threshold. For
most binning methods, 1,000 bps is the minimum length
Table 1 Binning performances of simulated datasets

Datasets Bin number

10 genomes 20X 3

80X 10

100 genomes simLC+ 57

simMC+ 11

simHC+ 78
aScaffolds shorter than 1,000 bps are not included in the estimation of sensitivity an
to bin scaffolds successfully (see Discussion for details).
Despite these limitations, MaxBin still binned the three
most abundant genomes with precision measured at
97.01%. We note that for both 80X and 20X samples, the
unclassified sequences were both lower than 1 Mbps
(Table 1; sequences below minimum length threshold
were not included), suggesting that MaxBin was able to
classify most of the sequences while committing very few
mis-assigned errors.
The binning capabilities of MaxBin were further tested

on more complex metagenomic datasets. Genome coverage
settings of three previously published simulated metage-
nomic datasets were generated (simLC, simMC, and
simHC) [24], and three datasets were produced with
similar settings: simLC+, simMC+, and simHC + [see
Additional file 1: Table S2]. MaxBin isolated 57 bins
from simLC+, 11 bins from simMC+, and 78 bins from
simHC+. The precision, sensitivity, and the amount of
unclassified sequences are also summarized in Table 1.
Overall, sequences from high abundance genomes were
binned more accurately and more comprehensively than
low abundance genomes as demonstrated for the simLC +
and simMC + datasets (Figure 3(A)-(B)). The first few
genomes with high abundance levels were binned very
accurately; the majority of mis-assigned scaffolds occurred
in low-abundance bins. Investigation of the assembled
sequences of simLC + and simMC+ demonstrated that
the correctly assigned scaffolds were significantly longer
than mis-assigned ones [see Additional file 1: Figure S4].
This phenomenon accounts for the high accuracy of
binning of the high abundance genomes, which gener-
ally consisted of longer scaffolds that can be binned
more accurately. This effect can also be observed in the
simMC+ dataset, in which only a small portion of scaf-
folds from low abundance genomes passed the MaxBin
minimum length threshold, and therefore only the high
abundance genomes were binned. Due to the poor assem-
bly quality of simMC+ (the N50 for simMC+ is only 383
while the N50 for simLC + and simHC + are 1293 and
17169, respectively), only 11 bins were generated from the
simMC+ dataset compared to 57 and 78 bins from the
simLC + and simHC+ datasets.
For simHC + dataset, which had an evenly distributed

species abundance levels, MaxBin yielded 78 bins
Precision Sensitivitya Unclassifieda

97.01% 96.15% 0.002 Mbps

96.90% 99.34% 0.30 Mbps

65.07% 62.83% 41.18 Mbps

74.95% 92.41% 0.68 Mbps

88.93% 73.46% 62.50 Mbps

d the total amount of unclassified sequences.



Figure 3 Binning performance estimated from three 100-genome simulated datasets. The graph settings are the same as for Figure 2. The
species names of the genomes were indicated in Additional file 1: Table S2. (A) simLC + simulation. (B) simMC + simulation. (C) simHC+ simulation.
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(Figure 3(C)) with 88.93% precision. In the simHC +
dataset, there were fewer mis-assigned scaffolds than
in simLC + (22.24 Mbps in simHC+; 53.24 Mbps in
simLC+). The appearance of unclassified sequences in
some bins, which was measured at 62.5 Mbps, was
probably due to the similarity of abundance levels
between different species, which resulted in a lowered
sensitivity of 73.46%.

Binning of datasets from the Human Microbiome Project
The Human Microbiome Project (HMP) was designed to
document the microbial populations that occupy habitats
in or on the human body. A total of 749 samples were
generated for selected corporeal habitats, including the
gut, the mouth, the vagina, and the skin [39]. MaxBin was
applied to identify genomic bins from three selected HMP
datasets with very different sample sizes: the tongue
dorsum sample SRS013705, the subgingival plaque
sample SRS014477, and the stool sample SRS018656.
The reads and assembled sequences were downloaded
from HMPDACC website (http://hmpdacc.org/). These
three samples were chosen to compare the performance of
MaxBin on real metagenomic datasets with very different
amounts of raw sequence reads (12 GB for SRS013705,
1.4 GB for SRS014477, and 6.4 GB for SRS018656). Max-
Bin yielded 31 bins for SRS013705, 4 bins for SRS014477,

http://hmpdacc.org/
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and 10 bins for SRS018656, consistent with the total
base pairs of scaffolds that passed the minimum length
threshold (83 MB for SRS013705, 14 MB for SRS014477,
and 45 MB for SRS018656). The number of unclassified
sequences for SRS013705, SRS014477, and SRS018656
was 11.18, 0.37, and 2.17 Mbps. The taxonomy of the bins
was analyzed using MEGAN4 [40] and compared to the
results of the HMP community profiles (also downloaded
from HMPDACC website) generated by fragment recruit-
ment of the metagenomic sequencing data to related se-
quenced isolates [41]. The binning results and the closest
species are listed in Additional file 1: Table S3. In general,
MaxBin successfully generated bins for the high abun-
dance populations in each sample. For instance, three of
the four most abundant predicted species in SRS013705
were successfully binned, including populations related to
Prevotella melaninogenica, Streptococcus salivarius, and
Veillonella dispar. Similarly, in SRS014477, species among
the four recovered genomes included Treponema denti-
cola, Treponema vincentii, Corynebacterium matruchotii,
and Bacteroidetes oral taxon 274, which were identified
as the most abundant species in this sample. In the
SRS018656 dataset, three of the four most abundant
species were isolated as well, including Dialister invisus,
Bacteroides cellulosilyticus, and Ruminococcus sp., [see
Additional file 1: Table S3]. The MaxBin threshold on the
minimum scaffold lengths limited the number of isolated
bins that could be extracted from these datasets, including
several strains of Rothua dentocariosa in SRS014477 and
Fusobacterium sp. in SRS013705. Nevertheless MaxBin
was still capable of isolating most of the high abundance
genomes from real metagenomic samples with variable
sequencing depths and different species composition
complexity.
We compared our binning results to an approach

using emergent self-organizing maps (ESOM), [2,8,9].
An ESOM graph was generated for the tongue dorsum
sample SRS013705 based on tetranucleotide frequencies
[2], and the sequences on the graph were colored based
on the MaxBin binning results [see Additional file 1:
Figure S5]. Since ESOM relied on the contour boundaries
to distinguish binned genomes, we focused on observing
whether the bins generated by MaxBin were consistent
with the original ESOM boundaries. Indeed, comparison
between ESOM [see Additional file 1: Figure S5(A)] and
MaxBin binning results [see Additional file 1: Figure S5
(B)] demonstrated that most MaxBin bins (shown as
different colors) overlaid with the ESOM boundaries,
confirming the ability of MaxBin to separate genomes
according to their genomic signatures. In addition we
also observed that closely related populations, such as
the three bins representing three Prevotella species and two
bins belonging to the Leptotrichia species, were not suc-
cessfully resolved using the ESOM approach, suggesting
that MaxBin could further distinguish genomes with simi-
lar tetranucleotide frequencies based on scaffold coverage
levels and single-copy marker genes.

Recovering genomes from cellulolytic consortia using
MaxBin
MaxBin was also applied to metagenomes obtained from
replicates of enriched cellulolytic consortia derived from
green waste compost. These enriched communities have
yielded deeply sampled metagenomic datasets from
which individual genomes can be recovered [30,42,43].
Enrichments were performed at 37°C degrees over mul-
tiple passages and DNA was isolated from two replicates,
termed samples 37A and 37B, of the second passage for
metagenomic sequencing. Metagenomes obtained from
both 37A and 37B achieved reasonable assembly quality -
the N50 for the two replicates were 2,907 and 1,994 bps,
respectively. MaxBin was then used to bin the assembled
metagenomics data from the two replicates. The most
abundant 10 genomes of both replicates are shown in
Table 2. The complete list of bins and their genomic pro-
perties can be found in Additional file 1: Table S4. The
amount of unclassified sequences of 37A and 37B were
measured at 2.45 Mbps and 4.36 Mbps, respectively,
excluding scaffolds that were shorter than 1,000 bps.
We found that even though the two replicates were

enriched from the same compost inoculum, the species
composition and the relative abundance ratios of these
species diverged (Figure 4). In the 37A dataset, the most
abundant bin was classified as Sorangium sp. followed
by bins classified as Niastella sp. and Opitutus sp. In
37B, the most abundant species was classified as Nias-
tella sp., which was a nearly identical bin to the one
found in 37A, followed by Teredinibacter sp. and
Sphingomonas sp. The Sorangium sp. bin, which occu-
pied nearly half of the population in 37A (48.1%), was
only found at 2.5% abundance in 37B. Furthermore,
the second and third most abundant bins in 37B (Tere-
dinibacter sp. and Sphingomonas sp.) were not ob-
served in 37A. Note that the second most abundant
species in 37B, Teredinibacter sp., is distantly related
to Teredinibacter turnerae (with amino acid identity at
67.4%), an endosymbiotic cellulolytic gammaproteo-
bacteria isolated from the gill tissue of a shipworm,
Lyrodus pedicellatus [44].
The binning results obtained for MaxBin were com-

pared with two other binning methods: ESOM (tetranu-
cleotide frequencies) and differential coverage binning [7].
The ESOM graphs demonstrated that the MaxBin binning
results fit extremely well with the ESOM boundaries for
both replicates [see Additional file 1: Figure S6]. Differen-
tial coverage binning was performed on the Sorangium
sp., Niastella sp. and Opitutus sp. bins since initial inspec-
tion of the metagenomic datasets revealed that the



Table 2 Most abundant species in sample 37A and 37B

37A 37B

Bin number Species %a Completeness Bin number Species %a Completeness

001 Sorangium sp. 48.1% 95.30% 001 Niastella sp. 26.6% 94.40%

002 Niastella sp. 11.4% 95.30% 002 Teredinibacter sp. 12.7% 99.10%

003 Opitutus sp. 7.5% 84.10% 003 Sphingomonas sp. 10.0% 96.30%

004 Chitinophaga sp. 6.5% 98.10% 004 Cellulomonas sp. 7.9% 83.20%

005 Rhodanobacter sp. 5.5% 88.80% 005 Cellulomonas sp. 7.8% 92.50%

006 Cytophaga sp. 4.3% 98.10% 006 Chitinophaga sp. 4.8% 98.10%

007 Opitutus sp. 2.7% 60.70% 007 Rhodanobacter sp. 4.6% 46.70%

008 Oceanibaculum sp. 2.6% 86.00% 008 Pseudoxanthomonas sp. 4.5% 95.30%

009 Pelagibacterium sp. 1.6% 66.40% 009 Opitutus sp. 3.0% 92.50%

010 Cellulomonas sp. 1.3% 89.70% 010 Sorangium sp. 2.5% 93.50%
aRelative abundance ratios; defined as actual coverage levels divided by summed coverage levels of all genomes.
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assembled sequences for these populations were nearly
identical in 37A and 37B.
We inspected the Sorangium sp. genome that was

recovered using MaxBin, ESOM graph, and differential
coverage binning [see Additional file 1: Figure S7; Table 3].
The GC content of the three Sorangium sp. genomes, re-
covered by the three different approaches, were all 64%,
consistent with the high G + C proportion observed for
the genome of Sorangium cellulosum (71.4%) and other
myxobacteria [45]. The genome sequences that MaxBin
and ESOM recovered were more complete as compared
to the differential coverage binning approach: the
numbers of unique marker genes for MaxBin, ESOM,
and differential coverage binning were 102, 102, and 99
out of all 107 marker genes. When we increased the
minimum length threshold from 1,000 bps to 5,000 bps,
the number of marker genes for MaxBin and differential
Pelagibacterium sp.

Oceanibaculum sp.

Opitutus sp.

Cytophaga sp.

Rhodanobacter sp.

Chitinophaga sp.

Cellulomonas sp.

Cellulomonas sp.

Opitutus sp.

Sphingomonas sp.

Teredinibacter sp.

Niastella sp.

Sorangium sp.

Figure 4 Species distribution comparison between enriched cellulolyt
that the species was found in 37A and 37B, respectively.
coverage binning did not change (Table 3). We also ex-
tracted the Niastella sp. and Opitutus sp. genomes using
differential coverage binning method and compared their
genomic features in Additional file 1: Table S5.
The sequences that were found only in MaxBin-derived

bins compared to the differential coverage binning
method were collected and analyzed by MEGAN to
identify the taxonomy of these sequences. MEGAN
analysis of the scaffolds not classified by differential
coverage binning demonstrated that most of the scaffolds
missed by the differential coverage binning approach were
classified into the Proteobacteria lineage, as indicated in
Additional file 1: Figure S8. Since the bins closest in
abundance were affiliated with Bacteroidetes and Verru-
comicrobia, the sequences affiliated with the Proteobac-
teria lineage shown in Additional file 1: Figure S8 likely
belong to the Sorangium bin. Therefore, MaxBin collected
ic compost replicates 37A and 37B. Blue bars and red bars indicate



Table 3 Genome statistics of isolated Sorangium sp. using different binning methods

Differential coverage
(5,000 cutoff)

Differential coverage
(1,000 cutoff)

MaxBin
(1,000 cutoff)

MaxBin
(5,000 cutoff)

ESOM
(2,000 cutoff)

Total length 4,500,845 4,588,758 5,001,615 4,893,814 5,122,074

Scaffold count 82 93 150 104 143

Mean length (bps) 54,888.4 49,341.5 33,568.84 47,514.0 36,070.9

Maximum length (bps) 240,486 240,486 240,486 240,486 240,486

% GC 63.9 63.8 64 64 63.8

Total marker gene count 103 104 109 107 107

Unique marker gene count 99 99 102 102 102
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a more complete Sorangium sp. genome compared to
the differential coverage binning approach. We manually
inspected the five scaffolds grouped into the Bacteroidetes
lineage and found that the coverage levels of these
scaffolds (974.7, 1990.5, 1019.9, 1027.4, and 1709.5)
were much higher than predicted coverage of second
abundant species, Niastella sp. (270.36). Since the cover-
age levels of these five scaffolds were much closer to that
of Sorangium sp., their assignment may be consistent with
belonging to Sorangium sp. bin. An expanded genome size
obtained by MaxBin compared to differential binning was
also observed for the Niastella and the Opitutus spp.
genomes. In both cases, the majority of the additional
sequences recovered by MaxBin were affiliated with the
predicted lineage [see Additional file 1: Figure S8].

Sorangium sp. bin represents the genome of an unusual
myxobacterium
A complete 16S rRNA gene (90% identical to S. cellulosum)
was recovered from the bin containing the Sorangium sp.
genome and a phylogenetic tree was constructed to classify
the bin (Figure 5(A)). Analysis of the phylogenetic tree
demonstrated that the novel myxobacterial population
was a Deltaproteobacterium in the Myxococcales order
affiliated with the suborder Sorangiineae, but was distinct
from the family Polyangiaceae, which contains the vali-
dated species Sorangium cellulosum, Byssovorax cruenta
and Chondromyces apiculatus [46]. This new family in the
Sorangiineae has no cultivated members and consists of
16S rRNA clones representing uncultivated species. The
two 16S rRNA clones in this family that are most similar
(99% identity) to that of Sorangium sp. were recovered
separately from earthworm guts and large-discharge car-
bonate springs [Genbank: HM459718 and KC358117].
The phylogenetic classification of this bin was confirmed
by construction of a concatenated gene tree from the
genomic bin with 35 single-copy marker genes, which
confirmed that it was distantly related to Sorangium
cellulosum (Figure 5(B)). Surprisingly, the MaxBin binning
results, supported by complementary binning by ESOM
and differential coverage binning methods, demonstrated
that the Sorangium sp. genome was approximately 5 MB,
while the two sequenced strains of Sorangium cellulosum
have genomes of 13.0 MB (strain So ce56) and 14.7 MB
(strain So0157-2). Genomes of 11 myxobacterial genomes
were compared, and 193 genes were identified as univer-
sally shared. For those 193 genes, 158 genes were found to
be present in Sorangium sp., suggesting that despite its
significantly smaller size, this genome still contains most
of the common genes found in myxobacteria.
We compared the gene content between the three

Sorangium species to further understand their differences.
COG families of all extracted genes from the three Soran-
gium species were identified and compared. The identified
COGs were classified into different functional categories
for the three species, as depicted in Figure 6 (the actual
numbers can be referred to in Additional file 1: Table S6).
Since the genome sizes of the two Sorangium cellulosum
genomes were about 2.5 times larger than the recovered
Sorangium sp. genome, gene numbers for individual func-
tional categories were expected to be approximately 2.5
times larger for S. cellulosum isolates. Indeed, we observed
that the number of genes in COG categories for the two
Sorangium cellulosum species were, on average, 2.35 times
more than those in Sorangium sp. (7,535 and 7,255 genes
in all COG categories for the two Sorangium cellulosum
strains compared to 3,155 genes for Sorangium sp.).
Among the COG categories, gene numbers differed most
for COG group Q (Secondary metabolites biosynthesis,
transport, and catabolism); the two Sorangium cellulosum
isolate genomes averaged 4.17 times more assigned genes
than the recovered Sorangium sp. genome. Production of
large numbers of secondary metabolites is a characteristic
of myxobacterial metabolism, and Sorangium cellulosum
isolates in particular produce antifungal and antibacterial
compounds [47]. The only other myxobacterial isolate
with a similarly sized genome to the uncultivated Sor-
angium sp. genome is Anaeromyxobacter dehalogens
(5.01 MB) [48]. A. dehalogens is characterized by an exten-
sive genomic repertoire for anaerobic respiration, including
growth with nitrate, halogenated organics and metals as ter-
minal electron acceptors. The uncultivated Sorangium sp.
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Figure 5 Phylogenetic trees built for the species Sorangium sp. found in 37A and 37B. Arrowheads indicate the whereabouts of Sorangium
sp. in the trees. (A) 16S ribosomal RNA gene tree. (B) Concatenated gene tree for 35 protein-coding marker genes.
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genome lacked genes for denitrification, sulfate reduction,
and metal reduction, indicating that it may primarily have
an aerobic lifestyle [see Additional file 1: Figure S9].
In contrast to the general survey provided by COG

family comparisons, extraction of glycoside hydrolase
(GH) and auxiliary activity (AA) enzymes using the CAZy
database demonstrated that the number of genes relevant
to biomass deconstruction was, on average, doubled in the
uncultivated Sorangium sp (Figure 7). In particular, genes
that cluster with glycoside hydrolase families specifically
involved in cellulose hydrolysis (GH5, 6, 7, 9, 44, 45, 48)
were twice as abundant (29 versus 13 and 16) in the
uncultivated Sorangium sp. genome compared to the S.
cellulosum isolate genomes (the actual number of all GH
genes are listed in Additional file 1: Table S7).

Discussion
MaxBin provides an automated method to recover ge-
nomes from individually assembled metagenomic datasets
by combining information from tetranucleotide frequencies
and scaffold coverage levels, which were used in previous
binning methods, including the ESOM and differential
binning approaches [7]. Most of these previous binning
methods were based on visualization of scaffolds, and the
bins were selected manually from the identified boundar-
ies or clusters of scaffolds. Several recent studies based on
Stochastic Neighbor Embedding (SNE) achieved a better
clustering of metagenomic scaffolds and were partially au-
tomated by human-automated polygon selection method
[49,50]. To the best of our knowledge, MaxBin is the only
fully automated metagenomic scaffold binning software
package that only requires users to input assembled
scaffolds and the coverage levels of these scaffolds.
MaxBin can also calculate the coverage levels of scaffolds
automatically if sequencing reads are provided. Even
though some other automated metagenomic binning tools
exist, such as AbundanceBin [10] or MetaCluster [11,12],
they are all designed to classify sequencing reads, not
assembled scaffolds.
The tetranucleotide frequency is a genomic signature

that is most commonly used for binning purpose. In
principle MaxBin can accommodate different genomic
signatures, including hexanucleotide signatures, which
have been used in other binning algorithms (for example,
CompostBin [51]). However, ESOM binning studies have
demonstrated that binning by tetranucleotide frequencies
best balances phylogenetic resolution with ease of com-
putational processing [2,52]. We therefore decided to
use tetranucleotide frequencies for binning purpose in
the MaxBin algorithm.
Due to the high dimensionality of the feature space

and the associated problems of dimensionality in the use
of tetranucleotide frequencies, shorter fragments will
produce noisy frequency profiles and have resulted in
poor performance [51]. Therefore, most binning methods
based on tetranucleotide frequencies will filter out short
sequences based on different minimum length cutoff set-
tings. For example, the minimum length cutoff threshold
of ESOMs is 3,000 bps while thresholds as low as 500 bps
were used for time series ESOMs, which combined eleven
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metagenomic datasets [9]. For differential coverage
binning approach, thresholds of 2,000 to 5,000 bps
were applied. The thresholds are necessary in all these
binning methods to prevent incorrect binning of short
scaffolds; however, application of a threshold that is
too stringent will discard relevant sequences to recover
more complete genomes. Since our tests on applying
different length cutoff values on all simulated datasets
revealed that 1,000 bps threshold yielded the highest
sensitivity value [see Additional file 1: Figure S3], the
threshold for scaffold length for MaxBin was determined
to be 1,000 bps. For MaxBin, binning may be performed
at different thresholds and the results compared, as was
demonstrated for the Sorangium sp. bin, to determine the
proper threshold to achieve correct and comprehensive
binning.
To find the metric for comparing whether two se-

quences were sampled from the same genome or from
different genomes, we performed an experiment to find
the distributions of tetranucleotide frequency distances
for both intra- and inter-genome distances. We then
identified the mean and standard deviation values and
inserted them into the probability function of the
expectation-maximization algorithm. The Shapiro-Wilk
test rejected the null hypothesis that the intra- and inter-
genome distances were normally distributed (W= 0.81
and 0.93). However, the differences between intra- and
inter-genome distributions, as shown in Additional file 1:
Figures S1(A) and S1(B), are large enough to distinguish
intra- and inter-genome tetranucleotide frequency dis-
tances. Therefore, the mean and standard deviation values
were inserted into equations for the Gaussian distributions
for both intra- and inter-genome distances in order to
estimate the probability that any two sequences were
sampled form the same genome. This procedure was
also supported by analysis of our binning performance
on the simulated and real metagenomic datasets. We will
continue to look for the most suitable probability function
for further refinement of the MaxBin algorithm.
MaxBin also incorporates scaffold coverage levels as

well as tetranucleotide frequencies. The scaffold coverage
levels have been incorporated in the binning procedures
for recovering genomes from a number of metagenomic
datasets [7,9,42]. An important advantage of scaffold
coverage levels is that it distinguishes sequence fragments
extracted from species with similar tetranucleotide fre-
quencies. For example, in Additional file 1 Figure S5(B)
we showed that at least three Prevotella species and two
Leptotrichia species were grouped together on the ESOM
map, based on tetranucleotide frequencies, but were
separated by MaxBin. MaxBin was able to separate these
bins with similar tetranucleotide frequency profiles
using scaffold coverage levels, which reflected the gen-
omic coverage levels in sequences recovered from the
human microbiome samples. We note that using the
scaffold coverage levels for binning has one caveat:
shared genomic regions between different genomes may
have elevated coverage levels and confused the binning.
The situation will be exacerbated if there are strains of
the same species in the metagenome datasets, which
will generate scaffolds with combined coverage levels.
Theoretically, strains from the same species may still be
binned separately using MaxBin if the assembly algorithms
can recognize sequencing reads that belong to each strain;
however, widely used assembly tools still cannot identify
sequences from different strains and cannot assemble
them separately. We attempted to assemble a simulated
dataset with two different strains from the same species
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with very different coverage settings along with eight other
species using Velvet (K = 55); however Velvet assembled
most of the sequences from the two strains together and
created scaffolds with much higher coverage levels than
the actual coverage levels of the two strains. With the
development of more advanced assembly tools, MaxBin
will be capable of generating separate strain-level bins
based on differences in coverage. We note that genome-
amplified or in vitro normalized samples will not be
binned accurately by MaxBin since the amplification and
normalization process may disrupt the actual scaffold
coverage levels and confuse both the assembly algorithms
and MaxBin.
To find the number of bins in a metagenome, which

is one of the most crucial parameters in MaxBin, we
predicted genes from the metagenomes, identified 107
single-copy marker genes using HMMER3, estimated
the number of marker genes in the metagenome, and
took the median value among all marker gene counts
as the number of bins in the metagenomes. We note that
this method is based on heuristics, and the parameter is
greatly influenced by the assembly quality, in which low
quality assemblies will result in lower marker gene counts.
Furthermore, there are also other single-copy marker gene
sets, such as 35 marker genes used in predicting effective
genome size in metagenomic samples [35] and 40 marker
genes identified in [53]. Even though our median-number-
based heuristic method and the 107 marker genes work
well in MaxBin, we will keep exploring other more robust
methods or more suitable marker gene sets for identifying
the number of bins in metagenomes in our future works.
The binning performance of MaxBin also depends

heavily on assembly quality. For example, MaxBin only
generated 11 bins from the simulated simMC + dataset
since this dataset was poorly assembled compared to
simLC+ and simHC+. High quality assemblies yield longer
scaffolds, which will pass the minimum length threshold
for MaxBin and have less-biased tetranucleotide fre-
quencies. Recent developments in assembling metage-
nomic sequences [54-56] and uneven coverage single cell
sequences [57] should improve the binning performance
of MaxBin and other binning algorithms. Recent work has
reported that preassembly filtering approaches, including
digital normalization and read partitioning, produce
higher assembly quality in two large soil metagenomes
[58]. These advances suggest that MaxBin and other
binning algorithms will be able to recover genomes
from highly complex natural samples.
MaxBin was capable of binning high abundance popula-

tions obtained from metagenomic datasets from three dis-
tinct samples obtained in the Human Microbiome Project.
These bins were consistent with previous genome assign-
ments based on fragment recruitment to isolate genomes
and validate the ability of MaxBin to recover individual
genomes [41]. The inability to obtain bins for lower abun-
dance populations from the HMP metagenomes was also
seen in the simulated dataset 20X and simMC+, in which
MaxBin was unable to bin genomes with lower abundance
levels, which tend to have fewer scaffolds that pass the
minimum length threshold for assignment by MaxBin.
Binning population genomes that represent 54% of the

assembled sequence was achieved with the replicates of
consortia adapted to grow on cellulose as a sole carbon
source. These simple bacterial communities provided an
opportunity to compare comprehensively the performance
of MaxBin to the ESOM (tetranucleotide) and differential
coverage approaches. Mapping the MaxBin-assigned bins
onto the ESOM results demonstrated that MaxBin was
capable of reproducing the individual bins denoted by the
map contours and was able to distinguish closely related
bins (for example, two Cellulomonas sp. in the 37A
dataset) not resolved by the ESOM method [see Additional
file 1: Figure S6(B)]. A detailed comparison of the ESOM-
derived bin for the Sorangium sp. with the MaxBin-derived
bin in the 37A dataset revealed that the ESOM bin
recruited sequences that had approximately 100-fold
coverage (the coverage of Sorangium sp. bin is estimated
to be more than 1,000-fold), indicating that sequences
with 100 or lower coverage levels were not binned cor-
rectly and accounted for the larger predicted genome size
(5 versus 5.12 MB). In contrast, differential coverage
binning recovered a smaller predicted genome (4.59 MB
versus 5 MB); however, the additional scaffolds from the
MaxBin results were shown to affiliate with the Sorangium
sp. based on MEGAN analysis of the translated protein
sequences in these scaffolds. MaxBin also recovered an
expanded set of scaffolds compared to differential cover-
age binning for the Niastella sp. and Opitutus sp. bins
present in both replicates. A key advantage of the MaxBin
method compared to the differential coverage binning
method for these datasets is that the Terednibacter sp.
and Sphingomonas sp. bins were only present in the 37B
sample, so these genomes could not be recovered using
the differential coverage binning method.
A surprising result from the replicate cellulolytic consor-

tia, common to all three binning methods, was the recovery
of a myxobacterial genome distantly related to Sorangium
cellulosum that was predicted to be approximately 5 MB.
Most myxobacterial genomes are >9 MB [59] and the two
most closely related genomes to this bin from strains of
Sorangium cellulosum are >13 MB. The relatively large ge-
nome sizes of myxobacteria are consistent with their social
activities and their ability to adapt to multiple environments
[47]. The only myxobacterial genome of comparable size is
Anaeromyxobacter dehalogens, which has a mosaic genome
that combines specific genes of the myxobacteria with a
versatile anaerobic metabolism typical of other Deltaproteo-
bacteria [48]. Since Sorangium sp. does not possess genes
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required to live in an anaerobic environment, the reduction
in genome size compared to other myxobacteria may arise
from a different mechanism compared to A. dehalogens.
The significantly reduced genome and the gene content of
the recovered genome of the novel Sorangium sp. is con-
sistent with a lifestyle that does not require the complex
adaptations to respond to multiple environmental stimuli
and may lack the social organization typically observed in
myxobacteria. The observed dominance of the Sorangium
sp. in one of the cellulolytic consortia and the expansion
of genes for biomass deconstruction relative to sequenced
Sorangium cellulosum strains suggests that this unculti-
vated population is specifically adapted to deconstruct
plant biomass in natural environments than Sorangium
cellulosum. Detailed comparative studies between the
recovered genome of this unusual Sorangium sp. and
other myxobacteria, as well as isolation of representatives
of this uncultivated family, may expand our understanding
of the evolution and the emergence of complex adaptive
traits characteristic of the myxobacteria.
Currently, MaxBin is not able to bin viruses or plas-

mids, which lack the prokaryote marker genes to initiate
the expectation-maximization algorithm. To alleviate
this deficiency, we will refine MaxBin by adding genomic
features that are distinct from these marker genes to bin
viral genomes and plasmid sequences from metagenomic
datasets in our future works. Also, the performance of
MaxBin is greatly influenced by the estimation of the
number of bins from the marker genes and the tetranu-
cleotide frequency distance distributions. Improving the
estimation of marker genes and identifying a more suit-
able distance distribution function will improve the al-
gorithm and make it a generally applied tool for the
recovery of individual genomes from metagenomic
datasets.
Conclusions
We have developed an automated binning algorithm
that classifies assembled sequences in metagenomic
datasets into recovered individual genomes. The algo-
rithm was tested on several simulated and real metagen-
omes and shown to be highly accurate, comparing
favorably to existing methods for metagenomic binning.
Application to enriched cellulolytic consortia identified a
number of uncultivated cellulolytic bacteria, including a
myxobacterium that possessed a remarkably reduced
genome and expanded set of genes for biomass decon-
struction compared to its closest sequenced relatives.
This work demonstrates that the processes required for
recovering genomes from metagenomic datasets can
be readily automated, an important advance in under-
standing the metabolic potential of microbes in natural
environments.
Availability of supporting data
The MaxBin program is available at https://sourceforge.
net/projects/maxbin/. Metagenomic data for the enriched
cellulolytic compost consortia are available at JGI IMG/M
website (https://img.jgi.doe.gov/cgi-bin/m/main.cgi) under
JGI taxon id 3300000869 (37A) and 3300001258 (37B).
The MetaSim setting files, assembled scaffolds, and cover-
age files for replicating all simulation results, the binning
results of HMP datasets that were mentioned in the text,
and the binning results of the enriched cellulolytic compost
metagenomes can be downloaded from the MaxBin down-
load page (http://downloads.jbei.org/data/MaxBin.html).
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Additional file 1: MaxBin Supplementary Materials.
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