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Abstract 
The high prevalence and mortality of lung cancer, to-
gether with a poor 5-year survival of only approximately 
15%, emphasize the need for prognostic and predictive 
factors to improve patient treatment. C4.4A, a member 
of the Ly6/uPAR family of membrane proteins, qualifies 
as such a potential informative biomarker in non-small 
cell lung cancer. Under normal physiological conditions, 
it is primarily expressed in suprabasal layers of strati-
fied squamous epithelia. Consequently, it is absent from 
healthy bronchial and alveolar tissue, but nevertheless 
appears at early stages in the progression to invasive 

carcinomas of the lung, i.e. , in bronchial hyperplasia/
metaplasia and atypical adenomatous hyperplasia. In 
the stages leading to pulmonary squamous cell carci-
noma, expression is sustained in dysplasia, carcinoma 
in situ  and invasive carcinomas, and this pertains to the 
normal presence of C4.4A in squamous epithelium. In 
pulmonary adenocarcinomas, a fraction of cases is posi-
tive for C4.4A, which is surprising, given the origin of 
these carcinomas from mucin-producing and not squa-
mous epithelium. Interestingly, this correlates with a 
highly compromised patient survival and a predominant 
solid tumor growth pattern. Circumstantial evidence 
suggests an inverse relationship between C4.4A and the 
tumor suppressor LKB1. This might provide a link to the 
prognostic impact of C4.4A in patients with adenocarci-
nomas of the lung and could potentially be exploited for 
predicting the efficacy of treatment targeting compo-
nents of the LKB1 pathway.
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Core tip: C4.4A is a new biomarker with potential prog-
nostic value in pulmonary adenocarcinoma. High levels 
of protein expression correlate with poor patient survival 
and a histological growth pattern of the solid type. Recent 
data suggest that C4.4A is negatively regulated by the 
tumor suppressor liver kinase B1 (LKB1), which is inacti-
vated in a fraction of adenocarcinomas of the lung. Such 
an inverse association between C4.4A and LKB1 could 
possibly render C4.4A a candidate predictive biomarker 
for therapeutic intervention targeting components of the 
LKB1 pathway, such as mammalian target of rapamycin.
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INTRODUCTION
Lung cancer is the most prevalent and most mortal form 
of  cancer, with an estimated 1.6 million new cases and 
1.375 million deaths every year[1]. Survival is highly de-
pendent on stage at presentation, decreasing drastically 
from localized (52%) to regional (25%) and distant dis-
seminated disease (4%), yielding an overall relative 5-year 
survival of  only approximately 15%[2]. Despite these 
discouraging statistics, there have, with the advent of  
personalized medicine, been some improvements in the 
treatment of  lung cancer[3]. This pertains predominantly 
to an improved knowledge on tumor biology, which 
has uncovered a molecular rationale for different treat-
ment efficacies. In this context, molecular and histologic 
parameters for prediction of  drug responsiveness, in 
particular the identification of  subsets of  lung cancer 
harboring distinct targetable oncogenic driver mutations, 
have guided choice of  therapy. 

A striking example can be seen with small tyrosine ki-
nase inhibitors (TKIs), for which activating mutations in 
exons 19 and 21 of  the epidermal growth factor receptor 
(EGFR) gene are predictive of  therapeutic efficacy[4-7]. Con-
sequently, activating EGFR mutations are now a validated 
biomarker for decisions regarding first-line treatment of  
advanced non-small cell lung cancer (NSCLC)[4,8]. Response 
to the anaplastic lymphoma kinase (ALK)-TKI crizotinib 
similarly depends on the presence of  the echinoderm micro-
tubule-associated protein-like 4 (EML4)-ALK fusion gene in a 
subset of  pulmonary adenocarcinoma (AC)[9,10]. In addition 
to EGFR and ALK tests, the potential of  other biomarkers 
is being validated in clinical trials, e.g., ROS1, human epi-
dermal growth factor receptor 2/neu (HER2), BRAF and 
mesenchymal-epidermal transition proto-oncogene (MET) 
primarily in AC, and fibroblast growth factor receptor 1 
(FGFR1) and discoidin domain receptor 2 (DDR2) in squa-
mous cell carcinoma (SCC)[11]. Regarding NSCLC histology, 
there have been tolerance issues coupled to the inhibitor of  
angiogenesis, bevacizumab, which can cause life-threatening 
hemorrhage and hemoptysis in patients with SCC, and is 
thus contra-indicated in this subgroup[12,13]. Another drug, 
the antifolate pemetrexed, inhibits three enzymes of  the 
folate metabolism, thymidylate synthase (TS), dihydrofolate 
reductase, and glycinamide ribonucleotide formyltrans-
ferase, the consequence of  which is a reduction in de novo 
purine and pyrimidine synthesis, thus interfering with DNA 
and RNA synthesis. Overexpression of  TS might be as-
sociated with a reduced efficacy of  pemetrexed, and this 
can explain why it is more efficient in advanced AC than 
in SCC[14,15]. The fact that tumor histology and molecular 
features can influence the choice of  treatment implies that 
different NSCLC histologic subtypes should be considered 

as distinct disease entities, which in turn comprise distinct 
molecular subsets that should be managed individually for 
successful outcome.

Earlier detection of  lung cancer, as well as assess-
ment of  the malignant potential of  a resected tumor for 
decisions regarding adjuvant treatment, represent other 
promising avenues for reducing the high mortality of  the 
disease. Continuously increasing our knowledge on the 
mechanisms involved in pathogenesis is crucial to further 
improve the rational targeting strategy that has been ad-
opted for lung cancer treatment. New biomarkers of  early 
disease, prognosis and prediction of  response to targeted 
therapy are relevant in this context, to ameliorate patient 
survival[16-18]. The protein C4.4A is a potential new bio-
marker in NSCLC.

C4.4A – A UROKINASE RECEPTOR 
PROTEIN HOMOLOG
C4.4A is a membrane protein anchored to the cell surface 
via a glycosylphosphatidylinositol (GPI) moiety, showing 
predicted structural homology to the other multidomain 
members of  the Ly6/urokinase-type plasminogen activa-
tor receptor (uPAR) (LU) protein family, i.e., the uPAR, 
Haldisin, TEX101, CD177 and LYPD4[19-23]. The genes 
encoding these proteins are clustered in a small region of  
chromosome 19q13 (Figure 1A). After posttranslational 
processing, C4.4A consists of  278 amino acids distrib-
uted in 2 N-terminal LU domains and a serine, threonine, 
proline-rich region C-terminally (Figure 1B).

C4.4A IN NORMAL DIFFERENTIATION 
PROCESSES
Under normal physiological conditions, C4.4A is pre-
dominantly expressed in suprabasal layers of  stratified 
squamous epithelia such as those of  the skin, hair fol-
licles, esophagus, oral and nasal cavity, vagina and cornea 
(Figure 1C). It is furthermore found in the cuboidal epi-
thelium of  human term placenta and sweat ducts, in the 
pigmented epithelium of  the retina and in Hassall’s cor-
puscle in the thymus[19,24]. Remaining epithelia, including 
the alveolar and bronchial compartments of  the healthy 
lung (Figures 2A and 3A; Table 1), are devoid of  C4.4A, 
suggesting a tight regulation of  its expression, possibly by 
the CCAAT/enhancer binding protein β (C/EBPβ) or 
estrogen[25,26]. This is clearly visualized at transition zones 
such as those present in the rodent stomach and at the 
ano-rectal junction, where the distinct C4.4A expression 
at the squamous side is abruptly terminated at the colum-
nar side (Figure 1D). The stringent membrane-associated 
expression pattern of  C4.4A would be in line with a pu-
tative role of  this protein in cell adhesion[19,27,28], but its 
biological function is still to be delineated.

C4.4A IN PATHOLOGICAL CONDITIONS
C4.4A was originally identified by two independent differ-
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ential antigen screens as a candidate metastasis-associated 
protein[29,30], the first in a rat pancreatic adenocarcinoma cell 
line, and the second in an in vitro urothelial wound response 
model. Rösel et al[29] furthermore reported on the capability 
of  C4.4A-positive but not C4.4A-negative tumor cells to 
penetrate a matrigel, in the absence but not in the presence 
of  a monoclonal C4.4A antibody. C4.4A has indeed been 
implicated in a range of  human cancers, including lung[31-35], 
esophageal[27], bladder[30] and colorectal[36], as evaluated by 
immunohistochemistry, in situ hybridization, PCR, North-

ern blotting or microarray screening. In colorectal cancer[36], 
esophageal squamous cell carcinomas[27] and bladder transi-
tional cell carcinomas (Jacobsen et al[33], manuscript in prepa-
ration), C4.4A is upregulated at the tumor invasive front as 
compared to the tumor core, suggesting a possible associa-
tion of  C4.4A to the invasive process. Whether this can be 
further translated to a direct involvement in the ability of  a 
tumor cell to metastasize as initially proposed has not been 
verified experimentally in vivo, but the expression of  C4.4A 
seen in primary tumors is at least in the case of  the esopha-
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Figure 1  Structure and expression of the protein C4.4A. A: Schematic outline of the gene cluster encompassing multidomain members of the LU protein family, 
highlighting the gene encoding C4.4A (LYPD3) and its exon composition. Modified from Kriegbaum et al[20,24], 2011 and Jacobsen et al[20,24]; B: Cartoon of the structure 
of C4.4A. The insert represents the three-finger fold characteristic of LU domains (made in PyMOL, DeLano Scientific, using PDB coordinates 1NEA). Modified from 
Hansen et al[19]; C and D: C4.4A expression in suprabasal layers of squamous epithelium, exemplified by tissue-engineered human epidermis (C) and the transition 
between the glandular and non-glandular portions of the rodent stomach (D). C4.4A is detected by a polyclonal C4.4A antibody and visualized by NovaRED chromo-
gen. D is reproduced with permission from BestPractice Onkologi, Denmark[89].

Table 1  Expression and prognostic significance of C4.4A in pulmonary squamous cell carcinoma and adenocarcinoma

C4.4A reactivity Multivariate survival analysis4 Ref.

Premalignant lesions 01 + ++ +++ [34]
SCC Normal 100%

Not available

Hyperplasia 59% 41%
Metaplasia 29% 71%
Dysplasia 20% 80%

AC Normal 100%
AAH 17% 37% 37% 10%

Invasive cancer Median2 Range Lower quartile Upper quartile HR (95%CI) P-value [33]
SCC 8 0-16 5 10 0.82
AC 13 0-16 0 6 1.65 (1.24-2.19) 0.0005

10: Negative; +: Weakly/focally positive; ++: Positive; +++: Strongly positive; 2Refers to product of C4.4A intensity (0-4, where 0 = negative, 1 = very weak, 2 
= weak, 3 = moderate and 4 = strong staining) and frequency (0-4, where 0 = 0%, 1 = 0%-25%, 2 = 26%-50%, 3 = 51%-75% and 4 ≥ 76% positive tumor cells); 
3Median value for non-solid and solid AC is 0 and 4, respectively; 4Performed by the Cox proportional hazards model. SCC: Squamous cell carcinoma; AC: 
Adenocarcinoma.
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ma (LCC), of  which AC has become the most frequent 
type[37-39].

Pulmonary SCCs most often originate in the bron-
chial compartment. There is a high degree of  consensus 
concerning the stages that transform normal, pseu-
dostratified columnar bronchial epithelium into invasive 
SCC[40]. After an excessive proliferation phase resulting in 
hyperplasia of  basal cells, metaplasia entails the transdif-
ferentiation of  bronchial cells resulting in the conversion 
of  columnar epithelium to squamous epithelium. Dyspla-
sia represents the first true premalignant stage and is fol-
lowed by carcinoma in situ (CIS), which again can develop 
into malignant carcinoma. Morphologically, epithelial 
thickness, cell size and mitotic figures increase through-
out this progression, which is also characterized by pleo-
morphism and loss of  epithelial polarity[37]. Molecularly, 

gus and the lung recapitulated in corresponding lymph node 
metastases[27,33].

One of  the most well-studied diseases regarding C4.4A 
expression is NSCLC[31,33,34]. The role of C4.4A in the progres-
sion to pulmonary SCC and AC is described in the following.

C4.4A IN PULMONARY SQUAMOUS 
CELL CARCINOMA
Progression to malignancy through well-described 
premalignant lesions
Lung cancer is divided into two main histological types, 
where small cell lung cancer comprises around 15% of  
cases and NSCLC the remaining 85% of  cases. The latter 
is further subdivided into AC, SCC and large cell carcino-
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Figure 2 C4.4A in pulmonary squamous cell carcinoma. Panels A-E: C4.4A expression as detected by immunohistochemistry with a polyclonal antibody in nor-
mal bronchial epithelium (A), hyperplasia (B), metaplasia (C), dysplasia (D) and invasive squamous cell carcinoma (SCC) (E). A, B, D and C, E are reproduced with 
permission from Jacobsen et al[34], 2012 and BestPractice Onkologi, Denmark[89], respectively. Panel F: Kaplan-Meier curves for the survival of SCC patients, which 
is independent of C4.4A scores, here stratified by tertiles (red: Lowest level of C4.4A; blue: Intermediate level of C4.4A; green: Highest level of C4.4A). Modified from 
Jacobsen et al[33], 2013.
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activation of  oncogenes and inactivation of  tumor sup-
pressor genes occur, along with allelic losses[41-43].

Morphologically normal bronchial epithelium is 
devoid of  C4.4A (Figure 2A), but expression appears 

already at the stage of  hyperplasia (Figure 2B) and be-
comes prominent upon metaplastic (Figure 2C) and 
dysplastic conversion (Figure 2D, Table 1)[34]. The protein 
is consistently present in invasive SCC (Figure 2E), with 
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Figure 3  C4.4A in pulmonary adenocarcinoma. Panels A-E: C4.4A expression as detected by immunohistochemistry with a polyclonal antibody in normal alveoli (A; 
reproduced with permission from Jacobsen et al[34], 2012), atypical adenomatous hyperplasia (B), invasive AC with predominant mucinous lepidic (C), non-mucinous 
lepidic (D), acinar (E), papillary (F) and solid (G) pattern. Panel H: Kaplan-Meier estimates for the survival of AC patients, which is correlated with C4.4A scores, here 
stratified by tertiles (red: Lowest level of C4.4A; blue: Intermediate level of C4.4A; green: Highest level of C4.4A). Modified from Jacobsen et al[33], 2013. 

Jacobsen B et al . C4.4A in non-small cell lung cancer



high levels detected in approx. 75% of  patients in two 
different cohorts[31,33]. 

C4.4A expression mirroring normal squamous 
differentiation
Given that hyperplasia and metaplasia are not true pre-
malignant lesions, but rather regarded as reactive changes 
primarily caused by chronic irritation such as cigarette 
smoking, they do not by themselves indicate an increased 
risk of  developing into a manifest carcinoma, as contrast-
ed to severe dysplasia and CIS[43-45]. A consequence of  the 
very early appearance of  C4.4A in basal cell hyperplasia/
early metaplasia is that it cannot reflect the subsequent 
malignant transformation per se and therefore cannot be 
used as an early biomarker for pulmonary SCC. It thus 
reports on the differentiation status of  the cells rather 
than on their malignant potential, and this provides an 
explanation for the presence of  C4.4A in nearly all cases 
of  invasive SCC[31,33,34]. With consistent high levels of  
C4.4A in both premalignant and malignant lesions, C4.4A 
cannot differentiate between individual cases, and this is 
furthered into a lack of  prognostic information in SCC 
patients (Figure 2F)[31,33].

The detection of  C4.4A in squamous metaplasia and 
dysplasia aligns excellently with the normal expression of  
C4.4A, which is closely linked to squamous differentia-
tion of  epithelium, as exemplified by murine embryo-
genesis, where C4.4A and the differentiation-specific 
cytokeratin 10 appear simultaneously in the nasal cavity 
(day E13.5) and in the interfollicular epidermis of  the 
vibrissae (day E14.5)[24]. Due to the stringent regulation 
of  C4.4A in squamous epithelia, as convincingly shown 
at squamo-columnar junctions (Figure 1D), the appear-
ance of  C4.4A in basal cell hyperplasia in the bronchial 
compartment is on the other hand an unexpected find-
ing. This could suggest that C4.4A reports on the induc-
tion of  the metaplastic conversion process, where pseu-
dostrafied columnar epithelium is replaced by stratified 
squamous epithelium, even before the emerging squa-
mous differentiation is evident morphologically. It has 
indeed been demonstrated that genetic aberrations such 
as mutations, deletions and overexpression of  p53, and 
loss of  heterozygosity (LOH) at chromosomes 3p and 
9p (p16INK4a locus) occur in histologically normal respira-
tory mucosa of  smokers and lung cancer patients[40,42,45-47]. 
Respiratory basal cells have been reported to be pro-
genitors of  squamous metaplastic cells and presumably 
preneoplastic epithelium[37,40,42,48,49]. Delineating the func-
tion of  C4.4A might give an indication of  its role in the 
transdifferentiation process occurring in the bronchial 
mucosa, setting the stage for ensuing neoplastic transfor-
mation. This would increase our knowledge on the very 
early pathogenesis of  pulmonary SCC. Considering the 
complete lack of  C4.4A in normal bronchial epithelium, 
it might be used in conjunction with other histopatho-
logical, molecular and genetic markers in risk assessment 
for identifying malignant clones of  the bronchial mucosa 
before these are manifest morphologically[40], which could 

suggest a need for a closer patient follow-up.

C4.4A IN PULMONARY 
ADENOCARCINOMA
From atypical adenomatous hyperplasia to invasive 
adenocarcinomas
Most ACs of  the lung originate peripherally, which in 
contrast to the central airways is much more challenging 
to image, rendering a delineation of  the various stages of  
transformation from normal alveolar epithelium to in-
vasive AC corresponding to the development to invasive 
SCC difficult[37,40,46]. On the basis of  clinicopathologic 
and molecular studies, atypical adenomatous hyperplasia 
(AAH) has nevertheless been identified as a precursor 
lesion, which subsequently transforms into adenocarci-
noma in situ (AIS), formerly known as bronchioloalveolar 
carcinoma (BAC)[38,40,42,50-56]. AAH and AIS thus represent 
the counterparts of  squamous dysplasia and CIS, respec-
tively. Evidence for the stepwise development from AAH 
to AC comes from longitudinal case studies by low-dose 
computed tomography imaging[57,58], the similarity of  mo-
lecular aberrations[40,59-62] and a common expression pat-
tern of  markers of  the suggested progenitor cells, Clara 
cells and type Ⅱ pneumocytes, in AAH and AC[40,42,63] 
as well as mouse models of  pulmonary AC, targeting 
KRAS/p53[64] or EGFR[65,66]. 

With a view to the preferential expression of  C4.4A 
in squamous epithelium, as described above, one would 
not expect C4.4A expression in the alveolar compart-
ment. This is indeed the case for normal alveoli (Figure 
3A), but unexpectedly, the protein is present in approx. 
25% of  investigated cases of  AC, albeit at much lower 
expression levels than in SCC, when scoring C4.4A semi-
quantitatively as a product of  intensity (0-4) and frequen-
cy (0-4) of  immunohistochemical staining (median of  1 
vs 8 on a scale up to 16) (Figure 3C-G, Table 1)[31,33]. Inter-
estingly, a small fraction of  atypical type Ⅱ pneumocytes 
in AAH lesions is also positive for C4.4A (Figure 3B)[34]. 
This might be coupled to the cuboidal nature of  these 
cells, as C4.4A also is found in other cuboidal epithelia 
such as the placenta and sweat ducts[19] ( and Kriegbaum, 
unpublished).

Prognostic impact of C4.4A in adenocarcinomas
As compared to known prognostic factors, such as stage, 
performance status, completeness of  resection, tumor 
differentiation grade, nodal status, age and gender, the 
translational value of  proposed lung tumor markers and 
gene expression signatures has been disappointing[16,67]. 
It is therefore of  interest to find new biomarkers or a 
combination thereof  that could allow a more accurate 
survival prediction and aid in the decision making regard-
ing adjuvant therapy. The prognostic impact of  C4.4A 
in NSCLC has been investigated by a specific and repro-
ducible semi-quantitative immunohistochemical protocol 
with substantial inter-observer agreement in two indepen-
dent patient cohorts (40 ACs/56 SCCs from Denmark[31] 
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and 88 ACs/104 SCCs from Germany[33]). These studies 
showed that increasingly higher levels of  C4.4A in ACs 
correlated with a decreasing patient survival, as evalu-
ated by Kaplan-Meier analysis, where C4.4A scores were 
grouped according to tertiles (Figure 3H). Univariate and 
multivariate analysis of  overall survival including C4.4A 
scores and the clinical covariates pathological stage, 
performance status, gender, age and treatment, likewise 
revealed C4.4A to be a significant prognostic factor (Table 
1), together with pathological stage. The validation of  the 
observations obtained in the first study in a second, larg-
er patient population emphasizes the robust correlation 
between C4.4A levels and prognosis of  AC patients. This 
has been further substantiated by another study based 
on quantitative real-time PCR, where the gene encoding 
C4.4A, LYPD3, was selected as one of  91 signature genes 
for survival prediction of  pulmonary AC patients[68]. It 
could be interesting to use patient material from previ-
ously conducted large clinical trials to retrospectively test 
for superiority of  C4.4A to current prognostic factors, 
with a view to future validation in a prospective, random-
ized trial.

Considering the sequential development from AAH 
to AC, it is tempting to speculate whether a C4.4A-posi-
tive AAH eventually could develop into a C4.4A-positive 
AC with an ensuing compromised patient survival. If  this 
were the case, this would entail that there are subpopula-
tions of  C4.4A-positive AAH cells with higher malignant 
potential than the C4.4A-negative counterparts, with the 
possibility to be used as an early marker of  a supposedly 
more aggressive subtype of  AC.  In addition, considering 
that only a minority of  AAHs progresses to AC, it would 
be interesting to assess whether C4.4A-positive AAH 
cases are more prone to this malignant progression than 
C4.4A-negative AAH. Addressing these questions would, 
however, require prospective, longitudinal studies and 
advanced imaging techniques not yet available for proper 
visualization of  both AAH lesions and C4.4A, or alterna-
tively following the various stages of  malignant progres-
sion in a suitable mouse lung cancer model[69]. 

Correlation of C4.4A expression with solid growth type
Pulmonary ACs encompass a histologically, molecularly 
and genetically very heterogeneous group of  tumors. 
The new multidisciplinary classification suggests that AC 
should be described according to histological subtype, 
which can be mucinous or non-mucinous lepidic, acinar, 
papillary, micropapillary or solid[38]. Gene expression pro-
filing clusters the different AC types according to mor-
phological and molecular characteristics, which empha-
sizes that ACs cannot be classified in one homogeneous 
group[70,71]. Interestingly, patient survival also differs sig-
nificantly with subtype, with 5-year relative survival rates 
of  86%-90% and 39%-70% when the lepidic and solid 
components, respectively, are predominant[72,73].

Detailed analysis of  C4.4A in the fraction of  positive 
ACs, with focus on histological subtypes, has revealed 
that C4.4A expression is tightly correlated with the solid 

growth pattern[33]. Whereas the protein is almost absent in 
cases with a predominant mucinous/non-mucinous lep-
idic, acinar or papillary pattern (Figure 3C-F), the median 
value in cases with solid growth is 4 on a scale ranging 
from 0 to 16. This places the majority of  these patients in 
the upper tertile of  C4.4A scores in the AC group (> 3.5), 
with an ensuing poor prognosis as illustrated by Kaplan-
Meier survival curves (Figure 3H). Given that a solid 
component in itself  predicts poor patient survival[72,73], 
it could be assumed that this clear interaction between 
C4.4A and solid growth would explain the prognostic 
impact of  C4.4A. This is, however, refuted by multivari-
ate overall survival analysis using the Cox proportional 
hazards model including growth pattern and the C4.4A/
solid interaction in addition to classical clinical factors, 
where C4.4A and pathological stage are the only signifi-
cant independent parameters. Despite the interaction 
between C4.4A and solid growth pattern, C4.4A is thus 
a stronger prognostic factor than solid growth[33]. Given 
that AC patients with a predominant solid growth pattern 
seem to benefit from adjuvant radiotherapy, this might be 
exploited in clinical decision-making regarding this form 
of  treatment[74]. 

By comparing gene expression profiles of  indepen-
dent lung cancer patient populations obtained by DNA 
microarray analysis, Hayes et al[75] identified three AC 
subtypes that were termed bronchioid, squamoid and 
magnoid, with reference to their resemblance to bron-
chioalveolar carcinoma, SCC and LCC, respectively. AC 
tumors in a differentiation state close to the SCC pheno-
type thus seem to exist. This is further substantiated by 
a study of  ACs of  mainly the solid pattern with signet-
ring morphology, which co-express thyroid transcription 
factor 1 (TTF-1) and p63, being markers of  AC and SCC, 
respectively[76]. In the WHO classification from 2004, 
carcinomas with histological and immunohistochemical 
evidence of  double differentiation are termed adenosqua-
mous carcinomas[37]. The squamoid ACs are characterized 
by moderate or poor differentiation, solid growth, inva-
sion, and a poor patient survival[75,77]. The fact that C4.4A 
is primarily expressed in AC of  the solid type, coupled 
to its close association to squamous differentiation and 
prognostic impact in AC would suggest that the C4.4A-
positive ACs according to this classification are of  the 
squamoid type.

Regulation of C4.4A by the tumor suppressor LKB1
The normal stringent control of  C4.4A expression as 
seen in squamous epithelia is apparently disrupted in 
pulmonary AC. Whether the unexpected expression of  
C4.4A in pulmonary AC has functional implications in 
the pathogenesis of  AC remains unknown. It might also 
be reporting on an erroneous regulation of  a signaling 
pathway that when activated in the lung results in highly 
malignant tumors. Circumstantial evidence suggests the 
involvement of  the tumor suppressor liver kinase B1 
(LKB1). Firstly, C4.4A is negatively regulated by LKB1 
in esophageal cancer cell lines, where LYPD3 was up-
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regulated upon loss of  LKB1. The migratory and inva-
sive potential of  these cells was reduced when LYPD3 
subsequently was knocked down[78]. Secondly, LKB1 
reconstitution in the LKB1-deficient AC cell line H2126 
downregulates C4.4A at the mRNA level[79]. Thirdly, 
17%-54% of  pulmonary AC patients present with LKB1 
inactivating mutations, of  which the majority is found in 
poorly differentiated cases[80-84]. Fourthly, LKB1 is lost 
in a fraction of  AAH lesions[85]. If  there is an inverse 
relationship between LKB1 and C4.4A, C4.4A-positivity 
with its ensuing worsened patient prognosis in pulmonary 
AC might be explained by LKB1 inactivation in the given 
cases. This would imply that C4.4A potentially could be 
used as a biomarker for the efficacy of  treatment target-
ing the LKB1 pathway, including mammalian target of  
rapamycin (mTOR) signaling, which is activated upon 
LKB1 inactivation[86]. The potential of  mTOR inhibitors 
as therapeutic agents in NSCLC is currently investigated 
in a range of  clinical trials[87,88].

One of  the most recent genetic murine lung cancer 
models exploits a combination of  LKB1 inactivation and 
KRAS oncogene activation to obtain metastatic tumors 
of  a mixed phenotype, including AC, SCC and LCC[79]. 
Crossing a C4.4A-deficient mouse with the KRAS/LKB1 
model would allow a simultaneous investigation of  the 
consequences of  the absence or presence of  C4.4A in 
the progression of  both AC and SCC, revealing if  C4.4A 
is functionally involved in or is a reporter of  a molecular 
mechanism that could be targeted therapeutically. 

CONCLUSION
C4.4A induction is an early event in the progression of  
two very distinct histological subtypes of  lung cancer, i.e., 
AC and SCC, where expression is seen in the presumed 
precursor lesions AAH and hyperplasia/metaplasia, re-
spectively. Nevertheless, the differential prognostic im-
pact suggests that the protein plays distinct roles in the 
pathogenesis of  these two entities, and this underscores 
the high heterogeneity of  lung cancer and the concept of  
AC and SCC as two different diseases. 

In the progression to SCC, C4.4A is inherently linked 
to the phenotype that arises following the transdifferen-
tiation process that converts pseudostratified columnar 
respiratory epithelium to squamous epithelium, com-
pletely in line with its normal expression. The appear-
ance already in basal cell hyperplasia is interesting from a 
biological point of  view, indicating that C4.4A is such an 
early marker of  squamous differentiation that it is present 
even before the phenotype is morphologically manifest. 
However, given that C4.4A consistently is expressed in 
reactive lesions even preceding true premalignant lesions, 
is sustained in the subsequent stages of  malignant pro-
gression and is invariably present in invasive carcinomas, 
it cannot possibly provide any information on the sur-
vival of  SCC patients.

In sharp contrast to this, C4.4A is a strong, indepen-
dent prognostic indicator in AC patients, and it therefore 

has clinical relevance in this lung cancer subtype, especial-
ly in cases with a solid growth pattern, for which C4.4A 
is a surrogate marker. As such, whereas C4.4A follows a 
normal differentiation pattern in SCC, its expression in 
AC reflects an abnormal differentiation program. Clarify-
ing whether this has implications for AC pathogenesis or 
is reporting on a dysregulated signaling pathway awaits 
the delineation of  the biological function of  C4.4A. Ei-
ther way, it is tempting to speculate that there is a link be-
tween C4.4A-positive AAH lesions and ACs with a solid 
pattern, which would make C4.4A a very early biomarker 
for a particularly malignant form of  AC. It is, however, 
at present unclear if  AAH actually develops into overt 
solid AC[38,46,53]. It is furthermore of  interest to investigate 
the putative inverse correlation between LKB1 inactiva-
tion and high C4.4A expression and the hypothetical 
candidacy of  C4.4A as a predictive biomarker for therapy 
aimed at components of  the LKB1 pathway. This is in 
line with the goal of  supplementing traditional NSCLC 
management according to the TNM classification with 
personalized medicine[18], which depends on predictive 
biomarkers reporting on biological and molecular tumor 
characteristics that can identify the patient populations 
benefitting from a given targeted treatment.
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