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Summary

Partial area under the ROC curve (PAUC) has been proposed for gene selection in Pepe et al.

(2003) and thereafter applied in real data analysis. It was noticed from empirical studies that this

measure has several key weaknesses, such as an inability to reflect nonuniform weighting of

different decision thresholds, resulting in large numbers of ties. We propose the weighted area

under the ROC curve (WAUC) in this paper to address the problems associated with PAUC. Our

proposed measure enjoys a greater flexibility to describe the discrimination accuracy of genes.

Nonparametric and parametric estimation methods are introduced, including PAUC as a special

case, along with theoretical properties of the estimators. We also provide a simple variance

formula, yielding a novel variance estimator for nonparametric estimation of PAUC, which has

proven challenging in previous work. The proposed methods permit sensitivity analyses, whereby

the impact of differing weight functions on gene rankings may be assessed and results may be

synthesized across weights. Simulations and re-analysis of two well-known microarray datasets

illustrate the practical utility of WAUC.
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1. Introduction

Receiver Operating Characteristic (ROC) curve is an important statistical tool for evaluating

the accuracy of continuous diagnostic tests, such as biomarkers for cancer, serum

cholesterol, temperature and blood pressure (Walter (2005) and Pepe (2003)). The area

under the ROC curve (AUC) is a popular summary measure of accuracy for the test.

However, the AUC may be too global a summary measure, and may not reflect the region of

the curve which is of the greatest interest. In some cases, it may be of interest to assess tests

across different ranges, corresponding to different hypothetical operating scenarios for the

test. For a particular clinical application, a decision threshold may be chosen so that the

diagnostic test will have either satisfactory specificity (eg, > 90%) or sensitivity. In these

circumstances, the average accuracy of the test over the specified range of specificities is a

more meaningful summary measure than the area under the entire ROC curve. For such
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settings, partial area under the ROC curve (PAUC) has been studied as an appropriate

summary measure of the diagnostic test’s accuracy. A related measure is PAUC index (Zhou

et al. (2002)) which equals PAUC divided by the length of the specified interval of

specificity. Normalized in this way, PAUC index has a probabilistic interpretation similar to

AUC.

AUC and PAUC have recently been applied to the biological field for selecting differentially

expressed genes from microarray experiments. In fact, using the two-sample Mann-

Whitney-Wilcoxon rank sum statistic (which is equivalent to AUC) to compare the

diagnostic performance of different genes has been widely accepted in clinical practice (eg.,

Joober et al. (1999) and de Alava et al. (2000), among others). Pepe et al. (2003) proposed to

use PAUC to rank genes when the comparison of discrimination accuracy must be

conditional on having acceptable specificity levels. For a recent application of selecting

genes based on PAUC, see Chatterjee et al. (2006).

There are three weaknesses linked with PAUC (or PAUC index) which drive us to develop

more general measures in this paper. Firstly, considering a range of high specificity values

such as (0.9, 1) may yield very low sensitivities over the range of interest and hence very

low PAUC for a large percentage of genes. In such scenarios, ranking genes based on PAUC

will be noninformative. Thus, ordering genes based on PAUC may not adequately reflect the

importance of these genes for differentiating two classes. Secondly, the PAUC only focuses

on a truncated region of the ROC curve and thus completely ignores the performance of the

gene outside the specified interval. It might be more natural to still keep some ROC

information from the entire [0,1] interval, but with relatively less weights. Thirdly, as

witnessed in our real data analysis, it could happen that many genes achieve the same PAUC

value due to the discreteness of nonparametric estimates. We find that in the well-known

lymphoma data (Ship et al. (2002)) more than 400 genes achieve the perfect PAUC value

(PAUC index equals one) over the specificity range (0.9, 1). It is thus difficult to assess the

relative importance of genes under such a measure.

Both AUC and PAUC (or more appropriately, PAUC index) can be regarded as an

integration of the ROC curve with uniform weights over (0, 1) and its subinterval. In this

paper we consider flexible weight functions for AUC. The specification of such general

weight functions can be helpful if one conceptualizes the decision threshold in a particular

application as being random across patients, with the weight in the weighted AUC (WAUC)

corresponding to the probability distribution of the threshold. With a proper choice of

weight function, WAUC overcomes the three potential problems of PAUC and still achieves

the desired interpretation as the weighted average of sensitivity in the relevant range of

specificity. Such an approach allows us to place more emphasis over the important range of

specificity values by using a density function peaked over this range as the weight function.

Provided the density is positive over (0, 1), the resulting WAUC still keeps, to some degree,

information of the overall ROC curve.

From a practical perspective, this generalization is nontrivial, as it permits one to assess the

sensitivity of gene rankings to the choice of weight function. Here, different weights

correspond to different beliefs regarding the relative importance of different portions of the
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ROC curve. For some choice of weights, the rankings may be noninformative, while for

others, distinctive patterns may emerge, as discussed above. Synthesizing results from

different weights gives a more complete picture of the clinical utility of the diagnostic

information in the gene expression levels. This is discussed in Section 2.4.

The idea of weighting the AUC has precedent in Wieand et al. (1989) to streamline the

theoretical properties of nonparametric estimation of AUC and PAUC. However, not much

practical attention has been placed on the development of appropriate statistical procedures

about general weighted AUC measures. Bandos et al. (2005) used a specific weighting

system when estimating AUC to incorporate the clinical importance (utility) when

evaluating the accuracy of a diagnostic test. Their method is a special case of our

development with weight function depending on observed test results. We provide a general

framework on how to conduct a diagnostic accuracy study with WAUC and supply

necessary asymptotic results as a basis for statistical inference.

This paper has the following contributions. (i) A framework for ROC analysis incorporating

the specificity distribution is constructed. This allows more flexible evaluation of diagnostic

accuracy when the practical emphasis varies across the range of specificity. (ii) Variance

formula for the nonparametric WAUC estimator is explicitly derived (see (10) in Section

2.2). Since PAUC is one special case of WAUC, the formula immediately facilitates the

calculation of standard error for nonparametric PAUC estimator without using bootstrap

resampling or other ad hoc procedures, as in previous work. (iii) A simple analytic form for

WAUC is provided for parametric location-scale model (see (13) in Section 2.3). Such a

result exhibits a reasonable generalization of currently widely-used computation method for

binormal AUC. (iv) The proposed methodology for weighted analysis is illustrated with

simulated and real data sets in Section 3. Specifically, two well-known microarray data sets

have been re-analyzed in Section 3.2. Our numerical results have confirmed the theoretical

and practical advantages in WAUC over AUC and PAUC.

2. Methods

2.1. Definition of Weighted Area Under the ROC Curve

Denote the observed continuous diagnostic test results as

for nD disease-present subjects and nD̄ disease-absent subjects. Assume that {TDi, i = 1, · · ·,

nD} are identically distributed with population survivor function SD(c) = se(c) = P(TDi ≥ c).

Similarly {TD̄j, j = 1, · · ·, nD̄} are such that SD̄(c) = 1 − sp(c) = P (TD̄j ≥ c). The ROC curve,

expressed as a function of specificity (Pepe, 2003), is as follows:

We propose the weighted area under the ROC curve (WAUC) which is defined by
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This measure can be reduced to some familiar measures for special choices of f(sp). When

f(sp) = 1 for sp ∈ [0, 1], WAUC is simply the ordinary AUC. When

, WAUC is the partial AUC index restricted in [a, b].

If we take f to be the probability density function of sp, then the weighting of ROC curve

may be interpreted as the corresponding threshold c following a certain probability

distribution. When we intend to highlight a portion of specificity values with larger weights

in the computation of ROC curve, we essentially adjust probability of the random threshold

accordingly. In fact, sp ~ f(sp) if and only if c ~ f(SD̄(c))sD̄ (c), where sD̄ is the derivative of

SD̄. Therefore the stochastic appearance of sp in this paper can be understood as a

consequence of the consideration of such an underlying random threshold.

In general, WAUC may be interpreted as the weighted average of sensitivity with weights

emphasizing specificity of interest. When f is a probability density function, the WAUC

corresponds to the expected sensitivity under the assumed specificity distribution, with a

WAUC value > .5 indicating that in the long run the test classifies diseased patient more

often right than wrong under f. However, one should realize that the minimum acceptable

WAUC is generally different from .5 if the weight function is not symmetrical around .5. A

useless diagnostic test whose distributions for diseased and non-diseased population are the

same has se = 1 − sp and the WAUC value which is

Such a null value is 1 − (a+ b)/2 for f being uniform on [a, b]. Standard AUC has W0 = 0.5

while PAUC index on the interval [a, 1] has W0 = (1 − a)/2. A test can only be considered

useful if its WAUC exceeds W0.

2.2. Nonparametric inference

The survivor functions for TD and TD̄ can be estimated empirically as

(1)

(2)

Using the above notation, the estimated ROC curve is
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(3)

The WAUC for a weight function f is estimated by

(4)

We now consider the statistical properties of this estimator. It has been shown in Hsieh and

Turnbull (1996) that

(5)

under the following technical conditions:

a. SD(c) and SD̄ (C) have continuous derivatives;

b. the slope of ROC(sp) is bounded on any subinterval (a, b) of (0, 1);

c.
(6)

The distributional conditions (a) and (b) are easily satisfied for most practical test data.

Condition (c) requires that one class is not dominating in the whole sample. It is then

straightforward to show that estimator (4) is strongly consistent to the WAUC if we notice

(7)

and apply the dominated convergence theorem (Durrett (2005)) on the right hand side.

Furthermore, following the results in Hsieh and Turnbull (1996), we have

(8)

where

(9)

The derivation of the variance is contained in Appendix.

In practice, the variance estimator can be computed by replacing ROC(sp) in the above

formula with its estimator. As we see in the following expression, integration of the

empirical ROC curve reduces to finite summations. The estimator is thus
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(10)

where the function  is the integral of the weight function. Since PAUC is a

special case related to WAUC, this general variance formula also provides a feasible

solution for computing the variance of nonparametric estimator of PAUC (Dodd and Pepe

(2003)). To our knowledge this handy analytic formula has never appeared in diagnostic

medicine literature. Most practitioners usually relied on a time-consuming bootstrap

procedure to evaluate the variability of PAUC. We strongly recommend researchers to

implement this simple formula in their simulation studies and data analysis for PAUC.

2.3. Parametric inference

It is often convenient and appealing to postulate a parametric form for SD(c) and SD̄(c) and

conduct ROC analysis based on such parametric distributions. Typically a normal

distribution is considered for both SD(c) and SD̄(c), possibly after some given transformation

of the original test results TD,i and TD̄,j. The resulting parametric ROC curve is termed as a

binormal curve (Zhou et al. (2002)).

In this paper we assume {TD} and {TD̄} both come from a location-scale family {Q(μ,σ) : μ ∈

ℝ, σ > 0}, with different location parameter μ and scale parameter σ. The distribution

function of a member in this family satisfies

for a known distribution function Q(·).

Assume that TD ~ Q(μD,σD) and TD̄ ~ Q(μD̄,σD̄). Under the assumed distributions, the

parametric ROC curve can be represented as

(11)

where

(12)

Under the assumed parametric model (11), the weighted AUC is derived to be
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(13)

where the expectation is taken with respect to Z which follows the Q distribution.

A Monte Carlo approach can be implemented to evaluate (13) numerically: simulate a large

number of zm (m = 1, · · ·, M) from Q and compute . When M is

large enough, this finite summation gives a close approximation of (13).

Formula (13) may be applied with general Q and weight functions for parameterized ROC

curve. Under some specifications, this general formula may become familiar quantities that

have been widely used in practice. The following is a special result for the unweighted AUC.

When F is the identity function (f being uniform on [0,1] and consequently WAUC being

AUC) and Q is a symmetric distribution such as the standard normal distribution or the

standard logistic distribution, the expression (13) reduces to

(14)

after simple algebra. A special case of (14) has been reported frequently in diagnostic

accuracy studies where the binormal assumption for ROC curve has been assumed.

The proofs of (11) and (13) are contained in the Appendix. A proof of (14) for Q being

standard normal is contained in Pepe (2003); the general proof is similar and is omitted.

If consistent parameter estimates â and b̂ are available, we can estimate WAUC consistently

by

(15)

For binormal model, maximum-likelihood methods (Zhou et al. (2002)) are widely used. In

fact, if the normal assumption is correct, the mean and variance parameters in the diseased

and healthy population can be estimated with their sample versions and plugged into (12).

Furthermore, suppose (â, b̂) are asymptotically normal. This leads to the asymptotic normal

distribution of  with mean WAUC and variance

(16)

where we assume the density q(z) of Q(z) exists. To implement this formula in an MLE

procedure, the asymptotic variances var(â), var(b̂) and covariance cov(â, b̂) can be estimated

consistently from the observed inverse information matrix (Hessian matrix of the log-

likelihood function).
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2.4. Choice of weight function

The WAUC offers a sensible measure of diagnostic performance when a clinically relevant

range of specificity has been specified. The relative importance of the specificity values is

characterized by the weight function in the computation of WAUC. Instead of assigning

non-informative equal weights to all possible values in (0, 1), a general weight function can

be any probability density or weight function defined within this range. Depending on the

focus of study, we can choose right-skewed, symmetric or left-skewed distributions.

The class of Beta density function (Gupta and Nadarajah (2004)) provides abundant choices

for the weight function. The Beta(α, β) density is given by

for α > 0, β > 0 and 0 ≤ x ≤ 1 where the boundary values at x = 0 or x = 1 are defined by

continuity (as limits). The relative importance can be adjusted by modifying the parameter

values (α, β) in the density function.

When assessing his or her knowledge about the specificity weight (or equivalently, the

distribution of the random threshold in the population), one naturally tends to anchor on the

uniform distribution and begin to establish departures from uniformity (Tversky and

Kahneman (1981)). We notice that the uniform distribution on (0, 1) is a special case of the

Beta density when α = β = 1. We therefore propose the following weight elicitation

procedure, following a similar idea in Chaloner and Duncan (1983):

Step 1 Choose the distribution mode which is the most likely value of specificity in

the weighting scheme.

Step 2 Choose the distribution variance which describes the relative likelihood of

mode to adjacent values. When only vague information is available for the

spread pattern, one chooses the value close to that of the uniform distribution.

Step 3 Choose a sensible Beta density that satisfies the two conditions the most.

The mode elicitation method in Step 1 has intuitive appeal to data analysts and excludes

certain Beta densities with no modes for sp ∈ (0, 1). The first two steps effectively mimic

the human cognitive processing and creat a distribution that can reflect one’s view of the

relative importance of specificity values. We note that the mode and variance of the Beta

density are given by (α − 1)/(α + β − 2) and αβ/[(α + β + 1)(α + β)2], respectively. Given

desired values of the mode and variance at Steps 1 and 2, we may solve a system of two

equations to find the two parameters α and β exactly. Finally for the sake of interpretability

we usually have to adjust the solved values to sensible parameters to strike a balance

between mathematical precision and practical utility.

In this paper, we prefer the mode of the weight to be near large values of the specificity, say

85% or 90%. This suggests that α has to be much greater than β and both parameters must

be above one. As for the variance, we would imagine the overall distribution displays a
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comparable variation relative to the non-informative uniform distribution which is the

standard weight for the ordinary AUC. This requirement implies that α and β may not be too

extreme. We note that if these two parameters are too large, the variance would be very

small and the distribution would be indistinguishable from a degnerate point mass at the

mode. This kind of weight simply gives the sensitivity of the test at a particular specificity

and may be too restrictive for a meaningful comparison of the test accuracy. To qualify the

two demands, we suggest using Beta(8, 2) in the following simulation and data analysis.

Winkler (1967) and Colombo and Constantini (1980) had earlier discussions on the selection

of Beta parameters. Hahn (2006) summarized the recent development on this issue.

We remark that using whole number Beta parameters is not a necessary requirement in the

final step. Sometimes the exact solutions obtained from solving the equations set at the first

two steps may involve complex numbers. Therefore the adjustment at the final step ensures

that the chosen parameters are those best satisfy the conditions specified in the first two

steps. Using whole numbers is just a relatively simple approach to do the adjustment. It is

always acceptable to consider non-integer Beta parameters.

In addition to the Beta weight, one may also consider a class of conceptually simple weight

functions by keeping a uniform distribution in the interval [0.9,1] and decreasing weights

gradually below 0.9. Herein we consider a linearly decreasing weight between 0.9 and 0.5.

The resulting distribution after proper rescaling is a trapezoid density function. The

advantage of this weight function is that it does not downweight the area of extremely large

specificity. We compare this weight in the real examples and find similar performance as the

Beta weight.

We realize that in practice assessors may choose different weight distributions and yield

different WAUC values for a test. This might be due to varying degree of belief from each

assessor (Hogarth (1975) and Kahneman et al. (1982)). The conclusion from each weighted

ROC analysis thus needs to be construed with respect to the weight function considered by

the assessor. A relatively objective approach is to obtain independent estimates from

different assessors and combine their results with a method called recoiling quantitative

opinions proposed by Berger (1985), pages 272–286. The aggregated WAUC value is then

representative of how people in the general population perceive the relative importance of

the specificity values. Such aggregated analyses may be carried out by noting that the

WAUC is a linear functional of the ROC curve and the implied weight function for the

aggregated WAUC is thus just a weighted average of the weight functions for the different

assessors.

3. Numerical results

3.1. Simulations

We include two parts of simulation studies. In Section 3.1.1, we investigate the finite sample

performance of the proposed WAUC estimators under various test distributions. We notice

that the nonparametric estimates are usually robust while parametric estimates may be

misleading under model mis-specification. In Section 3.1.2, we conduct hypothetical

selections between two diagnostic tests for two different cases. This numerical experiment is
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pertinent to our real data analysis. Through simulations we find out that neither AUC nor

PAUC can select the best test in the two cases while WAUC can always maintain a

satisfactory performance.

3.1.1. Consistency of estimations—We consider two types of distributions to simulate

test results. Under known distributions, the true WAUCs under four kinds of weights are

computed by using (14) with numerical integrations. For the two cases, we choose sample

size nD = nD̄ = n and conduct 1000 simulations. At each simulation, we estimate the

WAUC’s and their standard errors under four weights. Nonparametric estimators are

computed as described in Section 2.2. Parametric estimators are computed as described in

Section 2.3 with a known distribution Q. Because of its wide applications in clinical

practice, we use the normal distribution as Q to compute the parametric estimators.

In the first case, we generate the test results TDi ~ N (1, 1) and TD̄j ~ N (0, 0.5). After 1000

simulations, we summarize the results in Table 1. The average of the estimated WAUC’s is

reported as . The standard deviation of the estimated WAUC’s is reported as

. The average of the estimated standard errors is reported as . Coverage

probability of the asymptotical normal confidence interval for WAUC is also reported.

It is noted from Table 1 that both nonparametric and parametric methods work fairly well

under all kinds of weight function for sp. The parametric estimators are usually more

efficient as they tend to have smaller standard errors than their nonparametric counterparts.

Nonetheless, the improvement is quite small.

We then consider a second case for test distributions. We simulate TDi from a negative aging

Weibull(0.5, 4) and TD̄j from a positive aging Weibull(2, 2) respectively, where the density

of Weibull(a,b) is given by

We report the results of 1000 simulations in Table 2, with the columns labeled as in Table 1.

Because the Weibull distribution is heavily skewed, the parametric method using normal

distribution may not be appropriate, as witnessed in Table 2. Nonparametric estimator

performs well, as expected, given that it does not rely on any distributional assumptions.

Since log of a Weibull variable is in a location-scale family (Gumbel distribution), we

perform a separate parametric estimation procedure for WAUC based on log of the test

results with a known Q to be the Gumbel distribution. The resulting estimators  and

their standard errors closely approximate the true WAUC and empirical standard deviation

of , respectively. Coverage rates are also largely improved to be close to the nominal

level. The results are not reported here since they are similar to those obtained in the first

case with correct parametric distribution.
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In summary, the parametric estimator, while most efficient, may produce unacceptable bias

when data do not follow the assumed distributions, usually normal. The nonparametric

method produces substantially more robust estimation. Though nonparametric method may

be less efficient than binormal model when normality hold, the loss in efficiency is not great

in our simulations. We recommend that nonparametric approach be used as a standard

reference calculation for routine practice. If there are large differences between the binormal

estimator and the nonparametric estimator, then one should be cautious in utilizing the

parametric approach, as there may be substantial model misspecification.

3.1.2. Comparison of tests using AUC, PAUC and WAUC—We consider two cases

of test comparison in the following. In each case, we generate two tests according to the

specified distribution. We intend to compare the test accuracy based on the generated

samples.

Case I Test 1 has TD̄ ~ N (0, 1) and TD ~ .2N (5, 1) + .8N (0, 1); Test 2 has TD̄ ~ N

(0, 1) and TD ~ .4N (5, 1) + .6N (0, 1).

Case II Test 1 has TD̄ ~ N (0, 1) and TD ~ .75N (2, 1) + .25N (0, 1); Test 2 has TD̄ ~ N

(0, 1) and TD ~ N (1.07, 1).

For each case, we compute three accuracy measures: AUC, PAUC, and WAUC for Tests 1

and 2 over 1000 simulations. The partial region for PAUC is from .9 to 1. The weight for

WAUC is Beta(8,2). Sample size is nD = nD̄ = 60 for each sample. Since investigators

usually want to determine the relative importance of the two tests, we thus report the

frequencies that Test 1 is preferred over Test 2 under these criteria. A good accuracy

criterion should favor the better test more frequently.

In Case I, both tests for diseased subjects have a chance to be identically distributed as tests

for non-diseased subjects. Such a chance is much larger for Test 1 than for Test 2. We

therefore would prefer Test 2 in practice. The percentages of favoring Test 1 under AUC,

PAUC and WAUC are 9.9%, 36.5%, and 12.6%, respectively. Using PAUC to select

between these two tests would make a mistake with a probability that is three times larger

than the error rates for AUC and WAUC in this case. The performance of AUC and WAUC

is quite similar.

In Case II, simulation results indicate that the percentages of favoring Test 1 under AUC,

PAUC and WAUC are 82.7%, 24.3%, and 30.0%, respectively. In this case, Test 1 has a

slightly better AUC value (.8579) than Test 2 (.8576). However, in the region of high

specificity, Test 2 actually has a better performance for differentiating the diseased subjects.

An investigator aiming at ensuring high specificity would prefer Test 2 over Test 1. PAUC

and WAUC favor Test 2 most of the time and therefore are much more successful than

AUC.

In both cases, if we look at the sole values of AUC or PAUC, we might miss the more

accurate test and select the unfavorable one. In fact, the appropriate criteria that should be

used are AUC for Case I and PAUC for Case II. On the other hand, WAUC seems to be a

good comprimize between AUC and PAUC and can identify the best test with the same

frequency as the other appropriate criteria. This observation has also been made when we

Li and Fine Page 11

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2014 August 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



tried other settings of tests comparison. The cause of its satisfactory performance is that

WAUC stresses the partial ROC curve for large values of specificity while also keeping a

connection to the complete ROC curve. This is a quality unattainable for either AUC or

PAUC.

We next move to a more complex simulation setting of gene selection analoguous to the real

problems in the next session. We still consider the above two cases. In Case I, we generate

40 genes with the same distribution as Test 2, 10 genes with the same distribution as Test 1

and 50 genes which does not differentiate the diseased and healthy subjects. We compute

AUC, PAUC and WAUC values for the 100 genes and select the top ten only. We expect to

identify the 10 genes with the same distribution as Test 1 in the top ten list in each

simulation. After a large number of simulations, we report the proportion that the 10

preferred genes are indeed selected in the top ten. Under AUC and WAUC, the proportions

are 92.5% and 88.3%. However, the proportion is only 42.0% under PAUC. Using PAUC

thus cannot choose all of the ten important genes most of the time. Similarly, in Case II, we

generate 40 genes with the same distribution as Test 1, 10 genes with the same distribution

as Test 2 and 50 genes which does not differentiate the subjects. Again we report

proportions of selecting the 10 best genes (with the same distribution as Test 2) as top ten

among the 100 genes under the three criteria. Under PAUC and WAUC, the proportions are

96.9% and 94.5%. The proportion is only 34.6% under AUC. WAUC appears to be more

successful than AUC and PAUC since it can select correctly the best genes at the top of the

ranked list most of the time.

3.2. Microarray data

Microarrays enable the simultaneous measurement of the expression levels of tens of

thousands of genes and have found widespread application in biological and biomedical

research. The use of microarray to discover genes, which are differentially expressed

between the diseased and healthy patients has many applications. These include the

identification of disease biomarkers that may be important in the diagnoses of the different

types and subtypes of diseases. Numerous feature selection methods have been applied to

the detection of differentially expressed gene lists. We focus on the method based on ROC

analysis in this paper.

3.2.1. Ovarian cancer data—We revisit the ovarian cancer data which has been studied

in Pepe et al. (2003). Ovarian tissue from 30 subjects with cancer, and 23 subjects without

cancer, were analyzed for mRNA expression, using glass arrays spotted for 1536 gene

clones. The microarray data set provided a valuable source of information to identify

differential biomarkers for ovarian cancer.

Pepe et al. (2003) did a pilot analysis by examining the first 100 genes in the whole data set.

For comparison, we computed WAUC under three different weight functions for the same

100 genes: U(0,1), U(0.9,1), and Beta(8,2). U(0,1) gives the ordinary AUC. U(0.9,1) leads

to a PAUC index over a range of high specificity values. Beta(8,2) gives a negatively

skewed weight for WAUC with an emphasis on high specificity values.
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We sorted the genes according to their WAUC values. The top 20 genes under three criteria

were reported in Table 3 along with their nonparametric estimated WAUC values. For the

sake of comparison, we also included the rankings resulted from using two sample T-tests

and Wilcoxon rank sum tests. We note that these two tests tend to comparing the overall

accuracy of the diagnostic markers and usually cannot be used to compare the markers when

we restrict our attentions to ROC regions with high specificity. It was not a surprise that the

results from these two tests are quite close to that obtained under the ordinary AUC. The

correlation between gene ranks according to T-test P-value and ranks according to AUC is

−.914; the correlation between gene ranks according to Wilcoxon test P-value and ranks

according to AUC is −.908. The correlation between the two tests is .992. In addition to the

global comparison, we are also interested in comparing the accuracy of the genes under the

requirement of high specificity.

Pepe et al. (2003) illustrated the advantage for PAUC which corresponds to .1 times of

WAUC under U(.9, 1). They demonstrated their point by comparing two genes whose

positions in the original data set are 5 and 97. The estimated density (using the kernel

method, Simonoff (1996)) of the two gene expression profiles were plotted in Figure 1. Both

of them have very high and similar overall AUC values. Pepe et al. (2003) argued that gene

97 does not have a good performance comparing to gene 5 under the PAUC criterion. Gene

5 has much larger average sensitivity over the range of high specificity values, with gene 97

having corresponding WAUC < .3. PAUC is thus a better measure than AUC since in

population screening we require a high specificity for the gene to separate the normal

subjects out correctly.

Although PAUC, or equivalently WAUC under weight U(.9, 1), may provide the relative

accuracy of the genes under the purpose of ensuring high specificity, the absolute accuracy

of WAUC appears to be quite low for most genes under this weight function. In fact, all

genes except 93, 65 and 5 (the top 3) have WAUC values lower than .5. Note however that

the null value W0 for this weight is 0.05. WAUC values in (0.05, 0.5) are acceptable but

reflect that for this specificity distribution diseased subjects are classified incorrectly more

than 50% of the time. Within the truncated region of sp, which corresponds to a truncated

range for the gene distribution, the gene expression value for diseased population might not

be consistently higher than that from normal population. This implies that the usual

probabilistic interpretation of AUC, the probability of correctly ordering the two

populations, may not be reflected well for most genes from the face-value of PAUC. The

reason lies in that PAUC completely ignores the ROC value outside the specified narrow

range.

It may be more flexible to use a less extreme weight choice, say, a continuous weight

function defined over the entire region of (0, 1). In this example, WAUC under Beta weights

confirms the importance of gene 97 (still among the top ten). Beta(8,2) gives high weight for

large sp and therefore WAUC for gene 5 is still higher than that of gene 97. The influence of

the weights is illustrated in Figure 2. A Beta(2,8) weight has also been included in the

figure. Such a weight generally leads to large WAUC values since low specificity lends

greater support for high sensitivity.
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We also note that the top ten genes selected by WAUC under the trapezoid weight are

identical to those selected under Beta(8,2) weight. The relative order of these ten genes are

slightly different. The trapezoid weight, constructed by extending the truncated uniform

distribution to the entire interval [0,1], thus shows a satisfactory performance as the

Beta(8,2) weight.

The rankings of genes obtained under different weight functions suggest the importance of

genes may vary under different weight functions, reflecting different beliefs about the

relative importance of different regions of the ROC. Using the more flexible WAUC, we can

see how the selection of important genes changes under different weights. Previous methods

using AUC or PAUC might mask the significance of many excellent genes by assigning

relatively low ranks under rigid uniform weights. Since valuable genetic data are usually

expensive to obtain, we believe that WAUC can potentially benefit the cost-effectiveness of

similar clinical studies by highlighting genes which may be of potential interest (under

certain weight functions). Such results may suggest that it is worthwhile to allocate

resources to further research on certain genes, which might have otherwise been overlooked

by existing analyses using AUC of PAUC.

We conducted similar ROC analysis by using the complete data set which involves 1536

genes in total. The results for WAUC under U(0.9,1) weight (or PAUC index) indicate that a

total of 199 genes have perfect WAUC values. The second highest WAUC value is .996

which is achieved by the next 63 genes. In this case, using such a WAUC produces an

extreme number of ties when ranking genes. It is difficult to judge the relative accuracy for

genes who have the same WAUC values.

Eyeballing the distribution (left panel of Figure 3) of gene 1348, which has perfect WAUC

under U(0.9,1) weight, we notice that there is no cancer subject whose test value falls into

the upper 10 percentile of healthy group. Therefore none from the cancer group was mis-

labeled under such truncated region. However, the overall classification performance of this

gene is not great. In most of the domain, the two distributions overlap, indicating very weak

differential power for the gene. The overall AUC (or WAUC under uniform weight on (0,1))

is only 0.602, only slightly better than W0 = 0.5.

The WAUC values under the trapezoid weights produce more meaningful rankings. The

highest WAUC values are .993 achieved by three genes 161, 612 and 1409, respectively.

The second highest WAUC values are .990 achieved by four genes 111, 173, 179 and 510.

This was followed by gene 349 with WAUC .988 and genes 87 and 436 with WAUC .987.

The results from Beta(8,2) weight are quite similar. The highest WAUC is 1.0 achieved by

gene 510, followed by two genes 612 and 1409 with WAUC .999, then followed by five

genes 148, 161, 173, 732 and 966 with WAUC .998, and then followed by two genes 179

and 111 with WAUC .997 and .996, respectively. Seven among the top ten genes are

identical under the two weights. The overall correlation between these two ranking is .99. As

an example, the distribution of gene 161 was shown in the right panel of Figure 3. Clearly

this gene differentiate the two groups much better than gene 1348. Gene 161 also has

WAUC equal to 1 under U(0.9,1). Clearly, not all genes with high ranks under WAUC with
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U(0.9,1) wieght deserve the same amount of attention. WAUC with U(0.9,1) might mislead

us to believe too many genes to have the same accuracy while in fact they may not.

For the sake of comparison, we consider another beta weight Beta(64,10) which has the

same mode as Beta(8,2) but a much smaller variance (.00156). We note the variance for

Beta(8,2) is .015. The WAUC under Beta(64,10) gives that 42 genes are ranked equally as

the most important with 100% WAUC and followed by another 34 genes with the second

highest WAUC 99.9%. This weight favors large value of specificity but restricts the

variation of specificity distribution. It thus also creats many ties in the ranking of genes.

Therefore such a weight is not as desirable as Beta(8,2) which allows relatively more

variability and leads to sensible rankings.

The sorted WAUC values for the genes under five discussed weights were shown in Figure

4. While the WAUC values under trapezoid and Beta(8,2) weights are decreasing strictly,

those under U(0.9,1) and Beta(64,10) decrease as a step function. Thus, while the WAUC

under U(0.9,1) may be successful in some cases to rank genes for the aforementioned goal,

it can potentially create large number of ties due to the truncated nature of the estimator.

Similar problem occurs for Beta(64,10) due to its limited variation. It is more flexible to

consider weights like Beta(8,2) or the trapezoid density used in this paper when we want to

focus on high specificity region of the ROC curve and provide strictly ordered rankings for

all the genes.

4. Discussion

Using the WAUC to select genes, we can maintain all the nice properties mentioned in Pepe

et al. (2003) for the PAUC. In addition, we can eliminate possible problems associated with

the PAUC. Therefore, the WAUC may be a more general measure of accuracy for biological

studies.

The choice of weight function should ideally reflect the relative importance of specificity

values. Besides borrowing knowledge from subject matter experts, we can further consider a

hierarchical approach to specifying parameters in the weight function, as with the Beta

distribution, where prior distribution may be placed on α and β. As discussed in Section 2.4

and in the microarry examples in Section 3.2.1 and 3.2.2, this framework is useful in

facilitating sensitivity analyses, whereby the impact of different weights on rankings may be

formally evaluated.

If attention is to be confined to a truncated region of specificity, as with PAUC, our

approach enables a more flexible weight to be employed, versus simply using a flat weight

within this region. This expands the current PAUC methodology to allow more general

sensitivity analyses of the ROC, for thresholds exceeding the lower specificity bound. A

Beta distribution (or any other familiar continuous distribution) can be re-shaped to

represent the relative importance of specificities within the truncated region.

The proposed methods in this paper can be applied for situations where high sensitivities are

desirable. Since ROC curve can also be regarded as specificity varying as a function of
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sensitivity, all the mathematical derivations can be easily modified to achieve similar results

for weight functions of sensitivity.

The connection between WAUC and p-values may also be easily established. Using the

asymptotic results in Section 2, one can compute p-value for each gene to test the null

hypothesis that the WAUC is greater than certain cut off value. Genes may then be sorted

according to the p-values of this test in the same way as the t test or Wilcoxon test.

However, the choice of the cut off value under the null hypothesis may be different for

different problems. Comprehensive development on ranking methods based on such p-

values requires further research efforts.

An important topic is comparing WAUC values from two markers under the same weight, in

particular, the development of formal testing procedures. In general, marker measurements

taken on a common set of individuals are correlated and one cannot directly use (8) and (9)

to derive a nonparametric test or use (16) to derive a parametric test. While the difference of

two WAUCs will still be normally distributed, for paired data, the variance formula may be

quite complicated, involving a covariance term for the two markers. However, bootstrap

variance estimation for the difference of the two WAUCs may be easily computed,

analogously to bootstrapping the difference of two correlated AUCs. The derivation of a

simple plug in variance estimator for the difference is beyond the scope of the current paper,

but a worthwhile topic for future research.
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Appendix

Derivation of (9)

Hsieh and Turnbull (1996) studied the asymptotic behavior of . Assume the same

technical condition (6), the stochastic process (indexed by sp)  is

asymptotically equal to

(17)

uniformly for sp on (a, b), where B1 and B2 are two independent versions of Brownian

bridges (Billingsley (1999)), sD and sD ̄ are the derivative of SD and SD̄, respectively.

Hence, the asymptotic variance of  is
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Proof of (11)

Proof

For any threshold c,

For an sp, we notice that c = μD ̄ + σD̄Q−1(sp) is the corresponding threshold for the test

positive criterion. Hence

where a and b are as given in (12).

Proof of (13)

Proof

Assume the density function q(z) of Q(z) exists,
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Fig. 1.
Distribution of gene expressions for the diseased and normal populations from the Ovarian

cancer dataset. The area under the density for the diseased population is shaded.
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Fig. 2.
Weight functions (upper panel) and weighted ROC curves (lower panel). In the lower panel,

the solid line is the original ROC curve, also corresponding to U(0,1). 13 points (circles) on

this curve are marked and their corresponding weighted values are symboled with different

point characters on the other three weighted ROC curves.
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Fig. 3.
Distribution of gene expressions for the diseased and normal populations from the Ovarian

cancer dataset. The area under the density for the cancer patients is shaded.
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Fig. 4.
Sorted WAUC values for 1538 genes in the Ovarian cancer dataset.
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