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ABSTRACT We calculate equilibrium rate constants for
ortho-para conversion in hydrogen and deuterium by an atomic
mechanism. The calculations are based on an accurate ab initio
potential surface, transition state theory, and an adiabatic
transmission coefficient. The calculated rate constants are
demonstrated to be reliable within 40-50%, and they agree with
experiment within this margin.

The calculation of absolute reaction rates is an important goal
of quantum chemistry. In this article we report calculations of
the equilibrium rate constant and kinetic isotope effect for the
gas-phase reaction

H + para-H2 < >ortho-H2 + H.
k-I

[1]

These calculations take advantage of several recent advances
(1-9) in the theory and computation of chemical reaction rates
from first principles-i.e., with no semiempirical elements. The
procedures used have been carefully tested and the methods
used are shown to be reliable to within about 40-50%, which
is as good as or better than the experimental accuracy attainable
for most reactions. There has been no previous completely ab
initio calculation of a chemical reaction rate with this level of
demonstrated reliability.
Theory
We use transition-state theory (refs. 10-12; recently reviewed
in ref. 13). The difficulties in using this theory to predict ab-
solute reaction rates fall into two categories. The first general
obstacle is the lack of accurate information about potential
energy hypersurfaces. For the H + H2 reaction and isotopic
analogs this obstacle has been largely overcome by the accurate
ab initio configuration-mixing calculations of Liu and Siegbahn
(3, 4). For the present calculations we use an accurate analytic
representation of their calculated potential energy hypersurface
(14). The error in using this surface is estimated by comparing
to calculations on another surface that differs by a reasonable
estimate of the basis-set truncation error in the configuration-
mixing calculations. The second obstacle is the calculation of
the transmission coefficient of conventional transition-state
theory. This represents the deviation of the true equilibrium
rate from that calculated with the conventional transition-state
assumptions. The fundamental assumption is that all phase
points on a configuration-space hypersurface (called the di-
viding surface) located at the saddle point of the potential en-
ergy surface cross the dividing surface only once. It is also as-
sumed that a separable reaction coordinate exists, that the re-
maining degrees of freedom can be quantized in the usual way,
and that motion along the reaction coordinate is classical. For
H + H2, the last assumption, classical reaction-coordinate
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motion, is the one requiring the largest corrections, and we use
Marcus and Coltrin's (7) variationally motivated collinear
tunneling path (7) and a vibrationally adiabatic barrier, in-
cluding bending contributions, to estimate quantum mechanical
tunneling and nonclassical reflection in the reaction-coordinate
motion. Another important aspect of the present calculation
which is often missing in applications of transition-state theory
is careful attention to anharmonicity (8, 9). The techniques used
for the dynamics part of the calculation are tested by applying
them to a Porter-Karplus potential energy surface for which
accurate quantum mechanical close coupling calculations have
been performed by Schatz and Kuppermann (5).

Computations and testing reliability of the results
The transition-state theory rate constant, in which all atoms are
treated as distinguishable, is (9-12)

kf(T) = K(T)a Bh 4QR(T) exp(-Vf/kBT), [2]

in which K(T) is the transmission coefficient, a is a statistical
symmetry factor, kB is Boltzmann's constant, T is temperature,
h is Planck's constant, Q$(T) is the transition-state partition
function, 4R(T) is the reactant's partition function per unit
volume, and V* is the potential energy at the saddle point. The
partition functions are evaluated as explained in detail in ref.
9. In particular, translation, stretching vibrations, rotation, and
bending vibrations are assumed separable from each other,
Morse anharmonicity is included in stretching vibrations, and
quartic anharmonicity is included in bending vibrations. All
harmonic and anharmonic force constants are evaluated di-
rectly from the potential energy surface.
The assumption that bends and rotations are separable at the

saddle point can be questioned. It is hard to estimate the effect
of bend-rotation coupling on the quantized energy levels, but
a classical treatment (8) by the method of Strauss and Thiele
(15) decreases the transition-state partition function for reaction
1 for the surface of ref. 14 by only 5-8% for 300-600 K as
compared to a classical treatment using the quadratic-quartic
separable approximation used here. Because classical mechanics
is not valid at these temperatures and because the effect is small,
we did not include this correction.
The transmission coefficient is evaluated as follows. We use

a vibrationally adiabatic model for the transmission coefficient
because, as emphasized elsewhere (16), this is the most consis-
tent with the assumptions of transition-state theory. The min-
imum-energy path and Marcus-Coltrin tunneling path for a
collinear collision are defined and determined from the po-
tential energy surface as in ref. 7. Distances from the symmetric
stretch line along these paths are called s and 4, respectively,
where 4 can be considered a function of s and of relative
translational energy Erel (somewhat confusingly, both s and 4
are called s in ref. 7). All along the minimum-energy path we
compute the zero-point energy for the bound stretching vi-
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bration and the doubly degenerate bending vibration. For this
calculation we include Morse anharmonicity for the stretch and
quartic anharmonicity for the bend. Notice that in the reactant
and product regions the stretching vibration becomes the H2
vibration and the bending zero-point energy vanishes. For a

given s and Erel, and hence a given (, the sum V'(t,Erei) of the
classical potential energy along the minimum-energy path and
the local zero-point energy defines the ground-state, s-wave

vibrationally adiabatic barrier

VMCPVAG(QErel) = VQ(4,Erel)-=--VG DErel). [3]

The abbreviation MCPVAG denotes "Marcus-Coltrin path,
vibrationally adiabatic ground" state. The justification for the
tunneling path for collinear collisions is given elsewhere (6) and
will not be repeated here. We note, however, that the present
treatment differs from that for a collinear collision in that the
effective barrier is higher because some energy gets tied up in
bending degrees of freedom. The quantum mechanical trans-
mission probability P(Erel) for the barrier VMCPVAG(QEreI) is
computed numerically (16) for a sequence of Erel values and
the results are numerically thermally averaged. The numerical
uncertainties in the quantum transmission probabilities and
averaging are kept less than 1%. The transmission coefficient
is defined as the ratio of this average to the thermally averaged
ground-state transmission probability assumed by conventional
transition-state theory with classical treatment of reaction-
coordinate motion-i.e.,

r0
P(EreI)exp(-EreI/kBT) dErel

K(T) = ' [4]

SVbAG exp(-Erel/kB(T) dErel

in which VVAG is the ground-state, s-wave vibrationally adia-
batic barrier height. Notice that, because of the bending con-
tributions to the vibrationally adiabatic barrier, the transmission
coefficient calculated here for the three-dimensional reaction
does not equal the one that would be calculated for the collinear
reaction. The justifications for considering only the ground-
state, s-wave vibrationally adiabatic barrier are as follows. (i)
This gives a unified treatment of quantal effects on reaction-
coordinate motion which is applicable at both low and high
temperatures. At low temperature only the ground state and
s-wave contribute; at high temperature K(T) tends to unity
whether or not we calculate a thermal average over a sequence
of vibrationally adiabatic barriers corresponding to different
reactant states. (ii) For the present reaction, excited vibrational
states of the reactants make a negligible contribution at 600K
and lower. (iii) For reactant states with nonzero angular mo-
mentum, there can be a partial compensation of decreasing
rotational energy by increasing bending energy as the system
progresses along the reaction coordinate so that approximating
the excited vibrationally adiabatic barriers by the ground-state,
s-wave one might not be too seriously in error.
We test the dynamical treatment by comparing transition-

state theory calculations for the Porter-Karplus potential energy
surface no. 2 (17) to the accurate dynamical calculations of
Schatz and Kuppermann for this surface. The results are shown
in Table 1, in which they are compared to the close coupling
distinguishable-atom rate constants of Schatz and Kuppermann
(5) for the 100-600K temperature range. Schatz and Kupper-
mann did not calculate results at higher temperatures because
they performed accurate quantal calculations only up to a total
energy of 0.7 eV. This may also contribute to their results being
less certain at 600 K. At temperatures below room temperature
the calculations are very sensitive to the approximations in the

Table 1. Rate constants (cm3 molecule-1 sec-1) for Porter-
Karplus potential surface no. 2

Distinguishable atoms kobs
Close Present % Close

T, K coupling* calculation error couplingt

100 7.71(-21)t 4.31(-21) -44 7.34(-21)
200 1.58(-17) 8.02(-18) -49 1.54(-17)
250 1.70(-16) 1.16(-16) -32 1.67(-16)
300 9.91(-16) 7.99(-16) -19 9.80(-16)
400 1.09(-14) 1.05(-14) -4 1.08(-14)
500 5.00(-14) 5.49(-14) +10 4.96(-14)
600 1.43(-13) 1.76(-13) +23 1.42(-13)

* Computed from state-selected distinguishable-atom rate constants
(supplied by Schatz from the work reported in ref. 5) by setting all
fj equal in equations 3.6 and 3.7 of ref. 5.

t Computed from table 7 of ref. 5.
t In tables, numbers in parentheses are powers of ten.

tunneling correction, and the present results are too low. Schatz
and Kuppermann report that their reaction cross sections are
converged and satisfy time-reversal symmetry within 5-15%,
and they report that two different methods of thermal aver-
aging disagreed by 20%. Thus, the overall uncertainty in their
rate constants is at least 25-35%. The present calculations agree
with their results within 23% over the 300-600 K temperature
range, confirming the accuracy of our methods for these tem-
peratures within this tolerance.
The reliability of the Marcus-Coltrin adiabatic tunneling

path is also confirmed by its accuracy for collinear calculations
(7, 18). In the collinear case, quantum mechanical rate constants
are known within a few percent (19, 20) for both the Porter-
Karplus surface no. 2 and the potential surface of Truhlar and
Kuppermann (19). The latter surface agrees very well with the
ab initio calculations of Liu (3) for collinear geometries. By use
of results of similar calculations reported elsewhere (18), it is
easy to calculate that transition-state theory calculations like
the present ones (but for the collinear reaction) are accurate
within 25 and 12%, respectively, for these two surfaces at 300
K and are even more accurate at 400-1000 K (21) and for 2H
+ 2H2. These successes of the method give confidence that its
success for the three-dimensional H + H2 reaction on Porter-
Karplus surface no. 2 is not a fluke. The difficulty of obtaining
as good agreement as obtained in Table 1 (error of a factor of
1.2 at 300 K) for thermal rate constants for H + H2 should be
emphasized. Previous transition-state theory calculations with
tunneling corrections based on separable reaction coordinates
had errors of factors of 2.0-3.4 for the collinear reaction at 300
K (19, 21). Use of the exact collinear transmission probabilities
to compute approximate transmission coefficients for the
three-dimensional reaction also leads to errors of greater than
a factor of 2 at 300 K (22). The nonseparable method of
Chapman et al. (23) had more success, but still involved errors
of 16 and 37% for collinear reaction on the surfaces of refs. 17
and 19, respectively, at 300 K. Another disadvantage of the
nonseparable calculations is that they are more difficult than
the present calculations; because of this, the only application
of the nonseparable method to a three-dimensional reaction
involved a 58% sampling uncertainty (23).
The distinguishable-atom rate constants neglect the effect

of antisymmetrization of the wave function with respect to
protonic coordinates. However, in the classical limit the dis-
tinguishable-atom rate constant equals ki + k-1, which sum is
a directly observed quantity kO in experiments on the con-
sumption of excess para-H2 (1, 24, 25). Calculations actually
involving protonic antisymmetrization (5) are also shown in
Table 1. They indicate that the distinguishable-atom rate
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constant equals ki + k-I within 2% or less at 300 K or higher.
Thus, in the rest of this article we interpret distinguishable-atom
rate constants as calculations of k' The calculations of Schatz
and Kuppermann (5) and the present calculations both neglect
the effect of the conical intersection on the antisymmetrization
(26). This effect is hard to estimate without full calculations,
but it is most important when, from the classical path point of
view, there is interference between trajectories passing on op-

posite sides of the conical intersection (26). Such interference
is not expected to play a big role at the temperatures considered
here.
The effect of errors of the potential surface can also be esti-

mated. There are several possible ways (2-4) to estimate the
basis-set truncation errors in the calculations of Liu and Sieg-
bahn. The calculated classical barrier height is 9.80 kcal/mol.
One estimate (2) of approximate bounds on the true classical
barrier height is 9.69 + 0.12 kcal/mol. Errors in the stretching
and bending modes are expected to be smaller than the error

in the asymmetric stretch mode that contains the barrier. Thus,
we scaled the potential energy along the minimum-energy path
by 9.57/9.80, retained a11 stretching and bending force constants
unchanged, and repeated the calculations. The results for the
scaled surface are shown in Table 2. The percentage change in
the calculated rate is 32% or less for 300-600 K. We can also
make a comparison to use of the partly semiempirical potential
surface of Yates and Lester (27). Whereas the root-mean-square
deviation of the analytic fit of ref. 14 from the ab initio points
of Liu and Siegbahn (3, 4) is 0.09 and 0.23 kcal/mol for linear
and nonlinear geometries, respectively, that for the surface of
Yates and Lester, which predated ref. 4, is 1.24 and 6.41 kcal/
mol, respectively. However, the Yates-Lester surface does have
a classical barrier height of 9.82 kcal/mol and a saddle-point-
symmetric-stretch frequency and bond length that are accurate
within about 1%. The rate constant calculated with their surface
is 3.10-1.70 times lower than the present one in the 300-600
K temperature range. At 300 K, a factor of 2.02 comes from the
transmission coefficient and a factor of 1.53 comes from the rest
of the calculation. Comparison to Table 1 shows that the Por-
ter-Karplus surface no. 2, with a classical barrier height of 9.13
kcal/mol, leads to a calculated rate constant a factor of 4.1-1.8
times larger than that for the surface of ref. 14 in the 300-600
K temperature range. We think that the scaled surface de-
scribed above provides the most reasonable estimates of possible
errors that are caused by the inaccuracies in the surface.
Combining the tests of Tables 1 and 2, we estimate that the

overall probable reliability of the present calculation of kb is

about 40-50% at 300-600 K and that calculations with the
Porter-Karplus surface no. 2 and the Yates-Lester surface do
not have this percentage reliability at temperatures below 1000
K.

Comparison to experiment
There is only one modern experiment on the rate of reaction
1. This is a flow-tube study by Schulz and LeRoy (24) in the
temperature range 300-444 K. The experiment directly yields

Table 2. Calculated rate constants k', (cm3 molecule-' sec')
for three different potential surfaces

Surface of Scaled Surface of
T, K ref. 14 surface % difference ref. 27

800 1.95(-16) 2.57(-16) +32 6.29(-17)
400 3.75(-16) 4.68(-16) +25 1.69(-15)
500 2.51(-14) 3.02(-14) +20 1.34(-14)
600 9.51(-14) 1.11(-13) +17 5.58(-14)

1.77(-12) 1.95(-12) +10 1.20(-12)

kbs, defined above as k1 + k-i, and the authors represented
their results by a three-parameter expression which fits all 16
measurements within 7%, thus indicating their precision. An-
other set of experimental values, which may well be more ac-
curate, can be obtained by combining a measurement (28) of
kHb/k4, where reaction 4 is H + 2H2 -k H2H + 2H and

Westenberg and deHaas's measurement (29) of k4. The ratio
was measured in the range 294-693 K with a precision of about
10%, and a least-squares fit to the logarithm of the ratio
yields

k' /k4 = 1.291 exp(619.9/T), [5]
which agrees with all the measurements within their estimated
errors. This can be used with the value of k4 that were measured
at five temperatures in this range to yield k' at five tempera-
tures. k4 has also been measured by Schulz and LeRoy (30), but
we believe from the discussion of Mitchell and LeRoy (31) of
the 2H + H2 reaction that the measurements of Westenberg and
deHaas may be more accurate.
The comparison of the present ab initio calculations to the

experimental values is shown in Table 3. Table 3 also shows
values calculated with the scaled potential surface for com-
parison. Notice that the experimental results do not agree with
one another within the sum of their respective 7% and 15-18%
precisions. Thus, the systematic errors, which are impossible
to estimate, are larger than this sum. A more realistic estimate
of the experimental uncertainty in this temperature range is
the maximum deviation of the two sets of experimental results,
namely, 33%. It is encouraging that in the 327-440 K temper-
ature range the present calculation agrees with the lower ex-
perimental result within 24% and with the higher result within
7%. At 549 K, the present calculation is 12% lower than the
experimental result. At the lowest temperature, 299 K, the
present calculation falls 28% and 29% lower than the experi-
ments, respectively. Thus, our calculation seems to be consistent
with the experimental results within the accuracy with which
the experimental results are known.

Theoretical comparisons
Table 4 presents additional calculations in which tunneling or
both tunneling and anharmonicity are neglected. This allows
comparison with some previous transition-state theory calcu-
lations (32, 33) using other potential energy surfaces (32-34).
First, consider calculations in which tunneling is neglected.
These calculations show that the effect of anharmonicity on the
surface of ref. 14 is to decrease the rate by a factor of 1.36-1.21
at 300-600 K, and the effect is similar for the Porter-Karplus
surface no. 2. The main reason for the difference between the
two calculations that neglect tunneling and anharmonicity for
the Porter-Karplus potential surface is the vibrationally adia-
batic barrier height: the calculations of ref. 32 used H2 energy
levels based on experiment rather than the ones corresponding
to the potential energy surface. Other differences between these
calculations effect the rate by less than 5%. Next, consider the

Table 3. Calculated and measured rate constants kbs (cm3
molecule-1 sec')

Calculated Measured
Surface Scaled Ref. Refs.

T, K of ref. 14 surface 24 28 and 29

299 1.88(-16) 2.48(-16) 2.62(-16) 2.66(-16)
327 5.03(-16) 6.53(-16) 5.17(-16) 5.38(-16)
346 9.10(-16) 1.17(-15) 8.26(-16) 9.77(-16)
440 8.78(-15) 1.08(-14) 7.06(-15) 9.38(-15)
549 5.08(-14) 6.02(-14) 5.77(-14)

Chemistry: Garrett and Truhlar
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Table 4. Comparison of calculated values of kHb (cm3 molecule- sect)
Anharmonicity? No No Yes Yes No No No Yes Yes

Tunneling? No No No Yes No Yes No No Yes
Surface? ref. 17* 17* 17* 17* 33,34t 33,34t 141 141 141

Ref. 32 Present Present Present 33 33 Present Present Present
'I', K

25() - 4.97(-20) 2.38(-18) 1.16(-16) 1.57(-18) 2.05(-17) 1.68(-18) 1.17(-18) 2.19(-17)
300 5.00(-17) 6.76(-17) 4.37(-17) 7.99(-16) 3.14(-17) 2.03(-16) 3.33(-17) 2.45(-17) 1.95(-17)
400 1.85(-15) 2.17(-15) 1.65(-15) 1.05(-14) 1.33(-15) 4.12(-15) 1.40(-15) 1.10(-15) 3.75(-15)
500 1.63(-14) 1.86(-14) 1.47(-14) 5.49(-14) 1.27(-14) 2.76(-14) 1.35(-14) 1.09(-14) 2.51(-14)
600 7.14(-14) 7.94(-14) 6.41(-14) 1.75(-13) 5.89(-14) 1.04(-13) 6.24(-14) 5.15(-14) 9.51(-14)
1()0 1.60(-12) 1.70(-12) 1.41(-12) 2.30(-12) 1.49(-12) 1.91(-12) 1.60(-12) 1.34(-12) 1.77(-12)

I'orter-Karplus no. 2.
t Surface of ref. 34 scaled in ref. 33.
4 Fit to ab initio points of refs. 3 and 4.

inclusion of tunneling. For the surface of ref. 14, the trans-
mission coefficient is 7.93 at 300 K and 1.85 at 600 K. Thus, both
anharmonicity and tunneling are important in this temperature
range. Notice that the present calculations are in remarkable
agreement with those of Shavitt (33). This is partly fortuitous
because he neglected anharmonicity, and the method he used
to include tunneling is now known (7, 16, 18, 19, 21) to be un-

reliable.

Kinetic isotope effect
The sum of the rate constants for the reactions

2H + ortho-2H2 para-2H2 + 2H [6]
k-2

has also been measured (1, 35) and is called k'L. For the tem-
perature range of the modern measurement, 358-468 K, it can
be equated with neglible error to the distinguishable-atom rate
constant (25). The potential surface is the same as for reaction
1. Using the same methods as for kHb, we have calculated k'L;
the results are in Table 5. The theoretical method is expected
to be even more valid for this reaction than for reaction 1 (7,
13). We also computed the kinetic isotope effect-i.e., the ratio
k'I/kH . Experimental values for the kinetic isotope effect may
be obtained by taking the ratio of the results of refs. 24 and 35.
Above 450 K, the Arrhenius plot of k4 from ref. 29 becomes
linear, and we can obtain k'I/k H by combining the results of
refs. 28, 29, and 35. A value for 440 K is also available by
combining data from these references. The predicted rate
constant and kinetic isotope effect are compared to experiment
in Table 5.

In the 368-468 K temperature range, the calculated rate
constant kD5 is 36-21% lower than the experimental one. Be-
cause there is only one experimental measurement, there is no
experimental check of the reliability of the measurement. If
we assume that the 33% estimate of reliability that we used for
the experimental measurements of kob is also roughly applicable

to the experimental measurements of ref. 35, then the agree-
ment with experiment is satisfactory. Shavitt's calculations (33)
of kDb led to 7.92 X 10-16 and 3.12 X 10-14 cm3 molecule-'

sect at 400 and 600 K, which disagree even more with ex-
periment. He concluded, "At the present time it is difficult to
say whether this is due to systematic experimental errors, to
inappropriate potential surface parameters, to an inadequate
treatment of tunneling, or to some fundamental deficiency of
transition-state theory." It is a measure of progress that the
reliability of the present calculation is much better documented,
and we conclude that our calculated kinetic isotope effect is at
least as reliable as the experimental results in this case. It will
be a challenge to obtain another measurement of the kinetic
isotope effect to try to confirm our prediction.

Concluding remarks
In some respects the H + H2 reaction is still unique in the op-
portunities it presents for ab initio calculations of reaction rates.
For other cases with even a few more electrons, the electronic
structure problems involved in calculating a potential energy
surface are sufficiently more difficult that a quantitatively
reliable surface is still unavailable (36). The accuracy of the
approximate methods for treating the dynamics can be tested
definitively only for H + H2 because that is the only case for
which converged quantal rate constants for a given potential
energy surface are available. Converged quantal rate constants
for other reactions involving heavier atoms would be more
expensive (37). Tests against exact quantal rate constants for
collinear reactions on known potential energy surfaces indicate
that the Marcus-Coltrin tunneling path is more accurate for
the symmetric case with all equal masses than for other cases
for which the best tunneling path may be harder to parametrize
or the separability assumption may fail (7, 18). The high po-
tential-energy barrier and mass combination of H + H2 also
tend to make transition-state theory with a dividing surface
located at the saddle point more valid than for many other re-
actions. For reactions with lower barriers, entropy effects can
compete with energy effects in determining the location of the
dynamical bottleneck to reaction, and variational transition-
state theory is often required to find the best generalized
transition state (9, 38). There has been much recent progress
on techniques for efficient calculations of potential energy

Table 5. Calculated and measured rate constants kDs (cm3 molecule-l sec-') and kinetic isotope effects

o_bs_ kobS/k obs
Measured Measured Measured

T, K Calculated ref. 35 Calculated refs. 24 and 35 refs. 28, 29, and 35

358 2.86(-16) 4.45(-16) 4.50 2.48
400 9.48(-16) 1.37(-15) 3.96 2.16
440 2.45(-15) 3.29(-15) 3.59 2.15 2.85
468 4.36(-15) 5.54(-15) 3.39 2.24 2.94
600 3.44(-14) 2.76 -
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surfaces and quantal dynamics and methods for variational
transition-state theory calculations, but completely ab -initO
calculations of reaction rates with reliability within 50% will
be a difficult challenge for most reactions for a long time.

We are grateful to G. C. Schatz for supplying information about and
results of the calculations of ref. 5. This work was supported in part by
the National Science Foundation under Grant CHE77-27415.
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