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Following cross-linking by microbial transglutaminase, modified oyster proteins were hydrolyzed to improve inhibitory activity
against angiotensin-converting enzyme (ACE) inhibitory activity with the use of a single protease, or a combination of six proteases.
The oyster hydrolysate with the lowest 50%ACE inhibitory concentration (IC

50
) of 0.40mg/mLwas obtained by two-step hydrolysis

of the cross-linked oyster protein using Protamex and Neutrase. Five ACE inhibitory peptides were purified from the oyster
hydrolysate using a multistep chromatographic procedure comprised of ion-exchange, size exclusion, and reversed-phase liquid
chromatography. Their sequences were identified as TAY, VK, KY, FYN, and YA, using automated Edman degradation and mass
spectrometry. These peptides were synthesized, and their IC

50
values were measured to be 16.7, 29.0, 51.5, 68.2, and 93.9 𝜇M,

respectively. Toxicity of the peptides on the HepG2 cell line was not detected.The oyster hydrolysate also significantly decreased the
systolic blood pressure of spontaneously hypertensive rats (SHR).The antihypertensive effect of the oyster hydrolysate on SHR was
rapid and long-lasting, compared to commercially obtained sardine hydrolysate. These results suggest that the oyster hydrolysate
could be a source of effective nutraceuticals against hypertension.

1. Introduction

Hypertension affects about 70 million people in the USA,
with an overlap in those suffering from cardiovascular disease
[1], and it is also a major cause of death in Korea [2]. Blood
pressure is regulated by the renin-angiotensin-aldosterone
system (RAAS). Angiotensin I-converting enzyme (ACE)
converts inactive decapeptide angiotensin I into octapeptide
angiotensin II, raising the blood pressure in mammals [3,
4]. Synthetic ACE inhibitors such as Captopril, Lisinopril,
Enalapril, and Fosinopril are pharmaceuticals used to treat
hypertension. However, these drugs cause strong side effects,
including coughing, skin rashes, and angioedema, whereas
the ACE inhibitory peptides derived from food proteins are
not associated with these side effects [5, 6]. ACE inhibitory
peptides have been identified from various marine animals,

such as squid [7], Alaskan pollock [8], tuna [9], Pacific hake
[10], squid skin [11], skipjack roe [12], jelly fish [13], and
ribbonfish backbone [14]. Several ACE inhibitory peptide
products from food sources are currently on themarket, such
as Vasotensin, Valtyron, Calpis, and Evolus [15, 16].

Oysters are abundantly maricultured along the seashore
of Tongyeong, Korea.The decline in export and consumption
of fresh oysters promoted the search for a new application.
ACE inhibitory peptides have been isolated and characterized
from an oyster protein and from salt-fermented oyster sauce
[17, 18]. NewACE inhibitory peptidesmight also be produced
from oysters, depending on conditions including the kinds of
protease used, hydrolysis temperature, and hydrolysis time.
Oysters are a suitable protein source for the production of
nutraceuticals against hypertension.
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Transglutaminase (TGase; protein-glutamine 𝛾-glutam-
yltransferase, EC 2.3.2.13) catalyzes an acyl-transfer reaction
between the 𝛾-carboxamide group of peptide-bound glu-
tamine residues (acyl acceptors) and a variety of primary
amines (acyl acceptors), including the 𝜀-amino group of
lysine residues in certain proteins [19]. TGase derived from
a microbial source (microbial TGase, MTGase) is now com-
monly used for the treatment of food to improve flavor,
appearance, and texture [20]. Protein functionality is altered
byTGase-induced cross-linking [21, 22]which alters the heat-
induced gelling ability of muscle proteins [23, 24]. It has been
reported that the 𝜀-(𝛾-glutamyl)lysine bond formed through
protein cross-linking exhibits high resistance to proteolytic
degradation [20]. Moreover, cyclic peptides with high affinity
and specificity to biological targets have been produced by the
cross-linking role of MTGase [25].

In the present work, we aimed to optimize the enzymatic
hydrolysis of MTGase-cross-linked oyster protein, to purify
and identify the small ACE inhibitory peptides from oyster
hydrolysate prepared under optimized hydrolysis conditions,
and to evaluate the antihypertensive activity of the oyster
hydrolysate in vivo.

2. Materials and Methods
2.1.Materials. Oysters were purchased from a localmarket in
October 2011 (Tongyeong, Korea). ACE enzyme (EC 3.4.15.1,
Sigma A6778), pepsin (EC 3.4.23.1, 570 units/mg, Sigma
P7125), trypsin (EC 3.4.21.4, 12,800 units/mg, Sigma T1426),
N-Hisppuryl-His-Leu hydrate (HHL, Sigma H1635), and
Captopril (SigmaC4042) were purchased from SigmaChem-
ical Co. (St. Louis, MO, USA). Several specific peptides (TAY,
VK, KY, FYN, and YA) were synthesized at GL Biochem Ltd.
(Shanghai, China). Sardine hydrolysate was purchased from
Chosunmuyak Co. (Seoul, Korea). Alcalase 2.4 L (2.4 AU/g,
endopeptidase, Bacillus licheniformis), Flavourzyme 500MG
(500 LAPG/g, endoprotease and exopeptidase, Aspergillus
oryzae), Protamex 1.5MG (1.5 AU/g, Bacillus protease, com-
plex), and Neutrase 0.8 L (0.8 AU/g, endoprotease, Bacillus
amyloliquefaciens) were obtained from Biosis Co. (Busan,
Korea). MTGase (103U/g) was obtained from Ajinomoto
Co. (Tokyo, Japan). Acetonitrile and methanol were high-
performance liquid chromatography (HPLC) grade. All other
reagents were reagent grade. HiLoad Q-Sepharose, Superdex
peptide, and Source 5RPC ST columns were purchased from
GE Healthcare (Parsippany, NJ, USA). A Bondclone C18
column was purchased from Daiso Chemical Co. (Tokyo,
Japan).

2.2. Preparation of Oyster Hydrolysates. Oyster protein was
cross-linked by MTGase and the modified oyster protein
was hydrolyzed by single proteases or a combination of
the following six proteases: Alcalase, Flavourzyme, Neutrase,
Protamex, pepsin, and trypsin. In detail, fresh oysters were
treated in boiling water for 3min to remove the fish odor
and salt from the seawater and then homogenized using a
meat grinder (M-12S, Hankook Fujee Industry, Hwaseong,
Korea). The minced oyster was suspended in four volumes
of distilled water and homogenized with a homogenizer

(T-25 basic, Ika Works Inc., Wilmington, NC, USA). The
suspension was adjusted to pH 6.5–7.0 with 1M NaOH, after
which 1% MTGase (by weight of fresh oyster) was added.
The mixture was then incubated at 30∘C for 1 h in a 5 L jar
fermenter (Korea Fermenter Co., Seoul, Korea) with stirring
at 150 rpm. After the reaction, MTGase was inactivated by
immersion in a 95∘C–100∘C water bath for 1 h. To determine
the optimum hydrolysis time and protease, the oyster protein
was hydrolyzed with each protease for 1, 2, 3, 4, 5, or 6 h
or by two-step hydrolysis using Protamex with the other
five proteases, respectively, for 1 h in the same jar fermenter.
The ratio of protease to fresh oyster was 1% for Alcalase,
Flavourzyme, Neutrase, and Protamex, 0.1% for pepsin, and
0.05% for trypsin. After inactivating the proteases in a 95∘C–
100∘Cwater bath for 1 h, themixturewas centrifuged (8,000 g,
25min, Supra 22K, Hanil Sci. Industry Co., Incheon, Korea),
after which the supernatant was ultrafiltered with a 10 kDa
membrane using a lab scale TFF system (Millipore Co.,
Billerica, MA, USA). The material with a molecular size <
10 kDa was lyophilized and stored at −20∘C until use. The
scheme and hydrolysis conditions for the preparation of
oyster hydrolysate are shown in Figure 1.

2.3. ACE Inhibitory Activity Assay. ACE inhibitory activi-
ties of the oyster hydrolysates prepared with the different
enzymatic hydrolysis conditions (Figure 1) were measured
according to the method of Wu et al. [26], with slight mod-
ifications. A sample solution (20𝜇L) was mixed with 225𝜇L
of ACE solution (0.025 units/mL), which was preincubated
at 37∘C for 10min before adding 50 𝜇L HHL (2.5mg/mL
of 0.1M borate buffer, pH 8.3 containing 0.3M NaCl). The
mixture was then incubated for 30min at 37∘C. The reaction
was stopped by adding 75𝜇L of 1M HCl, and the mixture
was centrifuged at 8,160 g (Micro 17TR, Hanil Sci. Industry
Co., Incheon, Korea). The amount of hippuric acid (HA) in
the supernatant was determined by reversed-phase HPLC
(Shimadzu, Kyoto, Japan) on C18 (5 um, 4.6 × 250mm).
The IC

50
value was calculated as the inhibitor concentration

required for inhibition of 50% of the ACE activity. The
percentage of inhibition of the enzyme activity was calculated
as follows:

% inhibition activity = [
HAcontrol −HAsample

HAcontrol
] × 100%.

(1)

2.4. Purification of the ACE Inhibitory Peptide. Oyster
hydrolysate prepared at the optimized enzymatic condition
was dissolved in 20mM Tris-Cl, pH 8.0 buffer, and the ACE
inhibitory fraction was eluted using a HiLoad Q-Sepharose
column (16 × 100mm). Elution was performed using a linear
gradient system from solvent A (20mM Tris-Cl, pH 8.0)
to solvent B (20mM Tris-Cl, pH 8.0 containing 0.75M
NaCl) over 100min at a flow rate of 1mL/min and detected
at 254 nm. Every 2mL fraction was collected, and ACE
inhibitory activities were determined. Fractions with high
ACE inhibitory activity were pooled and concentrated using
an Amicon stirred cell with a 1 kDa membrane. The concen-
trated fractions (< 1 kDa) were loaded on a Superdex peptide
column (10 × 300mm) and eluted with 20mMTris-Cl, pH 7.5
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Figure 1: Scheme for preparation of the oyster hydrolysate. Proteasea: the ratio of protease to fresh oyster was 1% for Alcalase, Flavourzyme,
Neutrase, and Protamex, 0.1% for pepsin, and 0.05% for trypsin; proteaseb: the ratio of protease to fresh oyster was 1% for Alcalase,
Flavourzyme, and Neutrase, 0.1% for pepsin, and 0.05% for trypsin; ∗: the pH for Alcalase, Flavourzyme, Neutrase, Protamex, and trypsin
was 6.5–7.0; the pH for pepsin was 2.0.

at a flow rate of 0.5mL/min. Detection was then carried
out at 216 nm. Each 1mL fraction was collected, and ACE
inhibitory activities were detected. Fractions with high ACE
inhibitory activity were dried completely in a speed vacuum
concentrator (ScanSpeed 40, LaboGene Aps, Denmark) and
applied to the reversed-phase column for further purification.

Active fractions were dissolved in 0.1% TFA in water and
fractionated using theAKTApurifier system (GEHealthcare)
with a Source 5RPC ST column (4.6 × 150mm). Elution was
performed using a linear gradient system from solvent A
(0.1% TFA in water) to solvent B (0.1% TFA/60% ACN) over

90min at a flow rate of 1mL/min and detected at 216 nm.The
column was equilibrated with solvent A, after which 50𝜇L of
sample was applied to the column and elution was carried as
follows: two column volumes of solvent A, fourteen column
volumes of solvent A-B gradient, four column volumes of
solvent B, and four column volumes of solvent A.Thepurified
ACE inhibitory peptides were dried in a speed vacuum
concentrator for amino acid sequence identification.

2.5. Amino Acid Sequence Identification and Synthesis of
Peptides. The sequence of peptides was analyzed by the
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Edman method using a 491 Protein Sequencer (Applied
Biosystems, Foster City, CA,USA).Themolecularmass of the
peptides was determined by an AB SCIEX API 3200 QTRAP
mass spectrometer (AB SCIEX, Framingham, MA, USA).
The peptides were subsequently synthesized using the solid-
phase method at GL Biochem Co. (Shanghai, China). The
purities of the synthesized peptides were >95.8%, confirmed
by reversed-phase HPLC analysis.

2.6. ACE Inhibitory Activity and HepG2 Cell Toxicity of
the Synthetic Peptides. The ACE inhibitory activities of the
synthetic peptides were measured, and the cell toxicity was
evaluated by cell viability testing on the hepatocyte cell
line HepG2. HepG2 cells were cultured in MEM medium
containing 10% fetal bovine serum. Ninety-six well plates
containing 1 × 104 cells per well were incubated at 35∘C
for 24 h under 95% humidity and 5% CO

2
. After incuba-

tion, the synthetic peptides were added (final concentration,
200𝜇g/mL) and cells were incubated under the same condi-
tions for an additional 24 h. Cell growth was assessed with
the CellTiter 96 Aqueous One Solution Cell Proliferation
Assay kit (Promega, Madison,WI, USA) and absorbance was
determined with a microplate reader (Perkin Elmer 1420,
VICTOR X Multilabel Plate readers, Waltham, MA, USA)
at 490 nm. Cell viability was calculated as the percentage of
absorbance of the synthetic peptide-treated groups compared
with that of the untreated group (100% viability).

2.7. Animal Studies. Spontaneously hypertensive rats
(SHR) with systolic blood pressure (SBP) between 170 and
190mmHg and original strain Wistar Kyoto rats (WKR)
with SBP between 100 and 125mmHg were purchased from
Harlan, USA (Indianapolis, USA). All rats were treated
in accordance with Kyung Hee University guidelines for
the care and use of laboratory animals. The animals were
individually housed in stainless steel cages and adapted to
23 ± 1

∘C and humidity of 55 ± 5% under a 12 h light-dark
cycle. The 12-week-old rats were fed a pelletized commercial
chow diet for a period of 1 week after arrival and then
randomly divided into five groups: untreated SHR control
group (𝑛 = 3); normal WKR control group (𝑛 = 3); oyster
hydrolysate-treated SHR group (100mg/kg body weight,
𝑛 = 3); sardine hydrolysate-treated SHR group (positive
control, 100mg/kg body weight, 𝑛 = 3); and Captopril-
treated SHR group (positive control, ACE inhibitor; 8mg/kg
body weight, 𝑛 = 3). After intragastric administration of
the samples using Sonde, SBP of the rats was measured by
a Coda noninvasive blood pressure system (Kent Scientific
Corporation, Baltimore, USA) using the tail-cuff method
after prewarming for 30min in an environmental chamber
of 32∘C at 0, 3, 6, 9, 12, and 24 h. Subsequent measurement of
blood pressure was expressed as a percentage of that at the
initial time.

2.8. Statistical Analysis. Data were expressed as the mean
with standard deviation of triplicate determinations. Analysis
of variance was carried out by the Tukey HSD test using
the JMP 10 package (SAS Institute, Carry, NC). Probability
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Figure 2: The IC
50

values of ACE inhibition of the oyster
hydrolysates according to proteases used and hydrolysis time.

values less than 5% (𝑃 < 0.05) were considered statistically
significant.

3. Results and Discussion
3.1. Comparison of Protease Treatments for Preparation of the
Oyster Hydrolysate. The IC

50
values of ACE inhibition of the

oyster hydrolysate differed greatly with the variation of pro-
teases and hydrolysis time.The Protamex-treated hydrolysate
showed the highest ACE inhibitory activity when hydrolyzed
at 40∘C for 1 h, as demonstrated by the lowest IC

50
values of

1.49mg/mL (Figure 2). In previous studies, the most potent
ACE inhibitory activities were found for Alcalase-treated
squid gelatin [7], thermolysin-treated bonito muscle [27],
pepsin-treated tuna dark muscle [9], and Protamex-treated
hard clam meat [28]. These collective results suggest that the
ACE inhibitory activity of a hydrolysate depends on the type
of protease and the protein used as the substrate.

The ACE inhibitory activity was most improved by two-
step hydrolysis with Protamex and Neutrase, demonstrating
higher activities than hydrolysates prepared with one-step
hydrolysis and two-step hydrolysis with the other proteases
(Figure 3). In a previous study by Jang and Lee [29], the high-
est ACE inhibitory activity of an enzymatic hydrolysate from
sarcoplasmic protein of beef resulted from the combination of
thermolysin and proteinase A. Moreover, gelatin hydrolysate
from the sequential treatment of sea cucumber with brome-
lain and Alcalase also showed high ACE inhibitory activity,
with an IC

50
value of 0.35mg/mL [30]. Based on the results

above, the two-step hydrolysis with Protamex and Neutrase
was chosen as the optimum condition to prepare the oyster
hydrolysate.

3.2. Purification of ACE Inhibitory Peptides. The oyster
hydrolysate prepared at the optimum condition was sepa-
rated into eight fractions using a Q-Sepharose ion-exchange
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Figure 4: Purification scheme of the oyster hydrolysate and ACE inhibition activity of the fractions from ion-exchange, size exclusion, and
reversed-phase chromatography. The numbers in parenthesis presented the ACE inhibitory activity of the fractions.

column. Relatively high ACE inhibitory activities were
observed in three fractions: 2, 3, and 4 (Figure 4). A typical
chromatogram of the purification procedure is shown in
Figure 5. ACE inhibitory activities of these three fractions
were 4.0%, 4.9%, and 6.7%, respectively. The three active
fractions were then divided further (Frac. 2-1, 2-2, and 2-
3; Frac. 3-1 and 3-2; and Frac. 4-1, 4-2, and 4-3, resp.).
Among these, five fractions (Frac. 2-1, 2-2, 2-3, 3-2, and 4-
2) had high ACE inhibitory activities, in the range of 15.0%–
19.0%. The pooled ACE active fractions from size exclusion
chromatography were further purified by a Source 5RPC
ST reversed-phase column. Five fractions with high ACE
inhibitory activity were obtained: Frac. 2-1-3, 2-2-2, 2-3-2,
3-2-2, and 4-2-1, having increased activities in the range of
26.5%–44.3%.

3.3. Amino Acid Sequence Identification and Toxicity of ACE
Inhibitory Peptides. To identify the purified peptides, the
active fractions (Frac. 2-1-3, 2-2-2, 2-3-2, 3-2-2, and 4-2-
1) were subjected to automated Edman degradation and
mass spectrometry. Manual analysis yielded the peptides
sequences as FYN (442.5Da), TAY (353.4Da), KY (309.4Da),
VK (245.3Da), and YA (252.3Da), respectively. The mass
spectra of Frac. 4-2-1 (YA) are shown in Figure 6 as an
example; the𝑚/𝑧 value of [M + H]+ (253.7Da) matched well
with the molecular weight of YA, 252.3Da.

As a final step, the identified peptides of interest were
synthesized using the solid-phase method.The IC

50
values of

the synthetic peptides TAY, VK, KY, FYN, and YA were sub-
sequently measured to be 16.7, 29.0, 51.5, 68.2, and 93.9 𝜇M,
respectively (Table 1). Cell viabilities in the HepG2 cell line
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Figure 5: Separation procedures of ACE inhibitory peptides by ion-exchange (a), size exclusion (b), and reversed-phase chromatography
(c). Ion-exchange chromatography was performed with a linear gradient of 20mM Tris-Cl containing 0.75M NaCl, pH 8.0 on a HiLoad
16/10 Q-Sepharose column (16 × 100mm) for 100min at a flow rate of 1mL/min. Size exclusion chromatography was performed with 20mM
Tris-Cl, pH 7.5 on a Superdex peptide (10 × 300mm) column at a flow rate of 0.5mL/min. Reversed-phase chromatography was performed
on a Source 5RPC ST column (4.6 × 150mm). Eluent A consisted of 0.1% TFA/water (v/v), and eluent B was 0.1% TFA/60% acetonitrile (v/v)
with a linear gradient for 90min at a flow rate of 1mL/min.
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Table 1: IC50 values of ACE inhibition of the synthetic peptides and
cell viability of HepG2 cell line treated with the synthetic peptides.

Peptide IC50 (𝜇M) Cell viability (%)a

TAY 16.7 105.1 ± 1.9
VK 29.0 117.5 ± 15.1
KY 51.5 118.2 ± 7.0
FYN 68.2 109.5 ± 3.0
YA 93.9 103.8 ± 7.7
aDeionizedwater was used as control; the final concentration of the synthetic
peptides was 200𝜇g/mL.
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ranged from 103.8 ± 7.7% to 117.5 ± 15.1% after treatment
with the synthetic peptides copied from those in the oyster
hydrolysate up to a concentration of 200𝜇g/mL, compared to
treatment with deionized water as a control (Table 1). These
results suggested that the synthetic ACE inhibitory peptides
had no toxicity for HepG2 cell line.

The molecular weights of the peptides were in the range
of 200Da to 500Da, and all were composed of two or three
amino acid residues.This was in compliance with our goal for
the purification of small ACE inhibitory peptides from oyster
hydrolysates. Because biological barriers demonstrate high
diffusive resistance towards the uptake of large molecules,
suitable carrier systems rarely exist. The absorption or per-
meation of molecules, havingmore than 5H-bond donors, 10
H-bond acceptors, or amolecular weight greater than 500Da,
has been shown to be poor [31]. Pihlanto-Leppälä et al. [32]
found that ACE inhibitory activity was higher in fractions
having a molecular weight less than 1 kDa, which coincided
with our results.
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Moreover, the five peptides identified in this study all
contained hydrophobic amino acid residues. Cheung and Li-
Chan [33] reported that a fraction of shrimp hydrolysate
which contained many hydrophobic residues showed strong
ACE inhibitory activity.The results of Pripp et al. also showed
a positive relationship between having a hydrophobic amino
acid in the C-terminal position and the ACE inhibition of
peptides [34].

3.4. Antihypertensive Activity of the Oyster Hydrolysate In
Vivo. Antihypertensive activities of oyster hydrolysate were
evaluated by measuring the SBP of SHR at 0, 3, 6, 9, 12, and
24 h after oral administration (Figure 7). SHRwere developed
by Okamono and Aoki by selective breeding of WKR with
high blood pressure, while the normotensive WKR were
employed as control for SHR [35]. The SHR model has been
extensively used to investigate antihypertensive drugs in vivo
[17, 36]. There was no significant change of SBP during 24 h
for either the SHR or WKR controls. The SBP of the SHR
significantly decreased 3 h after administration of the whole
oyster hydrolysate and the antihypertensive activity lasted up
to 12 h after administration, compared to the WKR control
(𝑃 < 0.05), which had initial SBP in the range of 62.0 ± 5.6%
to 65.5 ± 6.2%. Sardine hydrolysate and Captopril were used
as positive controls. The SBP of the SHR was significantly
lowered 9 h after administration of the sardine hydrolysate
and the antihypertensive activity continued up to 12 h after
administration compared to the WKR control (𝑃 < 0.05).
However, the maximum decrease in SBP by Captopril was
observed 12 h after administration, which was 85.3 ± 4.5%
of the initial SBP (Figure 7). Captopril had a slight effect on
the SBP of SHR but the antihypertensive activity was not
significant (𝑃 = 0.33), which may be due to the small dosage
administered [36]. Compared to sardine hydrolysate, the
antihypertensive effect of the oyster hydrolysate on SHR was
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rapid and long-lasting. These results indicate that the whole
oyster hydrolysate can be used as a source of nutraceuticals
for antihypertension.

4. Conclusions

This study demonstrated that the ACE inhibitory activity
of the MTGase-cross-linked oyster protein can be signifi-
cantly improved by a two-step hydrolysis with Protamex and
Neutrase. Five ACE inhibitory peptides were purified and
identified from the oyster hydrolysate using ion-exchange,
size exclusion, and reversed-phase chromatography. The
oyster hydrolysate showed high antihypertension effect in
vivo compared to sardine hydrolysate. It is, thus, possible to
produce natural and effective antihypertensive products from
oyster through enzymatic hydrolysis. Such oyster hydrolysate
can be utilized as a nutraceutical or functional food, and the
purified ACE inhibitory peptides have the potential for use as
lead compounds of an antihypertension drug. Further work,
including analysis of the physicochemical properties and
quality control parameters for the hydrolysate, is in progress
and will be reported.
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