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Abstract

Smith and Minda (1998) and Blair and Homa (2001) studied the time course of category learning

in humans. They distinguished an early, abstraction-based stage of category learning from a later

stage that incorporated a capacity for categorizing exceptional category members. The present

authors asked whether similar processing stages characterize the category learning of nonhuman

primates. Humans and monkeys participated in category-learning tasks that extended Blair and

Homa’s paradigm comparatively. Early in learning, both species improved on typical items more

than on exception items, indicating an initial mastery of the categories’ general structure. Later in

learning, both species selectively improved their exception-item performance, indicating

exception-item resolution or exemplar memorization. An initial stage of abstraction-based

category learning may characterize categorization across a substantial range of the order Primates.

This default strategy may have an adaptive resonance with the family-resemblance organization of

many natural-kind categories.
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Learning and using categories is a basic cognitive function for animals and humans. Thus,

categorization has been a focus in animal research (Cerella, 1979; Chase & Heinemann,

2001; D’Amato & van Sant, 1988; Herrnstein, Loveland, & Cable, 1976; Jitsumori, 1994;

Lea & Ryan, 1990; Pearce, 1988; Roberts & Mazmanian, 1988; Smith, Minda, & Washburn,

2004; Thompson & Oden, 2000; Vauclair, 2002; Wasserman, Kiedinger, & Bhatt, 1988) and

human research (Ashby & Maddox, 2005; Brooks, 1978; Knowlton & Squire, 1993;

Kruschke, 1992; Minda & Smith, 2002; Murphy, 2003; Nosofsky, 1987; Rosch & Mervis,

1975).

Some early categorization theories assumed that organisms apply a unitary category-

learning system to all category problems. Different descriptions were offered for this

system. Some hypothesized that learners average their exemplar experience into the

category prototype and compare new items to this in judging category membership (e.g.,

Correspondence concerning this article should be addressed to J. David Smith, Park Hall, University at Buffalo, the State University
of New York, Buffalo, NY, 14260, or to psysmith@buffalo.edu.

NIH Public Access
Author Manuscript
J Exp Psychol Anim Behav Process. Author manuscript; available in PMC 2014 August 12.

Published in final edited form as:
J Exp Psychol Anim Behav Process. 2010 January ; 36(1): 39–53. doi:10.1037/a0016573.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Reed, 1972). Others hypothesized that learners store category exemplars as separate memory

representations and compare new items to these (e. g., Medin & Schaffer, 1978).

However, categorization is probably not so simple and unitary. In fact, from an adaptive/

fitness standpoint, categorization is likely an important enough capacity to deserve (and

receive) redundant and varied expression in cognition. There is now strong evidence that

something like exemplar memory dominates categorization under some circumstances

(Medin & Schwanenflugel, 1981; Minda & Smith, 2001). There is also strong evidence that

animals and humans sometimes use prototype representations in categorization (Aydin &

Pearce, 1994; Huber & Lenz, 1993; Jitsumori, 1996; Knowlton & Squire, 1993; Smith,

Redford, & Haas, 2008a; Reber, Stark, & Squire, 1998a,b; Reed, 1972; von Fersen & Lea,

1990; White, Alsop, & Williams, 1993).

As a result, a multiple-systems theoretical perspective has become an important part of the

human categorization literature (Ashby & Ell, 2001; Ashby, Alfonso-Reese, Turken, &

Waldron, 1998; Erickson & Kruschke, 1998; Homa, Sterling, & Trepel, 1981; Love, Medin,

& Gureckis, 2004; Minda & Smith, 2001, Rosseel, 2002; Smith & Minda, 1998), based on

the idea that organisms have multiple categorization utilities that learn different statistical

features of the repeating and differentiating environment. For example, the dominant process

in categorization depends on the number of exemplars in categories (Homa et al., 1981;

Minda & Smith, 2001). As categories contain few or many exemplars, respectively,

participants modally encode either separate, individuated exemplar traces (in a process akin

to exemplar memorization) or the central tendency of the exemplars (in a process akin to

prototype abstraction). The dominant process in categorization also depends on the

perceptual coherence of categories (Blair & Homa, 2003; Smith & Minda, 1998). As

category members have a weak family resemblance (barely resembling each other more than

they do opposing category members) or strong family resemblance (with the central

tendency of the exemplars providing a clear and useful categorization signal), exemplar

processes or abstraction processes, respectively, become more prominent. All in all, the

multiple-systems perspective has profoundly enriched the human categorization literature.

However, this new perspective has not been extended fully to the comparative categorization

literature. Furthering this extension is an important goal of the present research.

This article explores another central issue in categorization science. An intuitive view of

categories is that category members form a cloud of exemplars that are overall similar to one

another as family members of the category. This exemplar cloud is a central image in the

categorization literature. These family-resemblance categories do not have exceptional

members with a strong pull to membership in an opposing category. These categories are

linearly separable, because one of these exemplar clouds can be cleanly separated from

another using a linear discriminant function. In fact, these categories can be effectively

learned and used just by abstracting the central tendency of the exemplars. No special

process is needed for exception items.

It is a fundamental question whether humans and animals learn linearly separable categories

most easily and naturally. The answer bears on how organisms learn and represent

categories. For example, if organisms abstract prototypes, they will show a linear
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separability constraint and they might be unable to learn exceptional category members. Yet,

in seminal human research, Medin and Schwanenflugel (1981) found equal learning for both

linearly separable (LS) and non linearly separable (NLS) categories. Medin and

Schwanenflugel carefully constrained their interpretations. The small categories used in their

studies could have encouraged learning through exemplar memorization for the reasons

already described. In fact, Blair and Homa (2003) showed that such categories are

sometimes learned, not as coherent families of related exemplars, but rather as a series of

individual stimulus-response pairings. In addition, participants learned poorly the matched

LS and NLS category tasks in the original research. Smith, Murray, & Minda (1997) showed

that these tasks sampled only one small region—an inherently difficult region—of the whole

space of category tasks. Showing that very difficult LS and NLS categories are equally

minimally learnable is different from showing that LS and NLS categories—generally—are

equally learnable.

Taking another approach to this problem, Smith and Minda (1998) showed that different

processes dominate categorization at different stages of category learning. They found that

humans often pass through an extended stage of category learning that is consistent with an

LS assumption about categories. Early in category learning, humans performed highly

accurately on typical category members—indicating an initial mastery of the categories’

general structure—but below chance on exceptional category members. During this stage, a

formal prototype model fit participants’ data closely. Later in category learning, humans

improved selectively and sharply in their performance on exception items, indicating

exception-item resolution or memorization. At that point, a formal exemplar model fit

participants’ data closely. Smith and Minda suggested that secondary exemplar processes

finally supplemented category-level knowledge. Evaluating whether the same stages of

category learning characterize category learning by nonhuman primates is a principal

empirical goal of the present research.

Blair and Homa (2001) extended the findings of Smith and Minda (1998) to test humans

with the dot-distortion categorization paradigm that has been so influential (Posner,

Goldsmith, & Welton, 1967; Knowlton & Squire, 1993; Homa et al., 1981; Smith & Minda,

2002). Their work suggested the paradigm used here to test the monkeys. In one experiment,

Blair and Homa (2001) assayed participants’ performance on a four-category learning task

in which each category had six typical category members and three exceptional category

members. The exceptions in each category were actually typical members of the three

opposing categories, but they were assigned and reinforced across categories according to

their roles as exceptions. Blair and Homa asked whether participants could learn to override

the perceptual resemblance of these exceptions to opposing prototypes and treat them

particularly and individually, or whether they were constrained to respond in accordance

with prototype similarity by incorrectly placing the exceptions in their prototype-congruent

category. A great majority of participants responded poorly on the exception items because

they responded obediently to prototype similarity. Only a small minority finally learned late

in the experiment to treat the exception items idiosyncratically and thus categorize them

correctly.

Smith et al. Page 3

J Exp Psychol Anim Behav Process. Author manuscript; available in PMC 2014 August 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Experiment 1A in the present article replicates this finding by Blair and Homa (2001) with

humans, providing additional evidence for the LS assumption in human category learning.

Then, Experiment 1B demonstrates that the LS assumption persists within a simplified

paradigm. Experiment 2 extends Experiment 1B’s paradigm comparatively, analyzing the

performance of three monkeys (Macaca mulatta).This may provide evidence that the LS

assumption in early category learning has some breadth across the order Primates.

To be fair, Smith and Minda (1998) and Blair and Homa (2001) confirmed an LS

assumption in category learning, not an irremediable LS constraint. These researchers

focused on natural predispositions and initial approaches to category tasks. In contrast,

Medin and Schwanenflugel (1981) focused on ultimate limits and learnability. These

researchers showed that, after hundreds of trials, exception items are learned by many

participants. The focus on ultimate limits is important, and it is feasible because categorizing

undergraduates can err and learn indefinitely with no cost or risk.

Animals cannot. Moreover, in some situations, the LS assumption could itself sharply limit

learnability. Suppose that in the natural ecology, organisms encountered NLS categories,

made the LS assumption, and systematically erred on exception items—eating the

exceptional toadstool that resembles a mushroom; grazing next to the exceptional predator

(the wolf in sheep’s family resemblance). In these cases, the LS assumption would constrain

learnability, because a coping organism is not allowed multiple poisonings or multiple

predator-recognition mistakes. The LS assumption could effectively render ecological NLS

categories unlearnable, or too risky to engage in a learning process.

This example makes plain that ecological and foraging/survival considerations are part of

our overall theoretical perspective. What kind of categories have organisms been prepared

by evolution to find most learnable? What kind of categories do they typically encounter in

the natural ecology? How well is their overall categorization capacity tuned for what the

world sends their way? In our view, these questions, and the ecological perspective behind

them, are critical to a full understanding of the ancestral primate category system from

which that of humans emerged. They also provide a useful context for understanding the

behavior of humans and monkeys in the present category tasks. This ecological perspective

seems not to have been acknowledged sufficiently in the human categorization literature,

and this is an area in which the comparative categorization literature has a distinctive

contribution to make.

Experiment 1A: Humans

Following Smith and Minda (1998) and Blair and Homa (2001), Experiment 1A evaluated—

in humans—the relative strengths of the LS assumption and immediate feedback signals on

the categorization of exception items in a category-learning task. We expected that the LS

assumption would dominate early on, as abstraction processes placed exception items into

opposing categories despite the task’s feedback signals. We expected that feedback signals

would dominate late in category learning, as exemplar-specific processes finally resolved

the exceptions and let them be treated individually and categorized correctly.
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Method

Participants—Participants were 40 undergraduates from the University at Buffalo, the

State University of New York, who participated in a session lasting about an hour to fulfill a

course requirement. Our participant pool contained slightly more women than men.

Participants were in their late teens or early twenties with apparently normal or corrected-to-

normal visual acuity. The approximate racial mix of our participant pool was 69%

Caucasian, 17% Asian, 9% African-American, and 5% Other. As a tool to increase

performance motivation, the top scorers were awarded cash prizes in the experiment.

Dot-pattern stimuli—The dot-distortion stimuli were created with a common method that

creates families of dot patterns from prototypes. Nine random points—the prototype—were

selected from within the central 30 × 30 area of a 50 × 50 grid. The distortions (the family

members) were produced by applying probabilities that govern whether each dot would keep

the position it had in the prototype or how far it would be moved. These distortions were

generally perceptually similar to one another and to their originating prototype.

Specifically, distortions were built from prototypes by probabilistically moving each dot into

one of five areas that covered the 20 × 20 grid of pixels that surrounded it. For Area 1, the

dot kept its original position. For Area 2, the dot moved to one of the 8 pixel positions in the

first ring of pixels immediately around its original position. For Area 3, the dot moved to

one of the 16 pixel positions in the second concentric ring of pixels around its position. For

Area 4, the dot was moved into one of the 75 pixel positions in the third, fourth, and fifth

concentric rings of surrounding pixels. For Area 5, the dot was moved into one of the

remaining 300 pixel positions in the surrounding 20 × 20 pixel grid (i.e., to the 5th, 6th, 7th,

8th, 9th, or 10th concentric ring of pixels around the dot’s original position). All dot-

distortion stimuli used in Experiment 1A were Level 5 distortions (5 bits/dot of uncertainty

in the original formulation of Posner et al., 1967), or what are called low-level distortions.

For these distortions, the probability that dots would move into each of the five areas was,

respectively, .20, .30, .40, .05, and 05.

With the dot positions chosen for a pattern, the DrawPoly procedure in Turbo Pascal 7.0

connected successive dots by yellow lines. This followed one common practice for

presenting dot-distortion stimuli (Homa, Rhoads, & Chambliss, 1979; Homa et al., 1981). In

addition, the shape constellation was magnified to be more visible and to approximate the

size traditionally used for these shapes. To do so, each pixel position in the distortion

algorithm was mapped to a 3 × 3 pixel square on the screen, and the dot was placed in the

center of the appropriate 9-pixel cell. In this way, the stimulus patterns were magnified

threefold from being drawn in a virtual 50 × 50 coordinate space to being shown on an

actual 150 × 150 pixel space on the screen (about 7.7 cm at maximum, viewed from a

distance of about 45 cm and so with a visual angle of about 9.8°).

Category prototypes—Four prototypes were used in the construction of each four-

category task. Eight sets of four prototypes were randomly constructed. One of these eight

sets was used for the task of each participant as randomly determined by their sequential

participant number. The use of multiple prototype sets made the experiment a more
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generalizeable statement about exception-resolution processes in the categorization of dot

distortions.

Category structures—The stimuli were members of four categories. All stimuli were

low-level distortions of one of the four prototypes in a prototype set. Nine of these

distortions were produced from each prototype. Six of these distortions were kept together to

constitute a prototype-based family of exemplars. To these six were added one distortion

produced from each of the three opposing prototypes. This produced four nine-exemplar

categories containing six typical instances and three exceptional instances that could have

been a typical exemplar of some other category. An example of one of these stimulus sets

can be seen in Figure 1. In each category group of exemplars, the first two rows contain

typical items, and the third row contains the exceptions that reflect their derivation from the

prototypes of the other categories.

The stimuli chosen for each category were constrained in their distance relationship to their

originating prototype. Following the psychophysics of dot-pattern perception established in

Posner et al. (1967) and Smith and Minda (2001, 2002), our operating measure of

interstimulus distance was based on the average Pythagorean distance that corresponding

dots were moved between dot-distortion patterns. We set inter-stimulus distance equal to ln

(1+average Pythagorean distance). This measure is now standard in studies of dot-distortion

perception and categorization, and it has been shown to sensitively predict both humans’ and

animals’ responses to dot-distortion patterns (Smith et al., 2008a,b). All exemplars were

constrained to be 1.09+- 0.05 distance units from their originating prototype, and thus they

were all precisely normal low-level distortions (1.09 is the mean distance of low-level

distortions from their originating prototype).

Dot-distortion trials—Each trial consisted of one shape presented in the center of the top

half of a computer screen against a black background. Below the shape were the four

response icons—A, B, C, and D—arranged clockwise from West to South in 90° intervals.

Responses were made by moving the cursor to one of the response icons using one press of

the appropriate arrow keys (A-Left; B-Up; C-Right; D-Down. The key press moved the

cursor on the screen to the appropriate response icon, acknowledging the participant’s

response. Following a correct response, participants heard an 0.5 s computer-generated

reward whoop and their score (shown in a text box in the upper left-hand corner of the

screen) was incremented by one. Following an error, they received a 1.0 s computer-

generated buzzing sound and their score was decremented by 1. In addition, they were

prompted about the correct response on that trial. That is, all the incorrect response icons

disappeared and they were forced to complete the trial by making the correct response. They

received no feedback sound or point adjustment for this correction procedure. Following

feedback and/or the correction procedure, the next trial was presented.

Instructions—Participants received the following instructions: In this experiment you will

see yellow patterns which belong to one of four categories of shapes. Move the cursor to the

“A” if you think the shape belongs to category A. Move the cursor to the “B” if you think

the shape belongs to category B. Move the cursor to the “C” if you think the shape belongs

to category C. Move the cursor to the “D” if you think the shape belongs to category D. You
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will hear a whoop sound and GAIN A POINT for each correct response. You will hear a

buzz sound and LOSE A POINT for each incorrect response. If you are incorrect, the

computer will prompt you to make the response that would have been correct. This week, a

&amp;dollar;10 prize goes to the two people who earn the most points.

Procedure—Each participant was tested individually, after being randomly assigned to a

set of prototypes. Stimuli were presented on a computer screen in blocks of 36 trials—each

block was a random permutation of the 36 stimuli in the task (9 stimuli in 4 categories).

Successive blocks were presented without any break that could have been apparent to

participants. Participants completed 900 trials (25 blocks of 36 stimuli).

Results

The aggregate performance of all participants is shown in Figure 2A. The Typical (T) curve

and Exception (E) curve, respectively, represent the proportion of typical items (6 per

category) and exception items (3 per category) that were placed into the correct category.

The LS curve is discussed momentarily.

A two-way analysis of variance (ANOVA), with trial block (1–25) and stimulus type

(typical, exception) as within-subject factors, found a significant main effect for both trial

block, F (24,936) = 37.323, p < .001 and stimulus type, F (1,39) = 135.017, p < .001.

Participants improved their performance over trial blocks and performed better on typical

items than on exception items. The interaction between trial block and stimulus type, F

(24,936) = 6.081, p < .001, indicated that participants improved differentially on typical and

exception items. A dramatic performance improvement on the typical items occurred over

the first half of the experiment (from 35% in the first trial block to 73% in the 13th block).

During this time there was little change in exception performance (from 18% in the first trial

block to 22% in the 13th block), with exception performance still below chance level (25%)

halfway through the experiment. Over the second half of the experiment, from blocks 13–

25, typical-item performance improved (from 73% to 80% correct) but by less than did

exception-item performance (from 22% to 33% correct).

Figure 2A provides an additional perspective on the data. The errors made on exception

items were not random. Curve LS shows the proportion of exception items on which

participants ignored ongoing feedback in the task and instead placed the exception items

with the other exemplars that had the same originating prototype. By this reassignment—

toward linearly separable categories and away from the task’s feedback signals—

participants confirmed that they were making an LS assumption. Curve LS shows that for

about 7 36-trial blocks, or 252 trials, participants placed the exception items and the typical

items equivalently strongly into the category of their proper family resemblance. For 252

trials, feedback had essentially no effect on category learning. In fact, the LS assumption

remained strong at the experiment’s end. Participants were still making incorrect and

systematically penalized LS responses to 50% of the exception items. Consequently,

participants were only 33% correct on the exception items, barely above chance after 900

trials.

Smith et al. Page 7

J Exp Psychol Anim Behav Process. Author manuscript; available in PMC 2014 August 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



In all, the 40 participants in Experiment 1A made 6,388 errors that were obedient to their LS

assumption. This level of errors would be disastrous in a foraging/survival categorization

situation. Remember also that each of these errors was accompanied by an additional focal

experience with the correct stimulus-response pairing during the correction procedure. This

means that LS-based errors persisted through 12,776 exemplar attempts and corrections. A

specific-exemplar process that is so resistant to feedback and correction is empirically

striking and theoretically illuminating, and we return to this issue in the General Discussion.

Participant subgroups—The LS assumption is borne out by examining group

differences in the task. Figure 2B shows the aggregate results from a subgroup of 20

participants. These participants never overcame their LS assumption. They never reduced

below 70% their tendency to classify the exception items incorrectly based on family

resemblance. They never reached chance performance on exception items. In contrast,

Figure 2C shows the aggregate results from a subgroup of 8 participants. These participants

overcame their LS assumption. Their tendency to respond wrongly based on family

resemblance weakened after Block 7. Their ability to categorize exception items correctly—

in accordance with the task’s feedback—rose after Block 7. Thus, some humans overcame

their LS assumption in category tasks, as Medin and Schwanenflugel (1981) asserted, and

perhaps all participants would have eventually. However, notice that even these participants

made a strong LS assumption for the first 7 blocks (252 trials) of the task, just as all

participants did. Their response to feedback signals did not outweigh their response to

family resemblance until Block 16 in the task, after 540 trials.

Experiment 1B Humans

Experiment 1A recreated the categorization phenomena found in humans by Blair and Homa

(2001) and, with other category stimuli and tasks, by Smith and Minda (1998). We were

concerned that a four-category task would cause training and testing difficulty for the

monkeys, given the memory load and the complexity of the response mappings. Therefore,

we sought for the monkeys a simplified version of the previous experiment that would

produce the same phenomena. That simplified paradigm was evaluated with humans in

Experiment 1B.

Method

Participants—Forty UB undergraduates participated from the participant pool already

described.

Dot-pattern stimuli—The method already described for creating dot-distortion stimuli

was used again.

Category prototypes—Two prototypes were used in the construction of each two-

category task. One of eight prototype pairs was used for the task of each participant, based

on their sequential participant number.

Category structures—The stimuli were members of two categories. All stimuli were

low-level distortions of one of the two prototypes in a prototype set. Eight of these
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distortions were produced from each prototype. Six of these distortions were kept together to

constitute a prototype-based family of exemplars. To these six were added two distortions

that had been derived from the opposing prototype. This produced two eight-exemplar

categories containing six typical instances and two exceptions that could have been a typical

exemplar of the other category. An example of one of these stimulus sets can be seen in

Figure 3. In each category group of exemplars, the first two rows contain typical items, and

the third row contains the exceptions that reflect their derivation from the opposing

prototype. The exemplars chosen were constrained in their distance relationship to their

originating prototype as already described.

Dot-distortion trials—The trial stimuli were presented as already described. Now below

the stimulus were two response icons—A and B—arranged to the Left and Right of the

central cursor. Responses were made by moving the cursor to one of the response icons

using the Left or Right arrow key. All aspects of feedback and response correction were as

already described. Following feedback and/or the correction procedure, the next trial was

presented.

Instructions—Participants received the same instructions as in Experiment 1A, except that

a two-category task with two responses was indicated to them.

Procedure—Each participant was tested individually, after being randomly assigned to a

set of prototypes. Stimuli were presented on a computer screen in blocks of 16 trials—each

block was a random permutation of the 16 stimuli in the task (8 stimuli in 2 categories).

Participants completed 800 trials (50 blocks of 16 stimuli).

Results

A two-way analysis of variance (ANOVA), with trial block (1–50) and stimulus type

(typical, exception) as within-subject factors, found a significant main effect for both trial

block, F (49,1911) = 25.629, p < .001 and stimulus type, F (1,39) = 84.570, p < .001.

Participants improved their performance over trial blocks and performed better on typical

items than on exceptions (T and E curves in Figure 4A). The interaction between trial block

and stimulus type, F (49,1911) = 3.694, p < .001, indicated that participants improved

differentially on typical and exception items. From Blocks 1–15, performance improved

25% on typical items (59% to 84% correct) but only 16% on exception items (31% to 47%

correct). From Blocks 15 to 50, performance improved 27% on exception items (47% to

74% correct) but only 6% on typical items (84% to 90% correct).

Figure 4A provides an additional constructive perspective on the data. Curve LS shows the

proportion of exception items on which participants ignored the ongoing feedback in the

task and instead placed the exception items with the other exemplars that had the same

originating prototype. In this two-category task, the LS curve is the complement of the E

curve. Participants again made a strong LS assumption early in the task, in opposition to its

feedback signals. They did not improve their exception-item performance until Block 9,

after 128 trials in the task. They were unable to respond more strongly to the task’s feedback

signals than the task’s family-resemblance signals until Block 20, after 304 trials in the task.
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In all, the 40 participants in Experiment 1B made 3,488 (44%) errors in category assignment

on exception items, despite the fact that each of these errors was followed by a deliberate

correction procedure. Once again, this level of errors would be a serious matter for a coping

organism.

Participant subgroups—The idea of the LS constraint is also borne out on examining

subgroup differences in the task. Figure 4B shows the performance of a group of 5

participants. This graph—showing 5 participants categorizing 4 exceptions per block—

produces noisier LS and E curves. But one still sees that these participants never overcame

their LS assumption. On average, they classified 70% of exceptions in accordance with the

task’s family-resemblance relations. Consequently, they were 30% correct on exceptions,

below chance (50%). In contrast, Figure 4C shows the performance of a group of 24

participants. These participants did overcome their LS constraint in the two-category task.

Even so, they did not appreciably improve their exception-item performance until Block 9,

after 128 trials in the task. They were unable to respond more strongly to the task’s feedback

signals than the task’s family-resemblance signals until Block 15, after 224 trials in the task.

Comparing Experiment 1A and 1B—Perhaps it is intuitive that the pace of exception

resolution was quicker in Experiment 1B, and the break-even point of feedback responding

and family-resemblance responding was earlier in Experiment 1B (Block 20, after 304 trials)

than in Experiment 1A (never). Experiment 1A had more stimuli (36), more exceptions (12

or 33%), fewer stimulus repetitions (every 36 trials), and complex exception-response

mappings given a four-category task. Experiment 1B had fewer stimuli (16), fewer

exception items (4 or 25%), more stimulus repetitions (every 16 trials), and simpler

exception-response mappings because any exception item could correctly be placed into

seemingly the opposite category. Nonetheless, both experiments confirm that humans

persisted through many errors and many correction procedures in making an LS assumption

during category learning.

A Formal-Modeling Perspective

Formal models confirmed this description of human’s performance in Experiment 1B. (Blair

& Homa, 2001, extensively modeled humans’ results in the paradigm of Experiment 1A.

There was no need for duplicative modeling in that case.) This section describes the models

used here, the procedures used for fitting models to data, and the results of our formal

analyses.

The prototype model—The prototype model assumes that participants compare a to-be-

categorized item to the within prototype in the item’s own category and the between

prototype in the opposing category. The model’s comparisons incorporated the established

measure of interstimulus distance (dist) that was described above (also Posner et al., 1967;

Smith & Minda, 2001, 2002). Stimuli were 1.09 distant on average from their derivational

prototypes and 2.84 distant from opposing prototypes. These values agree with those from

previous research. Distances were transformed into estimates of psychological similarity

using an exponential-decay function that incorporated a sensitivity parameter (sens) that was

the model’s free parameter. For example, within similarity was: simwithin = e−sensXdistwithin.
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Similarities in turn were entered into the model’s choice rule:

Stronger within similarity supports correct (within) responding—typical items (similar to

their within prototype) should often be categorized correctly. Stronger between-category

similarity undermines correct responding—exception items (similar to the opposing

prototype, dissimilar within) should often be categorized incorrectly.

The exemplar model—The exemplar model assumes that participants compare a to-be-

categorized item to the 8 within exemplars in the item’s category and the 8 between

exemplars in the opposing category. The established distance metric already described was

used again. Items compared to themselves had an interstimulus distance of 0.0. Items

compared to members of the same derivational category had an interstimulus distance of

1.34. Items compared to exemplars from the opposing category had a distance of 2.88.

These values differ slightly from those in previous research due to the tight controls placed

on the present distortion algorithm to ensure homogeneous exemplar sets. These distances

were transformed into estimates of psychological similarity using the exponential-decay

function with a sensitivity parameter that was already described. Total category similarity

was the sum of 8 similarities as follows:

Typical items, within similarity: 1 perfect self-similarity, 5 strong similarities, 2 weak

similarities

Typical items, between similarity: 2 strong similarities, 6 weak similarities Exceptions,

within similarity: 1 perfect self-similarity, 1 strong similarity, 6 weak similarities

Exceptions, between similarity: 6 strong similarities, 2 weak similarities

The similarities were entered into the choice rule already described. Typical items (mainly

similar to within exemplars) and exceptions (mainly similar to between exemplars) should

often be categorized correctly and incorrectly, respectively.

Measures of fit and methods of minimization—We used standard hill-climbing

algorithms to maximize the fit (i.e., minimize the differential) between predicted and

observed typical-exception performances. We chose a starting parameter value for

sensitivity and calculated the predicted categorization probabilities for typical and exception

items on that basis. The degree of fit between the predicted and observed categorization

probabilities was the sum of the squared deviations (SSD) between them. Random

adjustments were made to the starting value and adopted if they produced a better fit (i.e., a

smaller SSD). The adjustments were small (1/10,000) and respected the parameter’s bounds

(0.0001 and 20). To ensure that local minima were not a problem, this fitting procedure was

repeated by choosing three more starting sensitivity values and climbing from there.
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Results: prototype model—Figure 5 shows the results when the prototype model was fit

to the performance of all 40 participants (A), to the performance of the five participants who

never overcame their LS assumption (B), and to the performance of the 24 participants who

overcame their initial LS assumption (C). In all cases, the model was fit to performance of

individual participants completing single blocks of trials. Then, the predicted values were

obtained by averaging the individual predictions across participants within each trial block.

One sees that early in performance participants combined highly accurate typical-item

performance with dismal exception-item performance. This is the LS constraint that has

been described. The prototype model captured this data pattern well with small fit indices

during this period. Late in performance, though, the prototype model failed qualitatively for

the group as a whole and for the group of participants who overcame their LS assumption.

Many humans finally achieved accurate typical- and exception-item performance. The

prototype model mispredicted both performance levels badly with correspondingly poor fit

indices. The prototype model showed a sharp stage change during category learning by

strongly succeeding then qualitatively failing.

Results: exemplar model—Figure 6 shows the results when the exemplar model was fit

to the performance of all 40 participants (A), to the performance of the five participants who

never overcame their LS assumption (B), and to the performance of the 24 participants who

overcame their initial LS assumption (C). One sees that the exemplar captured very poorly

the data pattern seen in the early trial blocks. That model could not both capture how well

participants were doing on typical items and how poorly they were doing on exception

items. This because the model, in predicting better typical-item performance, would raise the

level of the sensitivity parameter, which it cannot do without also predicting higher

exception-item performance. So, the model is pinned in the middle in a sense as the figure

shows. Late in performance, though, the exemplar model fit the data pattern well for the

group as a whole and for the group of participants who overcame their LS assumption. It fits

comfortably, with high values for the sensitivity parameter, the data from the many humans

who finally achieved accurate typical- and exception-item performance. The exemplar

model showed a sharp stage change during category learning by qualitatively failing then

strongly succeeding.

We stress that it is not the purpose of this article to make some one model win, or to express

any view regarding the general superiority of prototype or exemplar theory or prototype or

exemplar models. This article is about the psychology of category learning, and in particular

it is about the different learning stages that humans and animals pass through during their

acquisition of categories. Both models show the succession of stages clearly. One succeeds

then fails. One fails then succeeds. In this respect, our model fitting is model- and theory-

neutral. However, both patterns of fit converge to indicate strongly that the processes and

representations used in categorization were sharply different early and late in acquisition.

Early on, a strong LS assumption produced strong typical-item performance but terrible

exception-item performance. Later on, the LS assumption eased, and some item-specific

process strengthened, to the point of supporting strong typical- and exception-item

performance.
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This narrative would be unchanged even if one found some model that alone could fit

humans’ early and late performance profiles (see Experiment 2). This model would

necessarily do so by selecting profoundly different parameter settings that would create the

early and late performance profiles. Yet this would leave unanswered the psychological

reasons why humans entered a radically different place in parameter space in performing

during the two stages of acquisition. That question would still need a theoretical answer that

the mathematical model could not provide. It is important to realize that the mathematics in

formal models is often psychologically silent in this way. The idea of the changing balance

between the initial LS assumption and the later item-specific processes are psychologically

illuminating, and they explain the changing performance patterns in a way that models may

not.

Experiment 2: Monkeys

Experiment 2 generalizes the human phenomena to the category learning of nonhuman

primates, by examining the behavior of three rhesus monkeys (Macaca mulatta) in the

paradigm of Experiment 1B.

Method

Participants—Hank (22 years old), Lou (14 years old), and Murph (14 years old) were

tested. They had been trained, using procedures described elsewhere (Rumbaugh,

Richardson, Washburn, Savage-Rumbaugh, & Hopkins, 1989; Washburn & Rumbaugh,

1992), to respond to computer-graphic stimuli by manipulating a joystick. They had been

tested in prior studies on a variety of computer tasks. Lou and Murph had had experience

with a related categorization paradigm; Hank had not. The monkeys were tested in their

home cages at the Language Research Center of Georgia State University, with ad lib access

to the test apparatus, working or resting as they chose during long sessions. The animals

were neither food deprived nor weight reduced for the purposes of testing and they had

continuous access to water.

Apparatus—The monkeys were tested using the Language Research Center’s

Computerized Test System—LRC-CTS (described in Rumbaugh et al., 1989; Washburn &

Rumbaugh, 1992)—comprising a Compaq DeskPro computer, a digital joystick, a color

monitor, and a pellet dispenser. Monkeys manipulated the joystick through the mesh of their

home cages, producing isomorphic movements of a computer-graphic cursor on the screen.

Contacting appropriate computer-generated stimuli with the cursor brought them a 94-mg

fruit-flavored chow pellet (Bio-Serve, Frenchtown, NJ) using a Gerbrands 5120 dispenser

interfaced to the computer through a relay box and output board (PIO-12 and ERA-01;

Keithley Instruments, Cleveland, OH). Correct responses were accompanied by a computer-

generated whooping sound that bridged the animals to their reward. On incorrect responses,

the screen froze with the wrong response visible, and there was a computer-generated

buzzing sound and a timeout that generally lasted 10 s.
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Procedure

The stimuli, prototypes, category structures, and trial displays were those already described

in Experiment 1B. The monkeys made their categorization decision using an analog joystick

to move a cursor to touch the response icon of their choice. Stimuli were presented on a

computer screen in blocks of 16 trials—each block was a random permutation of the 16

stimuli in the task (8 stimuli in 2 categories). The monkeys were presented again with the

same trial following an error, and for them completing this trial had the same consequences

for correct and incorrect responses. This seemed a more transparent way of providing

correction on a trial without the complexity of the qualitatively different correction

procedure used in the human studies.

Data analysis—Monkeys completed six successive category tasks, using six of the

category pairs from Experiment 1B. Tasks 2–6 of this series were analyzed. For analysis, the

data were organized into 64-trial blocks containing four successive runs through the 16

stimuli. Each monkey completed a different number of trials in each task. The precise trial

counts were dependent on many variables including each animal’s own decisions about how

many trials to complete in a given day. To create a balanced design, we analyzed for each of

a monkey’s five tasks the minimum number of 64-trial blocks that he completed across the 5

tasks. For Hank, Lou, and Murph, respectively, these trial-block counts were 194, 164, and

158. This means that data is reported for 62,080, 52,480, and 50,560 trials for Hank, Lou,

and Murph, respectively.

Results

Hank—Hank’s aggregate performance across five tasks is shown in Figure 7A. The T, E,

and LS curves are those already described. A two-way analysis of variance (ANOVA), with

64-trial block (1–194) and stimulus type (typical, exception) as within-subject factors, did

not find a significant main effect for trial block, F (193,772) = 1.111, ns. Hank improved on

typical items early in the experiment but there were long periods during which performance

on typical and exception items was static. In addition, his performance loss on exception

items somewhat canceled his performance gain on typical items early in the experiment. We

did find a significant main effect for stimulus type, F (1,772) = 3175.340, p < .001. Hank

performed better on typical items than on exceptions. The lack of an interaction between

trial block and stimulus type, F (193,772) = 0.999, ns, indicated that the relation of typical

and exception items remained fairly constant through the experiment. Hank reached 90% on

typical items midway through the experiment. But he barely improved on the exception

items. Indeed, he was still slightly below chance on them at Block 194, after 12,352 trials

experienced in each task. Across his five tasks, Hank received about 15,500 exception trials,

and 8,800 additional correction trials for errors made on those trials, all to no avail because

performance remained below chance.

Lou—Lou’s aggregate performance across five tasks is shown in Figure 7B. A two-way

analysis of variance (ANOVA), with 64-trial block (1–164) and stimulus type (typical,

exception) as within-subject factors, found a significant main effect for both trial block, F

(163,652) = 2.298, p < .001 and stimulus type, F (1,652) = 2913.406, p < .001. Lou

improved his performance over trial blocks and performed better on typical items than on

Smith et al. Page 14

J Exp Psychol Anim Behav Process. Author manuscript; available in PMC 2014 August 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



exceptions. The interaction between trial block and stimulus type, F (163,652) = 1.527, p < .

001, indicated that Lou improved differentially on typical and exception items. In his early

blocks, as he improved about 25% on typical items, his exception-item performance actually

fell about 20%. These reciprocal changes in early performance are the clearest possible

evidence that Lou was operating under a strong LS assumption during this phase of the task.

Lou improved to 90% correct on typical items while he was still only about 35% correct on

exception items. The LS curve also confirms that Lou was making a strong LS assumption.

He was unable to respond more strongly to the task’s feedback signals than the task’s

family-resemblance signals until about Block 110, after 6,976 trials in the task. Lou never

fully overcame his LS assumption, though he did improve substantially on the exception

items late in the task.

Murph—Murph’s aggregate performance across five tasks is shown in Figure 7C. A two-

way analysis of variance (ANOVA), with 64-trial block (1–158) and stimulus type (typical,

exception) as within-subject factors, found a significant main effect for both trial block, F

(157,628) = 8.833, p < .001 and stimulus type, F (1,628) = 3544.709, p < .001. Murph

improved his performance over trial blocks and performed better on typical items than on

exceptions. The interaction between trial block and stimulus type, F (157,628) = 3.927, p < .

001, indicated that Murph improved differentially on typical and exception items. From

Block 1–23, he improved 36% on typical items (57% to 93% correct), but not at all on

exception items (30% correct). That is, he improved beyond 90% correct on typical items

while remaining far below chance (50%) on exception items. The LS curve also confirms

that he was making a strong LS assumption early in the task, in opposition to the task’s

feedback signals. Murph was unable to respond more strongly to the task’s feedback signals

than the task’s family-resemblance signals until about Block 45, after 2,816 trials in the task.

But Murph did overcome his LS assumption—he finally performed the exception items at a

high level.

A Formal-Modeling Perspective

The formal models already described in Experiment 1B confirmed the descriptions of

animals’ performances.

Results: prototype model—Figure 8 (A–C) shows the results when the prototype model

was fit to the performance of Hank, Lou, and Murph in the 3rd of 5 analyzed tasks. Early in

performance, animals paired highly accurate typical-item performance with dismal

exception-item performance. This is the LS constraint that has been described. The

prototype model captured this data pattern well with small fit indices during this period. Late

in performance, though, the prototype model failed qualitatively. Monkeys achieved

accurate typical- and exception-item performance. The model mispredicted both

performance levels badly with correspondingly poor fit indices. The prototype model

showed a sharp stage change during category learning by strongly succeeding then

qualitatively failing.

Results: exemplar model—Figure 9 (A–C) shows the results when the exemplar model

was fit to the same performances. Early in performance, the exemplar model failed
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qualitatively. It could not accommodate the LS-constrained data pattern. It badly under-

predicted and over-predicted typical-item and exception-item performance, respectively. It

had correspondingly poor fit indices. Late in performance, though, the exemplar model

captured well with small fit indices animals’ accurate performance on both item types. It

accommodated well the LS-transcending data pattern. The exemplar model showed a sharp

stage change during category learning by qualitatively failing then strongly succeeding.

Results: gamma model—To illustrate that every modeling framework would reflect the

same stage change, we also fit a gamma model to animals’ performances. This model

operated like the exemplar model except that the choice-rule’s quantities could be raised to

any power gamma:

This model provided an alternative formal perspective toward animals’ LS-constrained and

LS-transcending stages of category learning.

There are concerns to bear in mind regarding the use of the gamma model. First, the gamma

parameter can push estimated high performance higher and low performance lower, but for

mathematical reasons that need not reflect animals’ psychological processes (Smith et al.,

2008a). Second, the gamma parameter counters the tendency for exemplar-based

comparisons to produce flatter typicality gradients (Smith, 2002) and acts mathematically in

ways that can mimic prototype-based processing (Smith & Minda, 1998). In these respects,

the gamma model is not an exemplar model. Third, the gamma model in this case has two

free parameters— gamma and sensitivity—which it brings to fitting two data points—

typical- and exception-item performance. Therefore, the gamma model’s capacity to fit the

present data is guaranteed. But still, one can examine the gamma model’s best-fitting

parameter configurations to confirm animals LS-constrained and LS-transcending learning

stages.

Figure 10 (A–C) shows the best-fitting parameter values when the gamma model fit the

performances of Hank, Lou, and Murph. Early in performance, gamma-parameter estimates

spiked very high while sensitivity was estimated low. The gamma model chose this

parameter configuration to accommodate animals’ strong LS assumption early in category

learning. Late in performance, gamma-parameter estimates fell sharply. There is no

psychological rationale why animals would relax their decisional use of category evidence

(i.e., their gamma) by twenty orders of magnitude. Indeed, more plausibly task expertise

would cause them to respond more deterministically (i.e., with higher gammas). However,

the gamma model must make this counter-intuitive change to fit the data. At the same point,

sensitivity was estimated higher. This increase let individual exemplar retrievals (especially

perfect self-similarities) affect performance substantially and essentially granted the gamma

model an exemplar-memorization process that let it accommodate improving exception-item

performance. The gamma model showed a strong stage change in category learning by

choosing successive best-fitting parameter configurations that were diametrically opposed in

its parameter space.

Smith et al. Page 16

J Exp Psychol Anim Behav Process. Author manuscript; available in PMC 2014 August 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The gamma model concretizes the issue raised in the modeling section of Experiment 1B.

That is, even given a model that alone fits animals’ early and late performance profiles by

choosing profoundly different parameter configurations, one still faces the question of why

—psychologically—animals entered such a radically different place in parameter space in

performing during the two stages of acquisition. That question needs a psychological answer

that the mathematical model cannot provide. In our view, it is most plausible, parsimonious,

and illuminating to posit that there is an early stage of LS-constrained category learning that

is based in family resemblance and prototype abstraction. Then, the LS assumption is

augmented or replaced by item-specific processes or memory traces that allow LS-

transcending performance instead.

Nonetheless, all three formal perspectives converged in showing the same succession of

stages in animals’ category learning that humans showed. For making this empirical

demonstration, the choice of the modeling framework does not matter.

General Discussion

We extended the findings of Smith and Minda (1998) and Blair and Homa (2001) to

nonhuman primates. Humans and three rhesus monkeys expressed a two-stage category-

learning process. Early on, they learned the categories’ general structure, allowing typical

items to be categorized accurately but causing exception items to be categorized below

chance. During this stage, the categorization system of both species made a strong LS

assumption. Exception items were categorized in opposition to prevailing feedback and to

specific-exemplar encoding. Instead, they were categorized in a way that maintained

coherent, LS categories. This LS assumption lasted through hundreds of errors and trial-

correction procedures. Later, some humans and monkeys overcame their LS assumption,

mastering the exceptions at above-chance levels and responding more to the prevailing

feedback than to family-resemblance considerations. This transition was achieved slowly by

few humans in the four-category task of Experiment 1A. In that case, most humans never

made the transition, and this was true for monkey Hank in Experiment 2’s two-category

task.

One can characterize psychologically the initial, LS-constrained phase of category learning.

Humans in dot-distortion tasks unambiguously refer to-be-categorized items to a prototype-

like representation near the category’s center rather than to memorized training exemplars

(Smith & Minda, 2001, 2002). In those studies, prototype models fit closely participants’

performance in dot-distortion tasks. Matched exemplar models made severe prediction

errors. In Smith et al. (2008a), prototype models fit closely monkeys’ performance in dot-

distortion category tasks. Matched exemplar models could not capture what the monkeys

did.

The same was true here. Matched prototype and exemplar models, respectively, fit early

performance brilliantly and terribly. The only limitation on this conclusion is that the

gamma model (in a sense an unmatched exemplar model with more mathematical power and

more free parameters than the prototype model) did fit the data, though it did so

degenerately given two free parameters fitting just two data values. Of course it is highly

Smith et al. Page 17

J Exp Psychol Anim Behav Process. Author manuscript; available in PMC 2014 August 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



implausible that animals would invoke early on a 20-orders-of-magnitude response

determinism and then discard it later on. There is no precedent for this in the experimental or

modeling literatures. In addition, it is known that when the prototype and gamma models are

contrasted most sensitively by analyzing the shapes of typicality gradients, the gamma

model fails to account for dot-distortion performance by either humans or animals. Gamma

is not the mechanism at work in the present data, either.

Thus, the LS-based stage of category learning is likely a stage of abstraction and prototype

formation wherein the central tendencies of coherent exemplar families are derived and used

as the comparative standard in making categorizations decisions. In this abstractive,

averaging process, the details of particular exemplars are naturally lost in their assimilation

to the prototypes. Therefore, participants naturally place exception items obeying family-

resemblance considerations, not feedback considerations. Assuming an early stage of

abstraction provides the most intuitive explanation for why it would be that the cognitive

system of humans and monkeys blurs the specific details of the individual exemplars and

learns slowly individualized responses to them.

The present results also illuminate the specific-exemplar process that was also at work

within the present category tasks. The conceptual core of exemplar theory is that participants

learn about and store exemplars as separate, individuated memory representations. Yet, in

this case, hundreds of repetitions of exception items, with many of those repetitions

augmented by trial-correction interventions, were insufficient to allow consistent feedback

signals to override family resemblance. The data point to a surprising conclusion. Humans

and monkeys in the present experiments expressed a specific-exemplar system that is slow

learning and resistant to persistent feedback.

This conclusion illuminates a wide range of human categorization data. Medin and

Schawenflugel (1981) grounded the narrative that humans are indifferent to LS or NLS

category structures and to categories with different degrees of category coherence. They are

not. Humans have a difficult time with NLS categories that might depend on specific-

exemplar processes. For example, in the original articles that supported exemplar processes

by showing that humans can ultimately learn NLS categories, 30%, 36%, 40%, 60%, 66%,

and 72% of participants failed to reach criterion in various experiments (Medin &

Schwanenflugel, 1981; Medin, Dewey, & Murphy, 1983; Medin & E. Smith, 1981; Medin

& Schaffer, 1978). Even learners had an asymptotic performance of only about 80% correct.

(The humans in Experiments 1A and 1B, respectively, had an asymptotic performance of

64% and 86% correct.) In fact, Blair and Homa (2003) showed that in some cases NLS

categories are learned through an arduous memorization process that may be paired-

associate learning, not categorization.

The present results explain this broad-based pattern of learning difficulty in two ways. First,

NLS categories poorly suit humans’ and animals’ initial approach toward abstraction and an

LS assumption in category tasks. NLS categories often offer no robust abstractive or

similarity basis on which category decisions might be based. Second, when that initial

approach proves unworkable, the specific-exemplar process that steps in to support learning

tends to be weak and slow. The impoverished nature of the exemplar system that serves
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humans’ and animals’ categorization is perhaps the most important implication of the

present studies.

The results in the present article also have ecological-fitness implications. Humans and

animals sometimes make hundreds of errors on the way to NLS concept mastery (if mastery

eventuates at all). If these were toadstool-foraging errors or predator-recognition errors,

fitness would take a direct, powerful hit. If species predominantly encountered NLS

ecological categories, they would have developed a sharper, faster, specific-exemplar system

and they would have de-emphasized their strong LS assumption entering category tasks.

Therefore, it becomes an important possibility that there is an adaptive resonance between

the LS categories that organisms seem prepared to learn by default and the natural-kind

categories that species have frequently encountered during evolutionary time. In fact, if one

examines the ecological categories faced daily by monkeys (e. g., vervet monkeys, Cheney

& Seyfarth, 1990), one sees that all of them—eagles, snakes, leopards, bushes, trees, leaves,

seeds, shoots, insects, grubs, rodents, eggs, Masai tribespeople, dominant males, estrous

females, infants—are family-resemblance categories as described by Rosch and Mervis

(1975). The abstractive stance, the LS assumption, and the weaker specific-exemplar system

as elements in cognitive systems for category learning may reflect that cognitive evolution

has taken advantage of a natural category structure that organisms have often experienced

(see also Ruts, Storms, & Hampton, 2004).

If there is an adaptive resonance between abstractive approaches to initial category learning

and natural-kind categories, then the psychological transition demonstrated here should be

broad phylogenetically. In fact, Cook and Smith (2006) asked whether similar processing

stages extend to category learning in birds. Using the approach taken by Smith and Minda

(1998), they found the same psychological transition—from abstraction to exception-

resolution processing—in pigeons and humans who have more than 100 million years of

phylogenetic separation. An analogous finding was reported by Wasserman et al. (1988).

The phylogenetic breadth of this transition strengthens the suggestion that this succession of

learning stages is not accidental, but grounded in some entrainment between cognitive

systems and cognitive environments.

We stress that this discussion does not preclude that humans and animals will sometimes

encounter NLS category structures in nature, or that they will do so frequently enough that

they need additional components within their overall categorization system. For example,

considering vervet monkeys again, their social-networking system is intimately nuanced and

does require detailed exemplar-by-exemplar (i. e., animal-by-animal) representations.

Likewise, in the present research, some humans and monkeys ultimately showed an ability

to master exceptions by treating them individually instead of assimilating them to their

prototype. The modeling also showed a succession between categorization strategies that

were abstraction and exemplar based. Our view, shared by many neuroscientists studying

categorization, is that the cognitive systems that serve categorization are multiple and

diverse. For example, there is increasing interest in trying to localize in brain the process of

prototype abstraction (Aizenstein et al., 2000; Ashby & Maddox, 2005; Coutinho,

Couchman, Redford, & Smith, 2008; Reber et al., 1998a,b). Likewise, there is a striatal

Smith et al. Page 19

J Exp Psychol Anim Behav Process. Author manuscript; available in PMC 2014 August 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



categorization system that learns slowly to map responses to particular regions of perceptual

space, and this system would have the right character to explain later exception-item

performance in our tasks (Ashby & Maddox, 2005; Ashby et al., 1998).

We also stress that we do not question the elegant results that have supported exemplar

processes and theory over many years. Our difference with that work is a matter of

emphasis. It focused on the ultimate learnability of category tasks, which is one criterion for

evaluating whether humans and animals have an LS constraint in category learning. By that

criterion, they often do not. Our work focused on humans’ and monkeys’ first line of

defense in category learning, which is often that of abstraction, prototype formation, the

blurring of fine distinctions among exemplars, and an LS assumption that trumps the task’s

reinforcement landscape. This assumption has not received its due from human or

comparative scientists of categorization, and the primary theoretical contribution of the

present article is to encourage that recognition.

We have also suggested that the LS assumption may be rooted in a long-lived affordance

offered by natural kinds. This affordance has been present through all the hundreds of

millions of years that animals have confronted family-resemblance category problems.

There may have been in many species a gentle pressure toward abstraction and toward

blurring the fine distinctions among exemplars in the service of forming coherent categories.

The result would be the default category-learning system displayed by humans and animals

in the present studies: a strong and persistent LS assumption paired with a weaker exemplar-

resolution system. In this respect our article joins others (Shepard, 1987, 1994, 2001) in

suggesting that basic principles may attend the structure and geometry of natural kinds, that

principles of optimality follow from these, and that evolutionary internalization may have

incorporated those principles so that they are reflected in the minds of species that

experience those natural kinds.
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Figure 1.
Examples of Experiment 1A’s categories and stimuli. Each nine-shape grouping is a

category. The six shapes in the top and middle row of each category were derived from the

same prototype. The bottom row contains exception items that were derived from the

prototypes of the three opposing categories.
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Figure 2.
A. The performance of all participants in the four-category task of Experiment 1A. Curves T

and E, respectively, show the proportion of correct responses made to the six typical items

and three exception items in each category. Curve LS shows the proportion of exception

items placed incorrectly into the category of their originating prototype. B. The performance

of participants in Experiment 1A whose LS assumption lasted through all 900 trials of the

task, depicted in the same way. C. The performance of participants in Experiment 1A who

overcame their LS assumption in the task and mastered the exception items.
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Figure 3.
Examples of the categories and stimuli used in Experiments 1B and 2. Each eight-shape

grouping is a category. The six shapes in the top and middle row of each category were

derived from the same prototype. The bottom row contains exception items that were

derived from the prototype of the opposing category.
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Figure 4.
A. The performance of all participants in the two-category task of Experiment 1B. Curves T

and E, respectively, show the proportion of correct responses made to the six typical items

and two exception items in each category. Curve LS shows the proportion of exception

items placed incorrectly into the category of their originating prototype. B. The performance

of participants in Experiment 1B whose LS assumption lasted through all 800 trials of the

task, depicted in the same way. C. The performance of participants in Experiment 1B who

overcame their LS assumption in the task and mastered the exception items.
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Figure 5.
Results from Experiment 1B when performance data from all humans (A), LS-constrained

humans (B), and LS-transcending humans (C) were fit with a formal prototype model:

observed typical-item performance (black squares); observed exception-item performance

(black circles); model-estimated typical-item performance (gray squares); model-estimated

exception-item performance (gray circles); fit index (pepper sprinkles).
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Figure 6.
Results from Experiment 1B when performance data from all humans (A), LS-constrained

humans (B), and LS-transcending humans (C) were fit with a formal exemplar model:

observed typical-item performance (black squares); observed exception-item performance

(black circles); model-estimated typical-item performance (gray squares); model-estimated

exception-item performance (gray circles); fit index (pepper sprinkles).
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Figure 7.
A. The performance of monkey Hank in the two-category task of Experiment 2. Curves T

and E, respectively, show the proportion of correct responses made to the six typical items

and two exception items in each category. Curve LS shows the proportion of exception

items placed incorrectly into the category of their originating prototype. B. The performance

of monkey Lou, depicted in the same way. C. The performance of monkey Murph, depicted

in the same way.
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Figure 8.
Results when Hank’s (A), Lou’s (B), and Murph’s (C) performance data from task 4 were fit

with a formal prototype model: observed typical-item performance (black squares);

observed exception-item performance (black circles); model-estimated typical-item

performance (gray squares); model-estimated exception-item performance (gray circles); fit

index (pepper sprinkles).
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Figure 9.
Results when Hank’s (A), Lou’s (B), and Murph’s (C) performance data from task 4 were fit

with a formal exemplar model--observed typical-item performance (black squares);

observed exception-item performance (black circles); model-estimated typical-item

performance (gray squares); model-estimated exception-item performance (gray circles); fit

index (pepper sprinkles).
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Figure 10.
Estimates across trial blocks of the gamma parameter (black squares) and sensitivity

parameter (gray circles) when Hank’s (A), Lou’s (B), and Murph’s (C) performance data

from task 4 were fit with a formal gamma model. To scale the range of the sensitivity

parameter for clarity and visibility, 4, 5, and 7 instances of sensitivity estimated > 5.0 were

plotted at 5.0 in the three graphs, respectively.
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