Skip to main content
. 2014 Jun 22;4(14):2945–2956. doi: 10.1002/ece3.1142

Table 1.

Multiple regressions for copulation latency for each of the four species

Copulation latency
Intercept Relative frequency of heterospecifics Total number of flies Interaction: Relative frequency of heterospecifics × Total number of flies




Estimate t value P-value Coefficient t value P-value Coefficient t value P-value Coefficient t value P-value
Drosophila yakuba 20.99 16.639 <1 × 10−10 4.69 × 10−2 2.302 0.022 6.10 × 10−3 3.001 2.74 × 10−3 2.44 × 10−5 0.744 0.457
Drosophila santomea 18.75 17.404 <1 × 10−10 9.38 × 10−4 0.054 0.957 1.39 × 10−3 0.802 0.423 −1.03 × 10−5 −0.367 0.714
Drosophila simulans 27.56 24.868 <1 × 10−10 4.80 × 10−2 2.680 7.45 × 10−3 −1.00 × 10−2 −5.608 2.43 × 10−8 6.79 × 10−5 2.353 0.019
Drosophila sechellia 43.58 33.979 <1 × 10−10 2.35 × 10−2 1.135 0.259 2.25 × 10−3 1.086 0.280 −4.35 × 10−5 −1.301 0.196

A multiple linear regression was fitted to study the effect of number of heterospecifics (Fi), the population size (Sj), and the interaction between these two variables (Fi × Sj) in the copulation latency of each of the four species in experimental cages (Inline graphic). The two factors and the interaction were significant for D. yakuba and D. simulans but not for D. santomea or D. sechellia. Significant values (P < 0.05, df = 1496) are marked in bold.