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Abstract

Alzheimer’s Disease (AD) is characterized by a stereotypical spatial pattern of hippocampus (HP)

atrophy over time, but reliable and precise measurement of localized longitudinal change to

individual HP in AD have been elusive. We present a method for quantifying subject-specific

spatial patterns of longitudinal HP change that aligns serial HP surface pairs together, cuts slices

off the ends of the HP that were not shared in the two delineations being aligned, estimates

weighted correspondences between baseline and follow-up HP, and finds a concise set of localized

spatial change patterns that explains HP changes while down-weighting HP surface points whose

estimated changes are biologically implausible. We tested our method on a synthetic HP change

dataset as well as a set of 320 real elderly HP measured at 1-year intervals. Our results suggests

that the proposed steps reduce the amount of implausible HP changes indicated among individual

HP, increase the strength of association between HP change and cognitive function related to AD,

and enhance the estimation of reliable spatially-localized HP change patterns.
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1. Introduction

Alzheimer’s Disease (AD) is the most common form of dementia in the elderly. Its

pathological process preferentially damages the hippocampus (HP), a brain region crucial to

a variety of cognitive functions. Because this HP damage is visible on structural magnetic

resonance images (MRI) of the brain, longitudinal MRI-based measurements of HP change

have been proposed as markers of the effects of AD pathology, with possible uses in clinical

diagnosis of AD and quantification of treatment effects in clinical trials [2,16,5].

Furthermore, HP atrophy associated with AD occurs with a stereotypical spatial progression:

among HP sub-regions, AD-related damage begins in one region (called CA1) and spreads

to another (subiculum) and yet another (CA2-4 and dentate gyrus). Therefore, numerous
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approaches for quantifying spatial patterns of localized HP atrophy have been proposed as

measures that may be more specific to AD-related damage than total HP volume (for

example, [6,25]). These efforts have suggested that localized HP damage to CA1 and

subiculum may be preferentially associated with the pathology and cognitive consequences

of AD [4].

However, quantitative measurements of how individual hippocampi evolve over time in

response to AD pathology, based on serial MRI, have been rare. Most reports of localized

HP changes related to AD are cross-sectional in nature, showing spatial patterns of

differences between groups of HP that are each measured at a single time point [6,12].

Among reports of localized longitudinal HP change related to AD, most show population

mean spatial maps of localized HP thickness at baseline and follow-up, without providing

information about localized changes within any individual [22]. The few reports that do

quantify individual-level change to localized hippocampal regions are mathematically

rigorous [23,19], but assume one-to-one correspondences in hippocampal boundaries

between time points, despite evidence that there can be substantial variability between

tracings in terms of what portions of the anatomy are included within the hippocampus

boundary [11,14]. In contrast to modeling longitudinal changes to individual closed surfaces

such as the HP, several techniques measure individual longitudinal change trajectories at a

voxel level [18,24]; for each individual, dense deformation fields among series of images are

estimated, with various methods used to encourage the deformation fields to be spatially and

temporally smooth. These exploratory quantifications of change are unbiased, highly

automated, and general, but the need to detect subtle, localized shape changes to complex-

shaped regions require deformation quantification at a very fine scale, making the methods

computationally complex. Such longitudinal localized HP change measurements at an

individual level will be important for eventually applying localized HP change measures to

AD clinical diagnosis and to clinical trials.

The relative lack of scientific findings related to individual trajectories of longitudinal

localized patterns of HP change is due to a series of unique technical challenges. The

hippocampus is a small structure relative to typical voxel sizes in conventional structural

MRI, especially when it is atrophied, and changes over short periods of time can be subtle,

even in AD; this makes precise delineation of the HP in each image, and highly precise

quantification of change, imperative. However, the HP is notoriously difficult to delineate in

a reliable fashion; there are scores of manual tracing protocols [11] and even highly trained

experts agree about where to trace the HP boundary to varying degrees on varying HP sub-

regions [14,3]. Therefore, beyond precisely aligning baseline HP to corresponding follow-up

HP, any method for measuring localized HP changes related to AD must be robust to

discrepancies between baseline and follow-up in what tissue was or was not included in the

delineation. In this work, we take advantage of prior knowledge of the AD pathological

process to overcome discrepancies in hippocampus boundaries between baseline and follow-

up. Specifically, it is generally agreed that during late-life aging and AD, the hippocampus

atrophies rather than grows; we therefore attribute longitudinal hippocampal growth to

erroneous boundary discrepancies and discount the impact of such apparent growth on

longitudinal change estimates.
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In this paper, we present a robust method for measuring longitudinal, localized patterns of

spatial change to individual aging HP. We align follow-up to baseline HP by deforming the

follow-up HP along its central cylindrical axis, and cut off ends of the structure that are not

shared between the two delineations. Then we estimate weighted correspondences between

baseline and follow-up HP. After baseline alignment to a template, rate of change in

localized HP radius is quantified at a grid of surface points on the template, and points

whose change rates are biologically implausible with respect to the aging and AD processes

(i.e., regions whose local radius appears to increase with time) are down-weighted in

subsequent quantification of localized spatial patterns of radius change. Those spatial

patterns are estimated through a new version of Localized Components Analysis (LoCA)

which searches for a concise set of localized HP regions whose change accounts for the

greatest amount of HP change variability across the population [25]. Experiments on real

data from real and synthetic data suggest that by downweighting biologically-implausible

change, this new approach to longitudinal hippocampal change estimation provides more

reliable change estimates that are more tightly linked to relevant clinical outcome measures.

2. Methods

Fig. 1 shows our framework for calculating individual hippocampus change. The cylinder-

like HP surface is represented by a central axis, nt slices along that axis, and nθ surface

points on each slice. The position of the central axis within each slice is calculated by taking

the center of mass of all surface points in that slice. The central axis in this paper is

estimated as the trajectory of mass centers of sample slices. Each surface point is

represented by its cylindrical coordinates (t,θ), where t is the index of the slice and θ is the

angle between a vector from the central axis to the surface point, and a vector in a canonical

direction. The first step in the process is to align each individual’s follow-up HP to the

corresponding baseline HP by shifting the follow-up HP along its central axis and cutting off

slices at the ends that are not shared between the two segmentations (Fig. 1a and b).

Template alignment similarly shifts each baseline HP along its central axis to align it to the

HP of a typical healthy individual (the template HP) and cuts off non-shared slices; it also

deforms the baseline HP to correct for major differences in HP shape between individuals.

For each surface point on each baseline HP, a set of weighted (soft) correspondences are

then estimated between that point and points on the corresponding follow-up HP; the rate of

HP change over time at each baseline surface point is calculated in terms of differences in

local HP radius (i.e., the length of the vector from the central axis to the point) between

baseline and the follow-up surface points that it softly corresponds to (Fig. 1b). Hard

correspondences between baseline HP and the template HP allow for comparison of HP

change rate across individuals at standardized surface locations.1 At each location on the

template HP we find individuals whose estimated radius change there is biologically

implausible (Fig. 1c); we then estimate a set of shape components, or spatially localized

spatial patterns of coherent HP change(Fig. 1d), while down-weighting the influence of such

implausible change. The following sections describe each step in detail.

1In our experiments, hard correspondences between baseline and template HP proved adequate, but subtle radius change
measurements without weighted correspondences were extremely noisy.
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2.1. Alignment along central axis

2.1.1. Motivation—The anterior and posterior anatomical boundaries of the HP are

notoriously difficult to identify in typical MRI scans, and therefore longitudinal series of HP

tracings are plagued by inconsistencies in where those boundaries are drawn. These

boundary inconsistencies cause portions of the structure to be present at some time points

and absent at others, and therefore cause errors in the estimation of point correspondences

between time points. Aligning follow-up to baseline HP identifies the portion of the HP that

is shared between the two time points, with a goal of deleting the remainder of the tracings

that were traced at one time point but not the other. Alignment of baseline HP to a template

then aims to extend this analysis to identify the portion of the HP that was traced across all

individuals.

2.1.2. Alignment definition—For both the alignment of baseline to follow-up, and the

alignment of baseline to template, the purpose of alignment along the central HP axis is to

estimate a function f that maps slices t of one HP to slices f(t) of the other. For both

alignments, we allow f(t) to be undefined for t at the ends of the HP, to account for the very

common differences between HP (even of the same individual) in terms of the starting and

stopping points of the segmentation (see Fig. 2e and f). Differences between baseline and

follow-up HP in the region starting and stopping points represent inconsistencies in the

segmentation algorithm; analogous differences between baseline and template HP may

additionally represent real anatomical differences. For the alignment of baseline HP to the

template, a deformable model is used to account for differences in HP morphology between

individuals. For the alignment of follow-up HP to baseline, f is simply a translation designed

to cut off non-shared HP slices from both segmentations; a deformable alignment between

the two could in fact remove real HP change that had occurred over time.

2.1.3. Control point definition—For deformable alignment, we place p slices spaced at

uniform intervals along the central axis of an individual baseline HP and the template

baseline HP respectively. Let the slice positions of these p control slices along the baseline

HP be denoted {c1, c2, - ⋯, cp}. Moving these control points to new positions

 defines a deformable mapping between baseline and template slices:

 for kernel functions ki(t). The kernel functions insure that slice ci in the

baseline HP maps to slice  in the template HP, and slices between ci and ci+1 are smoothly

mapped to slices between  and . In our experiments we used linear kernel functions:

2.1.4. Similarity metric—Thus, the deformable alignment amounts to estimating

, and the alignment of follow-up to baseline is an estimation of a translation

along the central axis. These transformations are optimized to maximize HP similarity. To
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calculate this similarity, we first define a function d(t) along the length of the HP axis that

gives the maximum local radius of all surface points on slice t− that is, the maximum

distance from boundary points on slice t to the central axis (Fig. 2c and d). The similarity

metric that drives alignment is the Pearson correlation coefficient between the d(t) for the

transformed HP and the d(t) for the template one.2 The summary curves provide a

computationally efficient means for evaluating shape similarity while capturing the

anatomically salient characteristics of HP morphology.

2.1.5. Alignment optimization—The basic approach of modifying the transformation to

maximize HP similarity is modified to account for additional factors. First, while we want to

cut off slices of tissue that are not shared between HP, we also want to prevent the alignment

from aggressively cutting off too many slices in the pursuit of higher similarity values.

Therefore, the similarity metric is a linear combination of terms that try to maximize HP

similarity, and the amount of HP that overlaps between the two, respectively. That is, we

maximize λρ + (1 − λ)γ, where ρ is the correlation between d curves; γ is the percentage of

HP slices on the fixed HP that overlap with the transformed one; and λ is a constant between

0 and 1. In addition, we encourage the transformations to stay numerically well conditioned

by imposing lower and upper bounds on the distance  between adjacent transformed

control slices. We use the fminsearch routine in Matlab to maximize the alignment objective

function with respect to the transformation parameters, and to solve the new positions of the

moving control point slices . See Fig. 2a and b for an example baseline HP

whose similarity to the template increases substantially after alignment.

2.2. Weighted correspondence estimation

2.2.1. Motivation—Given pairs of follow-up and baseline HP whose slices have been

aligned, previous approaches have established correspondences across HP between surface

points that have corresponding cylindrical coordinates [22]; in theory, the rate of HP change

can be calculated by computing the difference in local HP radius at those corresponding

surface points. However, because each HP slice is based on a relatively small number of

image voxels, the number of non-redundant surface points is also small, thus causing many

surface points to have no single natural correspondence on the other HP (see Fig. 3).

Therefore, we use weighted correspondences to assess the change rate in local HP radii: we

map each surface point to a weighted average point on the other HP, where the weights are

based on proximity to the surface point and proximity to the surface normal vector at that

surface point.

2.2.2. Mathematical definition—More formally, we map each surface point in the

baseline HP that has cylindrical coordinates (t, θ0) to a weighted average point Σθ ϖ(θ0,

θ)pos(f(t), θ), where pos(t, θ) is the Cartesian coordinates of HP surface point (t, θ).

2.2.3. Weight estimation—The weighting function ϖ(θ0,θ) is a sum of two terms that

depend on the proximity of pos(f(t), θ) and pos(t, θ0) and the similarity of vector from pos(t,

2The surface area and circumference, two alternative summary features of each slice, are possible to use for this similarity metric, but
these did not provide high-quality alignment results.
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θ0) to pos(f(t), θ) to the surface normal vector at pos(t, θ0). For proximity, we use a logistic

function  governed by a slope parameter T, and for similarity in surface

normal orientation we calculate the inner product between the surface normal at pos(t,θ0)

and the vector between pos(t, θ0) and pos(f(t), θ). Let i(θ, θ0) denote this inner product, and

let dis(θ, θ0) denote the Euclidean distance between pos(t, θ0) and pos(f(t), θ). The weighting

function is then ϖ(θ0, θ) = β l(dis(θ, θ0)) + (1 − β)i(θ, θ0), in our experiment, β was set to

0.8. The plot of the logistic function l() is shown in Fig. 4, the parameter T controls how fast

l(x) goes to zero. It is natural to think that if a baseline slice is thick, i.e., the average radius

is large, then the radius change over time can be large. Therefore we set T to be constantly

proportional to the average thickness of the corresponding baseline slice.

After weight estimation, for every baseline point, the follow-up boundary points with the

highest N weights are picked. The weights of these follow-up points are normalized so that

they sum up to 1. The image of a baseline point is the weighted average of the Cartesian

coordinates of these N points.

2.3. Downweighting

2.3.1. Motivation—The weighted correspondences allow us to calculate the difference in

local radius between each baseline HP surface point and its weighted correspondence point

on the follow-up HP; dividing this difference by the interval between baseline and follow-up

scans provides a rate of local HP change. The alignment of baseline HP to the template

allows us to assemble measurements of rates of local radius change across all individuals at

the template surface points. However, because noise in HP boundary measurements is high,

and because the alignment procedure does not perfectly align the HP, some individuals are

likely to have spurious weighted correspondences at some surface points, even after

alignment and weighted correspondence estimation, leading to spurious estimates of local

radius change. Therefore, for each surface point we discount rates of change that are outliers

over the population, and also use biological knowledge about the aging and AD processes to

discount the influence of such points on estimated spatial patterns of change. Specifically,

there is overwhelming evidence that aging and AD pathology decrease the size of the HP by

promoting death of neurons, without increasing its size (see, e.g., [7,10,20]) ; thus, at each

HP surface location, positive rates of radius change, suggesting HP growth, are considered

implausible and are thus downweighted.

2.3.2. Outlier penalization—Let ri,t,θ denote the radius change rate of subject i at

template HP cylindrical coordinate (t, θ). We calculate the mean and standard deviation of

ri,t, θ over i, μt, θ and σt, θ, and for each i calculate a weight wi,t,θ for point (t,θ) that tends

toward zero as change rates become greater than the mean plus one standard deviation:

The logistic function l() is defined as above. In our experiments we set the logistic slope T

to .25. These weights are incorporated into the following step that estimates spatially-
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localized patterns of coherent local HP radius change. The algorithm makes less of an

attempt to account for HP change in individual points that have low wi,t,θ, i.e. surface points

whose change rates are implausible high outliers.

2.4. Localized change components

2.4.1. Motivation—Now we have radius change estimates and a weighting for their

plausibility at each surface point and individual. Our goal is to reduce the large number of

such numerical measurements to a small, intuitive set of summary measures that describe

spatial patterns of hippocampus change that are shared across the population. Therefore, we

apply a modified version of a linear subspace method, LoCA, to aggregate radius changes

according to their weights over spatial neighborhoods and provide a compact set of HP

shape change patterns.

2.4.2. Traditional LoCA—After downweighting, the HP of subject i can be represented

by a vector vi of the local radius change rates ri,t,θ, and a weight vector wi of the

corresponding wi,t,θ. We then use a new version of Localized Components Analysis (LoCA),

called Weighted LoCA, to estimate a linear subspace for the set of v,w pairs [1]. LoCA

attempts to find an orthogonal set of basis vectors e1, ⋯, en that provide a concise and

spatially localized explanation for the set of vi vectors. A basis vector represents a

vectorized matrix of shape changes on its surface grid. Because the basis vectors capture a

dominant pattern of local HP radius change, we refer to them as HP change patterns. After

estimation of the e vectors, individual HP are represented by several change pattern

coefficients αi,j, where vi ≈ e0 + Σjαi,j * ej. Each αi,j quantifies the degree to which a

particular HP change pattern ej is indicated in the HP local radius change vector vi. LoCA

generates the initial basis vectors from the covariance matrix of the vi, and iteratively

optimizes them to minimize an energy function that is a linear combination of 2 terms: a

conciseness term and a locality term. The former one, like PCA, attempts to make the

smallest number of e vectors account for the largest amount of variance in the vi as possible;

the variance accounted by vector vj can be computed as the variance of the change pattern

coefficients αi,j. The locality term penalizes basis vectors that are not spatially localized.

Generally speaking, spatial locality means that all non-zero entries of a basis vector

correspond to surface points that form a spatially localized subregion. The LoCA

optimization process iteratively rotates pairs of basis vectors in the plane they span in an

attempt to optimize the conciseness and locality terms. Extensive simulations have

suggested that the LoCA energy function is smoothly varying and well behaved, often with a

single global minimum; optimization based on a widely available gradient-free optimizer

almost always converges to the global minimum (see Section 2.0.7 and Section 3.0.8 of [25].

2.4.3. Weighted LoCA—The addition of the weight vectors wi,t,θ modifies this

optimization in three ways. First, the calculation of e0, the population average HP change

rate vector, becomes a weighted average. That is, the entry e0[k] representing the average

change rate in template HP point k is calculated by: . Similarly, the

covariance matrix becomes a weighted covariance matrix whose entries C[j,k] are:
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. Third, while calculating conciseness energy term, the

coefficient αi,j becomes a weighted inner product between vectors vi and ej, that is αi,j =

Σk(vi[k] − eo[k])wi[k]ej[k]. If vi[k] represents implausible longitudinal change, its weight

vector entry wi[k] will be less than 1. If ej affects that surface point, i.e. ej[k] > 0, the

reduced weighting will make the coefficient αi,j smaller, and thus vi[k] will contribute less to

the variance accounted for by ej. Because basis vectors are more significant (high ranked) if

they account for more variance, the downweighting therefore reduces the importance of

basis vectors covering the region where estimates of change are less confident. Note that if

the elements of the weight vector are all 1, weighted LoCA reduces to the original definition

of LoCA.

3. Experiments

Our experiments used synthetic and real data to evaluate the effectiveness of the proposed

method for quantifying localized HP change patterns. We first tested whether the

downweighting strategy and weighted LoCA increase the ability to detect ground-truth

longitudinal change patterns in noisy synthetic hippocampi. Then we tested the overall

method on hippocampi from clinical groups consisting of AD patients, amnestic mild

cognitive impairment (MCI) patients, and normal controls from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) [15,13]. We assessed the localized change patterns

calculated after application of each subsequent step of the algorithm to show stepwise

improvements in performance. Performance was assessed in terms of plausibility of group

average longitudinal change maps within each clinical group, plausibility of the 5 most

significant localized change patterns estimated, and strengths of association between change

pattern coefficients and cognitive outcome measures. We note that the baseline version of

the algorithm, without alignment, weighted correspondences, or outlier removal,

corresponds to a trivial longitudinal extension of the LoCA algorithm [25], and that point-

by-point mapping of hippocampus changes without these algorithmic enhancements has

been presented as a competing method for quantifying localized change [22].

3.1. Synthetic HP dataset

3.1.1. Data generation—Starting with the population-average HP from the ADNI data set

described below, we generated longitudinal series of synthetic hippocampi by adding the

following three sources of variability to the shape: 1. a shape change pattern that represents

linear longitudinal atrophy to an HP sub-region, such as may accompany aging or AD; 2.

white noise across the entire surface that simulates global and random measurement error,

for example due to limits in image resolution; 3. systematic noise due to inconsistency in the

anatomical definition of HP sub-region boundaries. More formally, the change vector for

subject i is computed as , where e0 is the average HP change

pattern over the population, and the change patterns ej are predefined and spatially localized.

In our experiment, we chose k = 3 and |ej| = 1 for all j = 1, …, k. Each coefficient αi,j is

drawn randomly from a zero mean normal distribution. To allow the algorithm to distinguish

the ej from each other, the variances of αi,j for differing ej differed: αi,1 ~ N(0, 1.5), αi,2 ~
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N(0, 1.25) and αi,3 ~ N(0, 1). nw is Gaussian white noise whose magnitude is constant across

the entire HP surface. The n noise vector specifically induces spurious positive hippocampus

changes in the portion of the HP surface covered by e1. Specifically, n is generated by

drawing from a zero mean normal distribution and taking the absolute value. Entries in n are

then set to zero if the corresponding entry in e1 is zero. We estimated the weight vector wi

for each vi using the same calculation introduced in Section 2.3. The result using traditional

LoCA on {vi} is compared with that generated by applying weighted LoCA on {(vi, wi)}.

3.1.2. Change pattern estimate—In Fig. 5, the first row, from left to right, lists the

three ground truth change patterns e1, e2 and e3. The change pattern e1 covers the lateral

posterior region of HP where the change estimates were affected by the systematic noise.

The second and third rows illustrate two typical results generated by running weighted

LoCA on the synthetic data with and without downweighting. Only the change patterns that

account for more than 5% of total variance are shown. In the third row, the generated change

patterns are basically the same as the ground truth. In the second row, there are two change

patterns (column 2 and 4) that both cover the lateral posterior region, representing an

artifactual reporting of one true underlying region of atrophy into two separate change

patterns. This suggests that surface noise can induce a set of change patterns that are less

concise than they could be. Because the LoCA optimization is a random process, we ran our

program on simulated data with and without downweighting for 20 times respectively. In 14

sets of results based on synthetic data without downweighting, the change pattern e1 was

split into two change patterns. In contrast, this happened 10 times if we downweighted the

noisy data. By analyzing the ground truth coefficients αi,1 and the corresponding

coefficients generated from the downweighted data, we found that the correlation coefficient

between the two sets of coefficients during the 20 runs is always higher than 0.999.

Together, these observations suggest that weighted LoCA together with the downweighting

strategy extracts reliable local change patterns from noisy data in a more stable way.

3.2. ADNI HP dataset

We tested our methods on a set of 79 AD patients; 146 patients with amnestic mild cognitive

impairment (MCI), an AD precursor condition; and 95 normal controls from ADNI who had

baseline and 12-month follow-up MRIs, and semi-automated HP segmentations. MCI is a

clinical condition characterized by cognitive impairment that is not adequate to meet clinical

criteria for AD. Individuals with MCI show many of the cardinal signs of eventual dementia,

including reduced hippocampus volume on MRI and other biomarker measurements

consistent with dementia[17].

ADNI—Data were obtained from the ADNI (www.loni.ucla.edu/ADNI). The ADNI was a

5-year study with a primary goal of testing whether serial MRI, positron emission

tomography (PET), other biological markers, and clinical and neuropsychological

assessment can be combined to measure the progression of mild cognitive impairment

(MCI) and early Alzheimer’s Disease (AD). Subjects were recruited from over 50 sites

across the US and Canada. The initial goal of ADNI was to recruit 800 adults, ages 55–90,

including approximately 200 cognitively normal older individuals to be followed for 3 years,
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400 people with MCI to be followed for 3 years, and 200 people with early AD to be

followed for 2 years.

3.2.1. MRI acquisition—Acquisition of 1.5T MRI data at each performance site followed

a previously-described standardized protocol that was rigorously validated across sites. The

protocol included a high-resolution T1-weighted sagittal volumetric magnetization prepared

rapid gradient echo (MP-RAGE) sequence. The ADNI MRI core optimized the acquisition

parameters of these sequences for each make and model of scanner included in the study.

Before being allowed to scan ADNI participants, all performance sites were required to pass

a strict scanner validation test, including MP-RAGE scans of human subjects and a spherical

fluid-filled phantom. Additionally, each scan of ADNI participants included a scan of the

phantom, which was required to pass strict validation tests. All vetted raw scan data was

transferred to the University of California, San Francisco for semi-automated HP volumetry.

HP delineation—Semi-automated delineation of all ADNI baseline and 1-year follow-up

hippocampi was carried out using a commercially available high dimensional brain mapping

tool (Medtronic Surgical Navigation Technologies, Louisville, CO), that has previously been

validated and compared to manual tracing of the hippocampus. Measurement of

hippocampus volume is achieved first by placing manually 22 control points as local

landmarks for the hippocampus on the individual brain MRI data: one landmark at the head,

one at the tail, and four per image (i.e., at the superior, inferior, medial and lateral

boundaries) on five equally spaced images match the individual brains to a template brain.

The fluid transformation is used to label hippocampus pixels in the native space of the

subject scan, resulting in a binary image representation of the HP structure. The number of

hippocampus voxels in this space is counted to obtain the total HP volume. This method of

measuring hippocampus volume agrees strongly with fully-manual delineations, with a

documented intraclass correlation coefficient between semi-automated and manual volumes

of .94. Binary images for each hippocampus were uploaded to the ADNI database at the

UCLA Laboratory for Neuroimaging (LONI) and transferred to the UC Davis Imaging of

Dementia and Aging Laboratory (IDeA Lab) for further analysis. Hippocampus volume

change rate for each individual was calculated by taking the difference between

corresponding baseline and follow-up volumes, and dividing by the inter-scan interval.

3.2.2. Average HP change—We performed alignment along central axis, weighted

correspondence and downweighting on 320 raw HP surface to estimate radius changes at

sampled HP locations over all subjects. What percentage of the HP was cut off due to non-

shared slices is summarized across all individuals in histogram form in Fig. 6. At least 88%

of HP slices were kept after alignment, and most HP retained 96% or more of their slices.

This suggests that our alignment objective function successfully prevented the optimization

process from aggressively cutting off large portions of the structure. As expected, local HP

radii decreased on average faster among AD patients than MCI patients, and faster among

MCI patients than controls (Fig. 7). However, if none of the processing steps described

above are applied to the segmentations, many local regions appear to grow over time (red),

even in the AD group, in clear violation of the conventional wisdom that HP radii should be

either stable or decreasing in each group. Each additional step of processing had a visible
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effect in reducing the magnitude and extent of local HP growth regions, thus increasing the

plausibility of the change measurements. The final maps of change calculated after all

processing steps among MCI and AD groups suggest prominent atrophy on average in the

anterior medial head and lateral body sub-regions, both of which appear to correspond to the

CA1 HP sub-field that is preferentially damaged by early AD pathology [6]. The relatively

spared (white) HP region in MCI and AD appears to lie within the CA2-4 or dentate gyrus

sub-fields, which are relatively preserved by early AD. In addition, the final mean change

maps agree with prior studies by suggesting that even among cognitively normal individuals

the HP atrophies mildly over time [21].

3.2.3. Localized HP change patterns—We ran weighted LoCA on four versions of HP

change maps that represented differing levels of processing to assess whether the various

steps ease the estimation of plausible, spatially localized HP change patterns. Weighted

LoCA was applied to: 1. the raw data, 2. the data after applying only the down-weighting

step in Sections 2.4 and 3. the data after applying alignment, weighted correspondence

estimation, and 4. the data after applying alignment, weighted correspondence estimation,

and down-weighting. The individual radius change rate map of each subject can be

expressed as the sum of a population average change rate map plus a linear combination of

spatial change patterns estimated by LoCA. The five LoCA change patterns that account for

the highest percentage of variability in HP change rate for each method are shown in Fig. 8,

with blue areas representing a spatial pattern of coherent HP change that was indicated by

the data set. The renderings suggest that the processing steps eased the estimation of

biologically plausible, localized change patterns. In particular, some of the change patterns

based on the raw data and downweighting only are not spatially localized, including blue

areas at both the top and bottom of the structure simultaneously(raw data columns 1 and 3;

downweighting columns 3 and 5). The goal of LoCA is to exclude such patterns, which are

more difficult to interpret anatomically. In addition, the change patterns based on raw data

and downweighting only suggest that substantial HP radial change is only occurring in the

HP head (top of each sub-figure), while change patterns covering a broader extent of the

structure, especially the CA1 and subiculum regions preferentially damaged by early AD

pathology, are found from the aligned and downweighted data. Furthermore, downweighting

helps to prevent reporting of change patterns that are biologically implausible. Note, for

example, that the fifth change pattern based on the aligned but not downweighted data

covers the same region where HP radii were erroneously reported to grow on average over 1

year in the control group (red area in subfigure row 5 and column 3 of Fig. 7), and this

region is not accounted for in the downweighted LoCA change patterns. Together, these

observations suggest that biologically-plausible local change patterns may be easier to

discover from the data due to the processing steps.

3.2.4. Relation between HP change and cognition—Given LoCA change patterns,

the HP change pattern of each individual can be expressed in terms of change pattern

coefficients: these quantify the degree to which any particular change pattern (such as the

ones shown in Fig. 8) is evident in that individual. To test whether the processing steps

encourage the discovery of clinically relevant HP change patterns, we analyzed associations

between cognitive measures collected by ADNI at baseline, and HP change pattern
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coefficients. Based on the natural history of AD, we would expect diminished cognitive

scores to indicate greater levels of AD pathology and therefore greater subsequent HP

atrophy; thus, HP change patterns that more strongly associate with baseline cognition may

be more clinically relevant as indicators of AD-related HP injury. For each cognitive

measure and algorithm variant, we estimated single linear regression models with the

coefficients for each of the top 5 change patterns shown in Fig. 8 as predictors, and the

cognitive measures as the outcome. We use the minimum P values (as indicated as pmin) for

the significance of top 5 change patterns as predictors of AD-relevant cognitive test scores

to quantify the strength of association between the change patterns and the cognitive

measure. For each of the 3 cognitive measures, the pmin for the data based on alignment and

downweighting was smaller than the any of the pmin based on aligned only data,

downweighting only data or raw data (Fig. 9), suggesting that the full algorithm enhances

the discovery of HP change patterns that are more relevant in terms of stronger associations

with real-world outcome measures.

4. Discussion

In this paper, we proposed a sequence of processes to estimate biologically reliable and

localized patterns of spatial change to individual aging HP. The first two steps, alignment

and weighted correspondence estimation, refine the one-to-one surface correspondences and

reduce the amount of implausible HP changes indicated among individual HP. The next

step, downweighting, discounts the impact of the remaining outlier HP change measures by

giving them low confidences. Weighted LoCA effectively decreases the influence of low-

weight points on initializing change patterns and estimating significance of change patterns.

The hippocampus is a very small brain structure relative to conventional MRI voxel sizes, it

is difficult to delineate in a reliable way, and its changes can be subtle even in degenerative

disease. Our results on the ADNI dataset suggest that a precise sequence of HP-specific

algorithmic steps, including alignment, weighted correspondence estimation,

downweighting and weighted LoCA may be required to overcome these issues and estimate

rates of localized HP change that are both biologically plausible and clinically relevant. Our

experiment on simulated data shows that by downweighting the measures that appear to be

biologically implausible, weighted LoCA provides reliable change patterns in a more stable

way.

Unlike other methods that measure individual-level HP changes, our method does not

require precise initial HP delineation correspondence. The alignment step effectively cuts

off slices of tissue that are not shared between HP by maximizing the HP shape similarity

along its central axis. A novelty in our method is the downweighting mechanism together

with weighted LoCA that discounts the impact of outlier measures, and that has been shown

to be more stable against outliers.

One of the unique aspects of this method is that outlier HP points that show significant

growth over time are down-weighted during the estimation of spatial change patterns. We do

so due to overwhelming evidence that in observational studies of aging covering the

spectrum from cognitive health to clinical impairment, the hippocampus either maintains a
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relatively constant size or shrinks (see, e.g. [7,10,20]). However, in certain other contexts it

may be unrealistic to make the assumption that localized hippocampus growth in the aging

brain is artifactual. Clinical trials may administer aggressive treatments that spur

hippocampus growth for example [9]. It is important to note that the downweighting

component of this algorithm may be inappropriate for such settings.

Future work should extend the technique to longer series of longitudinal scans. For such data

sets, groupwise alignment of HP from all scans in a longitudinal series, in one unified

optimization, may provide superior correspondence estimation that is not biased by

assigning privileged status to the baseline time point; however, such groupwise optimization

is likely to be computationally complex. In addition, robust estimation of intra-individual

variability in localized changes should be captured from such data along with inter-

individual variability, following the powerful mixed models regression approach to change

assessment [8]. Such enhancements are beyond the scope of the current work, which took a

principled first step by enhancing longitudinal shape change estimation from a serial pair of

HP.

References

1. Alcantara, Dan; Carmichael, Owen; Delson, Eric; Harcourt-Smith, Will; Sterner, Kirsten; Frost,
Stephen; Dutton, Rebecca; Thompson, Paul; Aizenstein, Howard; Lopez, Oscar; Becker, James;
Amenta, Nina. Localized components analysis. Proc IPMI. 2007

2. Bobinski M, De Leon MJ, Wegiel J, Desanti S, Convit A, Saint Louis LA, Rusinek H, Wisniewski
HM. The histological validation of post mortem magnetic resonance imaging-determined
hippocampal volume in alzheimer’s disease. J Neurosci. 1999; 95(3):721–725.

3. Boccardi, Marina; Bocchetta, Martina; Ganzola, Rossana; Robitaille, Nicolas; Redolfi, Alberto;
Bartzokis, George; Camicioli, Richard; Csernansky, John; de Leon, Mony; deToledo Morrell,
Leyla; Killiany, Ronald; Lehricy, Stphane; Pantel, Johannes; Pruessner, Jens; Soininen, Hilkka;
Watson, Craig; Duchesne, Simon; Jack, Clifford; Frisoni, Giovanni. Estimating the impact of
differences among protocols for manual hippocampal segmentation on alzheimers disease-related
atrophy: preparatory phase for a harmonized protocol. Alzheimer’s Dementia. 2011; 7

4. Carmichael, Owen; Xie, Jing; Fletcher, Evan; Singh, Baljeet; DeCarli, Charles. the Alzheimers
Disease Neuroimaging Initiative. Localized hippocampus measures are associated with Alzheimer
pathology and cognition independent of total hipocampal volume. Neurobiol Aging. 2011

5. Csernansky JG, Hamstra J, Wang L, McKeel D, Gado M, Morris JC. Correlations between
antemortem hippocampal volume and postmortem neuropathology in ad subjects. Alzheimer Dis
Assoc Disord. 2004; 18

6. Csernansky JG, Wang L, Swank J, Miller JP, Gado M, McKeel D, Miller MI, Morris JC. Preclinical
detection of alzheimer’s disease: hippocampal shape and volume predict dementia onset in the
elderly. NeuroImage. 2005; 25:783–792. [PubMed: 15808979]

7. DeCarli, Charles; Massaro, Joseph; Harvey, Danielle; Hald, John; Tullberg, Mats; Au, Rhoda;
Beiser, Alexa; D’Agostino, Ralph; Wolf, Philip A. Measures of brain morphology and infarction in
the Framingham Heart Study: establishing what is normal. Neurobiol Aging. 2005; 26(4):491–510.
[PubMed: 15653178]

8. Diggle, PJ.; Heagerty, P.; Liang, KY.; Zeger, SL. The Analysis of Longitudinal Data. 2. Oxford
University Press; Oxford, England: 2002.

9. Erickson, Kirk I.; Voss, Michelle W.; Prakash, Ruchika Shaurya; Basak, Chandramallika; Szabo,
Amanda; Chaddock, Laura; Kim, Jennifer S.; Heo, Susie; Alves, Heloisa; White, Siobhan M.;
Wojcicki, Thomas R.; Mailey, Emily; Vieira, Victoria J.; Martin, Stephen A.; Pence, Brandt D.;
Woods, Jeffrey A.; McAuley, Edward; Kramer, Arthur F. Exercise training increases size of
hippocampus and improves memory. Proc Nat Acad Sci. 2011; 108(7):3017–3322. [PubMed:
21282661]

Xie et al. Page 13

Comput Vis Image Underst. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



10. Fjell, Anders M.; Walhovd, Kristine B.; Fennema-Notestine, Christine; McEvoy, Linda K.; Hagler,
Donald J.; Holland, Dominic; Brewer, James B.; Dale, Anders M. One-year brain atrophy evident
in healthy aging. J Neurosci. 2009; 29(48):15223–15231. [PubMed: 19955375]

11. Geuze E, Vermetten E, Bremner JD. Mr-based in vivo hippocampal volumetrics: 1. Review of
methodologies currently employed. Mol Psych. 2004; 31:1–13.

12. Gutman, Boris; Wang, Yalin; Morra, Jonathan; Toga, Arthur W.; Thompson1, Paul M. Disease
classification with hippocampal shape invariants. Hippocampus. 2009; 19(6):572–578. [PubMed:
19437498]

13. Hsu, Yuan-Yu; Schuff, Norbert; Du, An-Tao; Mark, Kevin; Zhu, Xiaoping; Hardin, Dawn;
Weiner, Michael W. Comparison of automated and manual mri volumetry of hippocampus in
normal aging and dementia. J Magn Reson. 2002; 16(3):305–310.

14. Jack, Clifford; Barkhof, Frederik; Bernstein, Matt; Cantillon, Marc; Cole, Patricia; DeCarli,
Charles; Dubois, Bruno; Duchesne, Simon; Fox, Nick; Frisoni, Giovanni; Hampel, Harald; Hill,
Derek; Johnson, Keith; Mangin, Jean-Francois; Scheltens, Philip; Schwarz, Adam; Sperling,
Reisa; Suhy, Joyce; Thompson, Paul; Weiner, Michael; Foster, Norman. Steps to standardization
and validation of hippocampal volumetry as a biomarker in clinical trials and diagnostic criterion
for alzheimer’s disease. Alzheimer’s Dementia. 2011; 7

15. Jack, Clifford; Bernstein, Matt; Fox, Nick; Thompson, Paul; Alexander, Gene; Harvey, Danielle;
Borowski, Bret; Britson, Paula; Whitwell, Jennifer; Ward, Chadwick; Dale, Anders; Felmlee, Joel;
Gunter, Jeffrey; Hill, Derek; Killiany, Ron; Schuff, Norbert; Fox-Bosetti, Sabrina; Lin, Chen;
Studholme, Colin; DeCarli, Charles; Krueger, Gunnar; Ward, Heidi; Metzger, Gregory; Scott,
Katherine; Mallozzi, Richard; Blezek, Daniel; Levy, Joshua; Debbins, Josef; Fleisher, Adam;
Albert, Marilyn; Green, Robert; Bartzokis, George; Glover, Gary; Mugler, John; Weiner, Michael.
The alzheimer’s disease neuroimaging initiative (adni): Mri methods. J Magn Reson. 2008; 27(4):
685–691.

16. Jack CR, Dickson DW, Parisi JE, Xu YC, Cha RH, O’Brien PC, Edland SD, Smith GE, Boeve BF,
Tangalos EG, Kokmen EG, Petersen RC. Antemortem MRI findings correlate with hippocampal
neuropathology in typical aging and dementia. Neurology. 2002; 58(5):750–757. [PubMed:
11889239]

17. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004; 256(3):183–
194. [PubMed: 15324362]

18. Peyrat, Jean-Marc; Delingette, Herv; Sermesant, Maxime; Pennec, Xavier; Xu, Chenyang; Ayache,
Nicholas. Registration of 4d time-series of cardiac images with multichannel diffeomorphic
demons. Proc MICCAI. 2008:972–979.

19. Qiu, Anqi; Younes, Laurent; Miller, Michael I.; Csernansky, John G. Parallel transport in
diffeomorphisms distinguishes the time-dependent pattern of hippocampal surface deformation
due to healthy aging and the dementia of the alzheimer’s type. NeuroImage. 2008; 40(1):68–76.
[PubMed: 18249009]

20. Raz, Naftali; Ghisletta, Paolo; Rodrigue, Karen M.; Kennedy, Kristen M.; Lindenberger, Ulman.
Trajectories of brain aging in middle-aged and older adults: regional and individual differences.
NeuroImage. 2010; 51(2):501–511. [PubMed: 20298790]

21. Raz, Naftali; Lindenberger, Ulman; Rodrigue, Karen M.; Kennedy, Kristen M.; Head, Denise;
Williamson, Adrienne; Dahle, Cheryl; Gerstorf, Denis; Acker, James D. Regional brain changes in
aging healthy adults: general trends, individual differences and modifiers. Cereb, Cortex. 2005;
15:1676–1689. [PubMed: 15703252]

22. Thompson PM, Hayashi KM, de Zubicaray G, Janke AL, Rose SE, Semple J, Hong MS, Herman
D, Gravano D, Doddrell DM, Toga AW. Mapping hippocampal and ventricular change in
Alzheimer’s disease. NeuroImage. 2004; 22(4):1754–1766. [PubMed: 15275931]

23. Wang, Lei; Swank, Jeffrey S.; Glick, Irena E.; Gado, Mokhtar H.; Miller, Michael I.; Morris, John
C.; Csernansky, John G. Changes in hippocampal volume and shape across time distinguish
dementia of the alzheimer type from healthy aging. NeuroImage. 2003; 20(2):667–682. [PubMed:
14568443]

24. Wu, Guorong; Wang, Qian; Jia, Hongjun; Shen, Dinggang. Registration of longitudinal image
sequences with implicit template and spatial-temporal heuristics. Proc MICCAI. 2010:618–625.

Xie et al. Page 14

Comput Vis Image Underst. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



25. Xie, Jing; Alcantara, Dan; Amenta, Nina; Fletcher, Evan; Martinez, Oliver; Persianinova, Maria;
DeCarli, Charles; Carmichael, Owen. Spatially localized hippocampal shape analysis in late-life
cognitive decline. Hippocampus. 2009; 19(6):526–532. [PubMed: 19437501]

Xie et al. Page 15

Comput Vis Image Underst. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 1.
Framework for measuring longitudinal localized hippocampus change. (a) Follow-up HP are

aligned to baseline HP (blue arrows) and baseline HP are aligned to a common template

(red). (b) The alignment consists of deforming and shifting HP along their central axes,

cutting off structure end slices not shared between the pair (top), and establishing weighted

correspondences at each surface point (bottom). (c) Rates of local HP radius decrease are

estimated (top) and points with implausible change rates are down-weighted. (d) Spatial

patterns of coherent HP change (blue spots) are generated by a version of LoCA that

accounts for the down-weighting. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

Xie et al. Page 16

Comput Vis Image Underst. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2.
A baseline subject HP (blue surface) and a template HP (red wireframe) are shown overlaid

before (a) and after (b) alignment from an inferior viewpoint. The curves plotting maximum

distance from surface points to the central axis in each slice drive the alignment, and are

more similar after alignment (d) than before (c). Green lines show positions of control slices

before alignment (c) and after (d), with the direction and magnitude of control slice motion

indicated by arrows. (e) (f) After baseline and follow-up HP are aligned, it is very common

for end slices to occur in one HP that have no obvious counterpart in the other (gray). There

slices are removed prior to change rate estimation. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3.
(a) Corresponding slices from a baseline and follow-up HP are shown overlaid. (b)

Expanded view of a sub-region of these slices illustrating weighted correspondence. A point

on the baseline HP is mapped to the green point on the follow-up HP, which was found by a

weighted average of the positions of follow-up points (pink) by their distance to the baseline

point and how they deviate from the surface normal direction at the baseline point. Higher

weights are indicated by darker blue lines to the baseline point. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this

article.)
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Fig. 4.
Logistic function used to establish weighted correspondences between HP surface points.
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Fig. 5.
For synthetic dataset, the ground truth change patterns and two sets of typical LoCA change

patterns accounting for more than 5% of HP change rate variability are shown. The

magnitudes of change pattern entries are illustrated by intensities of blue color. For each

rendering, the change pattern accounts for a coherent pattern of change in the region shown

in blue. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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Fig. 6.
(a) The histogram plots the ratio of the number of template HP slices that were removed

during alignment from each individual baseline HP to the template, to the total number of

slices in template HP, across all baseline HP. (b) The histogram plots the ratio of the number

of baseline HP slices that were removed during alignment of individual follow-up to

baseline, to the total number of slices in the baseline HP, across all individuals.
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Fig. 7.
Color-coded maps of average local radius change rates among ADNI control, MCI, and AD

groups calculated after application of varying sets of algorithm steps. Red points indicate

positive change, i.e. HP growth over time, while blue points indicate local atrophy. Odd and

even rows render the HP from superior and inferior viewpoints respectively (anterior and

medial directions are marked with A, M). (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)
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Fig. 8.
For 4 differing algorithm variants, the 5 LoCA change patterns accounting for the greatest

amount of HP change rate variability are shown. For each rendering, the change pattern

accounts for a coherent pattern of change in the region shown in blue. (For interpretation of

the references to colour in this figure legend, the reader is referred to the web version of this

article.)
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Fig. 9.
For 4 different algorithm variants, the decadic logarithm of the minimum P values

demenstrating the significance of top 5 change patterns as predictors of AD-relevant

cognitive test scores. The P values are derived from univariate regression models.
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