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Abstract

Sparse representation classification (SRC) is one of the most promising classification methods for supervised learning. This
method can effectively exploit discriminating information by introducing a ‘1 regularization terms to the data. With the
desirable property of sparisty, SRC is robust to both noise and outliers. In this study, we propose a weighted meta-sample
based non-parametric sparse representation classification method for the accurate identification of tumor subtype. The
proposed method includes three steps. First, we extract the weighted meta-samples for each sub class from raw data, and
the rationality of the weighting strategy is proven mathematically. Second, sparse representation coefficients can be
obtained by ‘1 regularization of underdetermined linear equations. Thus, data dependent sparsity can be adaptively tuned.
A simple characteristic function is eventually utilized to achieve classification. Asymptotic time complexity analysis is applied
to our method. Compared with some state-of-the-art classifiers, the proposed method has lower time complexity and more
flexibility. Experiments on eight samples of publicly available gene expression profile data show the effectiveness of the
proposed method.
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Introduction

The development of high-throughput technologies has enabled

scientists to monitor the gene expression levels in tens of thousands

of genes simultaneously in a single experiment. This technology

has become a symbol of the post-genomic era [1]. Biomedical

research indicates that tumor development is related to the change

in gene expression levels and that tumor-related biomarkers are

usually associated with a few genes. Thus, identifying tumor tissue

or disease-related biomarkers accurately is of great practical

significance. However, gene expression profile data are charac-

terized by very high dimensionalities and small sample size. The

curse of dimensionality problem makes classification challenging.

Some dimensionality reduction methods have recently been

proposed to solve the ‘‘large p, small n’’ problem [2]. Feature

extraction and feature selection are two methods of dimensionality

reduction; feature extraction transforms original features (genes)

into a set of new features by subspace learning [3–5]. However,

suitable biological interpretation is difficult to obtain from the

subspace learning dimensionality reduction results. Feature

selection is another commonly used dimensionality reduction

method that selects a sub-set of genes that can best predict the

response values from the raw data [6]. Although dimensionality

reduction can significantly improve computational efficiency, this

process can easily lead to over-fitting when a classifier is applied.

Sparse representation classification (SRC) was proposed by

Wright et al. [7] for face recognition. With ‘1 sparsity constraint, a

testing face can be approximately represented by parts of the

training data that are from the same class. Unlike traditional

classification methods such as support vector machine and k

nearest neighbor classifier, SRC is robust to both noise and

outliers. However, the orginal training samples may not contain

suffiient discriminating information compared with meta-samples

[8].

To capture more alternative information from gene expression

data, the so-called meta-samples are proposed by [8–11]. These

samples can be regarded as a set of bases, the linear representation

of which can represent the training data. In [11], penalized matrix

decomposition is used to extract meta-samples, and clustering is

performed on those meta-samples. In [8], the meta-sample based

sparse representation classification (MSRC) method is proposed.

This method is robust to over-fitting problem and noise. However,

MSRC needs two predefined parameters, namely, the number of

meta-samples and the sparse penalty factor. These two parameters

are data dependent. Thus, model selection methods, such as cross-

validation (CV), significantly affect the classification results. In this

study, we propose a non-parametric version of MSRC to address

this optimal parameter selection problem. The main contributions

of this paper are as follows:
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1. The data-dependent sparsity can be automatically adjusted,

rather than empirically chosen. Without computationally

expensive model selection, our method is scalable and efficient.

2. The existing MSRC [8] method requires the appropriate

selection of the number of meta-samples for each sub class,

which is a laborious task. We address this problem by

introducing a simple weighting strategy for the meta-sample

of each category, and the rationality of weighting strategies is

mathematically proved.

3. Extensive experiments are performed to evaluate the proposed

method. Experimental results show the superiority of the non-

parametric version of MSRC compared with some state-of-the-

art classifiers. Section 3 presents more details.

The remainder of this paper is organized as follows: prior work

on sparse representation classification and the fundamentals of the

proposed method are described in Section 2. Section 3 presents

the experimental results. The proposed method is discussed in

Section 4. Section 5 concludes this paper.

Methods

This study primarily aims to establish the manner by which to

devise an robust classifier for tumor subtype classification. Given a

microarray data set X~fx1,x2,:::,xmg [ <n|m and a set of class

labels C~f1,2,:::,cg, X is a matrix with n rows and m columns.

Each column of X denotes a sample, whereas each row of X
denotes a gene. Let xj denote the jth sample, which is a column

vector with n dimensional. For each element in X, xi,j [ < denotes

the expression level of the ith gene in the jth sample. We provide a

summary of the abbreviations used in this study in Table 1. For

clarity, we use boldface and lowercase type letters for vectors and

boldface and capital type letters for matrices.

Gene expression profile data are high-throughput data with tens

of thousands of genes. However, the number of samples is usually

very small, which makes classification challenging. To avoid the

curse of dimensionality, differential gene expression analysis

[12,13] is widely used to exclude redundant and irrelevant genes

before classification. In our study, we use the Relieff [14] method

to select a subset of informative genes for further analysis. In the

following subsections, we briefly review meta-sample and sparse

Table 1. Notations and abbreviations used in this paper.

Notation Description

SVD Singular value decomposition

<N N dimensional real number vector

X X~fx1,x2,:::,xmg [ <n|m denotes gene expression data set with n genes, m

samples

W W~½W1,W2,:::,Wc� meta-samples associate with c classes

Dci D Number of samples belong to class i

kk0 ‘0 norm

kk1 ‘1 norm

kkF Matrix Frobenius norm

doi:10.1371/journal.pone.0104314.t001

Figure 1. Illustration of meta-sample model: each column vector of Xni
can be represented within a linear combination of meta-

samples in Wni
, and the column of HT

ni
corresponds to the linear combination coefficients.

doi:10.1371/journal.pone.0104314.g001
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representation classification. we then propose weighted meta-

sample based parameter free sparse representation classification

(PFMSCR).

Meta-samples versus gene expression samples
As illustrated in Figure 1, meta-samples can be regarded as basis

samples that contain the essential information of the original data.

A given testing sample can be represented by a linear combination

of meta-samples from the same class. Concretely, suppose xi is

associated with the nith class, where ni [ C, and the nith class

samples in the training data have k meta-samples, namely,

fw1,w2,:::,wkg [ <n|k. Sample xi can be formulated as Eq. (1).

xi~w1h1,izw2h2,iz:::zwkhk,i ð1Þ

Mathematically, meta-samples extraction can be regarded as a

type of matrix decomposition, including non-negative matrix

factorization [15], singular value decomposition (SVD) [16], and

principal component analysis [17], where matrix Wni
[ <n|k, and

HT
ni
[ <k|Dni D denote the meta-sample and meta-gene, respectively.

In singular value decomposition, Wni
is a maximum linearly

independent group of Xni
column vectors.

Biologically, meta-samples are also called eigenarray [18] or

basis snapshot for gene expression data. Han et al. [17] used meta-

samples to identify tumors from microarray data and found that

meta-sample-based classification can effectively avoid over-fitting.

Zheng et al. [10,11,18] proposed a novel cluster method based on

meta-samples, which meta-samples can be regarded as cluster

indictors.

Prior works revealed that meta-samples preserve some desired

discriminant information of samples from the same class.

Sparse representation classification problem revisited
In this subsection, we revisit the sparse representation problem

briefly. Sparse representation is one of the most important

components of machine learning and data mining community

that has wide applications in such fields as text mining, image

classification, and bioinformatics. In this work, we interpret the

sparse representation problem from the view of linear algebra.

From the standpoint of linear equations system Xa~y, the

solution of Xa~y has three possible states:

1. Linear equation systems have infinitely many solutions if they

are underdetermined (i.e., nvm).

2. Linear equation systems have a unique solution if they are well

posed.

3. Linear equation systems have no solution if overdetermined

(i.e., nwm).

In the first scenario, one can pursue the sparse solution by

regularization [19]. The problem can be formulated as

Figure 2. Optimal classification accuracy of MSRC achieved on COLON; the x-axis represents the number of meta-samples (left) and
the regularization parameter (right). Classification accuracy is more sensitive to the number of meta-samples rather than to the regularization
parameter.
doi:10.1371/journal.pone.0104314.g002

Figure 3. The flowchart of PFMSRC scheme.
doi:10.1371/journal.pone.0104314.g003
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min
a

ak k0

s:t: Xa~y ð2Þ

However, ‘0 norm is an NP-hard combinational optimization

problem, and difficult to solve, fortunately, ‘1 norm is an

appropriate convex approximate to ‘0 [20]. If the solution is

sparse enough, ‘1 minimization is equivalent to ‘0 minimization

[21], such that we can reformulate Eq. (2) as

min
a

ak k1

s:t: Xa~y ð3Þ

For the other two scenarios, the sparsity of a cannot be

guaranteed. However, one can still obtain a sparse solution by

adding a penalty term that shares the same formulation as LASSO

[22]

min
a

Xa{yk k2
2z ak k1 ð4Þ

Compared with Eq. (3), Eq. (4) is an unconstrained convex

problem. Notably, makes a tradeoff between sparsity and

regression error and should be empirically chosen. A larger

yields a sparser a. However, one might run the risk of increasing

regression error term Xa{yk k2
2.

Sparse representation assumes that a signal can be reconstruct-

ed by a small number of basis signals within a linear combination.

Thus, Eq (3) can be named as basis pursuit [23]. In bioinformatics

applications, one can suppose that a testing sample can be well

reconstructed by the training data from the same class within a

linear combination, which is a very useful assumption for our later

work.

Meta-sample based sparse representation
Zheng et al. [8] proposed MSRC method to predict tumor

subtypes. In such situations, c classes of meta-samples are

extracted, denoting as W~½W1,W2,:::,Wc� with the same classes

being conjoined together, where meta-samples are column vectors

(two kinds of meta-sample are proposed in [8]). Given a test

sample y associated with class i, MSRC tries to find sparse

reconstruct coefficients in terms of all meta-samples using Eq. (4).

In particular, [8] tries to solve the sparse representation problem

using min
a

Wa{yk k2
2z ak k1. In ideal cases, the nonzero entries

in a will only be associated with the ith class meta-samples of W, as

shown in Eq. (5).

a~½0,:::,ai1 ,ai2 ,:::,aini|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
ith class

,:::,0�T [ <m ð5Þ

Notably, the gene expression profile contains data with high

dimensionality and small sample size (n&m). The sparsity can only

be achieved by adding a penalty term. However, the optimal

number of meta-samples and penalty factor are essentially

important in classification applications. Figure 2 illustrates that if

the meta-samples are improperly set, the prediction accuracy of

MSRC drops seriously on COLON dataset. Specifically, in the left

part of Figure 2 shows that the 10-fold stratified cross validation

classification accuracy is achieved by varying the number of meta-

samples from 3 to 12 for each subclass. We can observe that the

performance is less sensitive to various regularization parameters

within the scope of from the right part of Figure 2. Thus, model

selection is essential and laborious work on different data sets.

To overcome this weakness, this study proposed a novel

parameter free meta-sample based sparse representation classifi-

cation (PFMSRC) method.

Parameter free meta-sample sparse representation
(PFMSRC)

In this subsection, we first propose a heuristic weighted strategy,

the reasonableness of which is theoretically proven. We then

construct an underdetermined linear equation system, in which

the data-dependent sparsity can be self-adaptively tuned by ‘1

norm regularizer.

Let X~fX1,X2,:::,Xcg [ <n|m be gene expression profile data,

with the same classes being conjoined together, that is, Xi contains

all samples associated with the ith class. We factorize Xi by

performing SVD. The singular values are sorted in descending

order 1§ 2§:::§ kw0, where k is the column rank of Xi , and

L~diag( 1, 2,::: k) denotes diagonal matrix with singular values

being diagonal elements. One can extract weighted meta-samples

associated with class i as Wi~
ffiffiffiffiffi

1

p
u1,

ffiffiffiffiffi
2

p
u2,:::,

ffiffiffiffiffi
k

p
uk½ �, where ui

is a column vector in Ui, and rank(Xi)~k.

Table 2. Descriptions of microarray data repository and the accession number.

Datasets Repository Accession number

Colon Gene Expression Omnibus GDS4379

Acute leukemia data Gene Expression Omnibus GSE19475

DLBCL Gene Expression Omnibus GSE15177

Gliomas Gene Expression Omnibus GSE54792

SRBCT Gene Expression Omnibus GSE1825,GSE31186,GSE31217

ALL Gene Expression Omnibus GSE23024

MLLLeukemia Gene Expression Omnibus GSE11038

LukemiaGloub Gene Expression Omnibus GSE10283

doi:10.1371/journal.pone.0104314.t002
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Xi~Ui

1 � � � 0

..

.
P

..

.

0 � � � k

0
BB@

1
CCAVi

T , Vi, iw0 ð6Þ

Alternatively, Eq. (6) can be compactly reformulated as

Xi~Ui

ffiffiffiffi
L
p ffiffiffiffi

L
p

VT
i . This weighting scheme can enhance the

influence of main singular vector in Ui. That is, larger i makes

the associated meta-sample more important. Moreover, the

weighting scheme works well in the following experiments.

Compared with [8], Zheng et al. extracted meta-samples by

performing SVD as well. However, in their algorithm framework,

the number of meta-samples used for classification is determined

during the cross-validation step. On the contrary, PFMSRC tries to

avoid the cross-validation part by weighting the all meta-samples

and weakening the influence of minor eigenvectors rather than

using several of them for classification. Proposition 1 theoretically

proves the reasonableness of the weighting strategy in measuring

the importance of each metasample.

Proposition 1. Singular value is a reasonable weighting factor
for measuring the importance of meta-samples.

Proof. Let X~ u1,u2,:::,uk½ �L½v1,v2,:::,vk�T , where

L~diag( 1, 2,:::, k) and 1§ 2§:::§ kw0, X~
Pk
i~1

iuiv
T
i ,

considering evaluation metric function
iuiv

T
i

�� ��2

F

Xk k2
F

~

Tr( 2
i uiv

T
i viu

T
i )

Tr(XXT )
~

2
i

2
1z

2
2z:::z 2

k

§

2
j

2
1z

2
2z:::z 2

k

, one can

conclude that

Table 3. Data set descriptions.

Datasets Samples Genes Subclass number

Colon 62 2000 2

Acute leukemia data 72 5000 2

DLBC 77 7129 2

Gliomas 50 12625 2

SRBCT 83 2308 4

ALL 248 12626 6

MLLLeukemia 72 12582 3

LukemiaGloub 72 7129 3

doi:10.1371/journal.pone.0104314.t003

Figure 4. Comparison of prediction accuracy on four binary classification datasets by varying the number of samples from per
subclass; when p is larger than 10 the model based method prediction accuracy decreases as p increases.
doi:10.1371/journal.pone.0104314.g004
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iuiv
T
i

�� ��2

F

Xk k2
F

§

jujv
T
j

��� ���2

F

Xk k2
F

This completes the proof. %

The evaluation metric function is used to measure the meta-

sample’s contribution of the meta-sample to the raw data

reconstruction in terms of i. Tr denotes matrix trace. Note that,

functions f (x)~x and g(x)~
ffiffiffi
x
p

have the same monotonicity,

which makes the weighting strategy reasonable.

‘1 graph was proposed by Cheng et al. [24] to measure the

similarity among samples. Inspired by their work, sparsity can be

obtained by ‘1 regularizer on underdetermined linear equation

systems. Concretely, a testing sample can be recovered by

weighted meta-samples within a linear combination with a noise

term added, formulated as Eq. (7)

y~Waze~½W I�
a

e

� �
ð7Þ

Let B~½W I� [ <n|(m’zn) and a’~
a
e

� �
[ <m’zn, where m’

represents the number of meta-samples corresponding to c classes,

I is an identity matrix, and e is the noise term. Alternatively, one

can solve the following minimization problem:

min
a’

a’k k1

s:t: y~Ba’ ð8Þ

Theorem 1 proves that Eq. (8) is a underdetermined linear

system. As stated in Subsection 2.2 the sparsity of under-

determined linear system can be automatically tuned by ‘1

regularization (the first scenario). Moreover, (8) is a canonical

convex problem with equality constraints, which can optimize

sparse representation coefficients and noise term simultaneously.

The globally optimal solution can be efficiently solved by CVX

package [25] in polynomial time. Notably, the package solves the

optimization problem by dualization rather than interior point

method because the former is significantly faster than the latter.

Theorem 1. Linear equation system (8) is underdetermined,
and rank(B)~n.

Proof. We can find a sub matrix in B [ <n|(m’zn), such as I and

rank(I)~n[rank(B)~n. This completes the proof. %

Note that a’ [ <m’zn is a sparse vector with m’zn entries. The

first m’ components correspond to linear representation coeffi-

cients, whereas the last n components characterize model noise or

regression error. However, the test sample y from one of the

classes in training data cannot be well reconstructed by meta-

samples associated with the same class in most instances because of

the existence of noises. Figure 3 illustrates the flowchart of our

PFMSCR scheme, the redundant dictionary is constructed by

combining meta-samples and noise term.

We define a projection function di(a’) : <m’?<m’ for each class

i, which selects the coefficients associated with the ith class from

the first m’ components in a’, whereas the other entries are

appropriately padded with zeros in di(a’). The reconstruction

relationship y~Wdi(a’) is not always holden. However, the

minimized reconstruction error criterion

ri(y)~ y{Wdi(a’)k k2, i~1:::c is a good approximation to

classify testing samples. We summarize the proposed classification

method as follows.

Step 1. Input training sets X~½X1,X2,:::,Xc� [ <n|m, class

number c, and testing sample y [ <n;

Step 2. Normalize training set samples and testing sample to

obtain unit ‘2-norm;

Step 3. Extract weighted meta-samples W~½W1,W2,:::,Wc� for

each class (meta-samples with the same class are conjoint);

Step 4. Solve non-parametric sparse representation problem by

Eq. (8);

Table 4. Comparison on four binary classification tumor data sets; for each data set, 10 samples per class are randomly selected for
training and the rest are used for testing.

Dataset name LDA+SVM ICA+SVM SRC MSRC-SVD PFMSRC

colon 74(+7.85) 64.55(+7.39) 84.20(+3.65) 84.20(+4.81) 85.45(+3.33)

DLBC 66.76(+6.67) 68.33(+4.78) 86.49(+3.39) 85.35(+4.91) 86.40(+5.69)

Gliomas 65.83(+8.08) 69.83(+9.52) 75.00(+6.35) 75.83(+7.24) 77.00(+6.48)

Acute leukemia 89.71(+3.14) 89.13(+4.96) 93.46(+3.82) 94.52(+3.65) 96.25(+2.20)

We report the standard deviations in parentheses.
doi:10.1371/journal.pone.0104314.t004

Table 5. Comparison of specificity by different methods on four binary classification data sets.

Dataset name SRC MSRC-SVD PFMSRC

colon 90.00 92.50 92.50

DLBC 96.55 94.83 96.55

Gliomas 72.73 77.27 77.27

Acute leukemia 100 100 100

doi:10.1371/journal.pone.0104314.t005
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Step 5. Compute residuals for each class ri(y)~
y{Wdi(a’)k k2, i~1:::c;

Step 6. Return class label of y as c(y)~ arg min
i

r(y), i~1,:::,c;

PFMSRC can be considered as a non-parametric version of

MSRC, compared with the former having the following merits:

1. The weighted meta-samples are orthogonal with one another.

That is, no redundancy exists among meta-samples, and the

weight enhances the influence of the main singular vector, such

that discriminant information can be well retained.

2. The data-dependent sparsity can be automatically tuned

without human intervention. Thus, PFMSRC has better

scalability and robustness.

3. The time complexity of PFMSRC is lower than that of MSRC,

since computationally expensive model selection work need not

be accomplished for parameter optimization. Time complexity

can be estimated as: weighted meta-sample extraction step

needs time complexity O(nm2), ‘1 minimization needs time

complexity O((mzn)1:3), the total complexity for PFMSRC is

O(nm2zm(mzn)1:3).

In the following section, we will conduct extensive experiments

on micoarray data to evaluate the effectiveness of our scheme, and

microarray data repository information as well as the accession

number is given by Table 2.

Experiments

In this section, we will evaluate the performance of the proposed

PFMSRC algorithm against four state-of-the-art algorithms,

namely, linear discriminant analysis (LDA+SVM), independent

component analysis (ICA+SVM), SRC, and meta-sample sparse

representation (SVD-MSRC). The former two are model based

and accompanied by feature extraction. These two algorithms are

regarded as baseline. For the model-based method, support vector

machine [26,27] with radial basis function kernel is employed as a

classifier. The experiments are performed on four binary-class

classification data sets and four multiclass classification data sets.

All experiments are implemented in Matlab environment and run

on a personal computer with intel Pentium4 dual core CPU

2.4 GHZ and 4 G RAM. The summarized descriptions of the

eight gene expression profile datasets are provided by Table 3.

Table 6. Comparison of sensitivity by different methods on four binary classification data sets.

Dataset name SRC MSRC-SVD PFMSRC

colon 81.82 86.36 86.36

DLBC 1 1 94.74

Gliomas 82.14 78.57 89.29

Acute leukemia 88.00 92.00 84.00

doi:10.1371/journal.pone.0104314.t006

Figure 5. Comparison of prediction accuracy on four multiclass classification datasets by varying the number of samples from per
subclass; when p is larger than 10 the performance degradation of model based methods is less significant than that of binary
classification.
doi:10.1371/journal.pone.0104314.g005
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N Colon [28] consists of 62 samples with two subclasses including

40 tumor and 22 normal samples. The highest 2000 genes with

minimal intensity in the tissues are retained from the original

of more than 6500 genes. This dataset can be downloaded

from [29].

N Acute leukemia data [30], consist of 72 samples with two

subclasses, including 47 acute lymphoblastic leukemia patients

and 25 acute myelogenous leukemia patients. Each sample

contains 7129 genes. This dataset can be downloaded from

[29].

N DLBCL [1] consists of 77 samples with two subclasses,

including 58 diffuse large b-cell lymphoma samples and 19

follicular lymphoma samples. Each sample contains 7129

genes. This dataset can be downloaded from [31].

N Gliomas [32] consist of 50 samples with two subclasses

(Glioblastomas and Anaplastic Oligodendrogliomas), and each

sample contains 2308 genes. This dataset are available at [31].

N SRBCT [33] consist of 83 samples with four subclasses (Ewings

sarcoma, Burkitts, Neuroblastoma and rhabdomyosarcoma).

Each sample contains 2308 genes. The datasets are available at

[31]

N ALL [34] consists of 248 samples with six subclasses. Each

sample contains 12626 genes. The datasets are available at

[31].

N MLLLeukemia [35] consists of 72 samples with three

subclasses. Each sample contains 12582 genes. The datasets

are available at [29].

N LukemiaGloub [30] consists of 72 samples with three

subclasses. Each sample contains 7129 genes. The datasets

are available at [31].

Dataset preprocessing and experiment setup
Gene expression profiling involves data with high dimension-

ality and small sample size. The exclusion of redundant and

irrelevant data is critical for classification. As suggested by [36],

restaining only the top 400 genes makes a good tradeoff between

computational complexity and biological significance. In our

experiment, the top 400 genes are selected from each dataset by

applying the Relieff [14] algorithm to the training set.

For LDA+SVM algorithm, we simply extract c{1 new features

to train the classifier, as LDA can find at most c{1 meaningful

projection vectors in the subspace, where c denotes the number of

Table 7. Comparison on four multiclass tumor data sets; for each data set, 10 (8 for LeukemiaGloub) samples per class are
randomly selected for training the rest are used for testing.

Dataset name LDA+SVM ICA+SVM SRC MSRC-SVD PFMSRC

SRBCT 91.05(+4.61) 88.72(+5.56) 96.86(+2.64) 97.56(+3.06) 96.98(+2.51)

ALL 86.12(+3.81) 91.38(+3.28) 94.07(+2.38) 94.07(+2.93) 96.73(+1.68)

MLLLeukemia 93.81(+3.74) 93.33(+5.16) 95.36(+3.04) 95.36(+2.84) 95.83(+2.88)

LukemiaGloub 73.75(+5.25) 77.50(+6.98) 95.83(+2.14) 95.21(+2.35) 94.90(+2.74)

The average accuracy and corresponding standard deviations are reported.
doi:10.1371/journal.pone.0104314.t007

Figure 6. Comparison of prediction accuracy on four binary classification datasets by varying the number of top selected genes.
doi:10.1371/journal.pone.0104314.g006
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classes. SVM kernel parameters are determined by 10-fold cross-

validation. In fact, the determination of the number of indepen-

dent components is also an empirically dependent work. Here, we

use the same method as suggested by [18].

SRC and MSRC methods need parameter to control sparsity.

MSRC also needs the number of meta-samples of each class as a

key parameter. Each dataset is searched from

f0:001,0:1,1,10,100g by 10-fold CV on training data, and the

number of meta-samples for each class is set as recommended by

[8].

Experiments on binary classification problem
To evaluate the performance of five methods on a balanced split

data set, we randomly select p~5 to min (Dci D){1 samples per

subclass as training set and use the rest for testing to guarantee that

at least one sample in each category can be used for test, 20 times

training/testing are randomly split, and the average classification

accuracies are presented. The best prediction accuracy is in

boldface for each gene expression profile dataset.

We show the average performance comparison on four binary

classification tasks in Figure 4. PFMSRC exhibited encouraging

performance. Although Gliomas was difficult for classification, the

proposed approach can still achieve 85% classification accuracy

via 20 samples per subclass used for training. Notably, the

classification accuracy of LDA+SVM and ICA+SVM dropped

quickly as more samples are taken for training; the same

observations can be found in [36]. This fluctuation phenomenon

can be interpreted as follows: (1) For the binary classification case,

the feature extracted by LDA has only one dimension that is

insufficient to capture the intrinsic discriminating information.

Thus, model-based classification methods have difficulty in

preventing the over-fitting phenomenon. (2) When evaluating

the performance on the testing set the number of samples changes

as more samples are used for training.

Figure 7. Comparison of prediction accuracy on four multiclass classification datasets by varying the number of top selected genes.
doi:10.1371/journal.pone.0104314.g007

Table 8. The maximal average prediction accuracy of LDA+SVM, ICA+SVM, SRC, MSRC-SVD and PFMSRC on eight tumor
microarray datasets.

Dataset name LDA+SVM ICA+SVM SRC MSRC-SVD PFMSRC

colon 61.67 76.90 80.48 84.05 83.81

DLBC 68.07 71.05 89.47 88.42 89.47

Gliomas 67.33 70.67 75.33 75.00 76.00

Acute leukemia 85.38 88.85 93.27 95.00 95.19

SRBCT 91.16 89.30 97.21 97.21 97.21

ALL 85.16 91.44 96.46 93.59 97.02

MLLLeukemia 96.43 94.05 96.43 96.67 97.14

LukemiaGloub 81.63 91.81 94.79 94.68 96.05

doi:10.1371/journal.pone.0104314.t008
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Classification accuracy, specificity, and sensitivity are some

popular evaluation metrics. In this work, we use all three to

evaluate performance, and the results are reported in Table 4, 5,

and 6, respectively. The three methods can achieve satisfactory

performance not only on the specificity metric but also on the

sensitivity metric. Compared with SRC and MSCR, PFMSRC

outperforms its competitors in most cases. A comprehensive

consideration is that PFMSRC achieves the best performance,

followed by MSRC and SRC.

Experiments on multiclass classification problem
We investigate multiclass classification performance on four

publicly available data sets. The experimental setup is the same as

that for the binary classification case. On one hand from Figure 5

and Table 7 it can be seen that (1) the classification accuracies of

SRC, MSRC, and PFMSRC are increased on all multiclass

classification datasets as more samples per subclass are taken for

training. (2) ALL has six subclasses, and the proposed PFMSRC

achieves the highest classification accuracy, which indicates that

we have potential superiority on multiclass classification task. (3)

LDA can capture more discriminating information on the

multiclass classification task, and the over-fitting phenomenon is

reduced compared with the binary classification task.

On the other hand, sparse representation based classification

methods are less sensitive to the number of samples used for

training model-based classification methods, which suggests a

natural approach to select a classifier when the training sample size

is small. Table 7 provides the performance description of the five

classification methods. The proposed PFMSRC method performs

consistently well with small standard deviations. On the SRBCT

and ALL datasets, PFMSRC achieved 96.98% and 96.73%,

respectively.

Experiments with different number of genes
In this subsection, we evaluate the performance of the five

methods with different feature dimensions on eight tumor data

sets. For the training data, 10 samples per subclass are randomly

selected, whereas the remaining samples are used for test. We

perform the test with various numbers of genes, starting from 50 to

400 genes in steps of 20. The comparison experiment was

performed 20 times, and the average prediction accuracy of our

experiments on eight gene expression profile datasets was recorded

for evaluation.

The balanced training sets for each dataset ensure fair

evaluation as stated by [36]. The experimental result in Figure 6

shows that the proposed PFMRSC performs well when only 100

genes are used. We can observe the similar results in the multi-

classification case as well.

In binary classification case, SRC, MSRC, and PFMSRC share

the same curve trend. Compared with SRC and MSRC,

PFMSRC performs well by using a smaller number of genes,

SRC and MSRC can achieve comparable accuracy by using more

genes. Evidently, SRC, MSRC, and PFMSRC consistently

outperform LDA+SVM and ICA+SVM in all datasets.

In the multiclass classification case, the performance of MSRC,

SRC, and PFMSRC is very stable with respect to the number of

genes, and all these methods converge fast to the optimal

classification rate point. Figure 7 shows that compared with their

performance in the binary classification case, SRC, MSRC, and

PFMSRC are less influenced by gene dimension. Note that ALL is

a multiclass dataset with six subclasses, but PFMSRC can still

achieve a higher classification rate of 97% accuracy compared

with SRC and MSRC. The same conclusion can be drawn for the

SRBCT dataset.

In Table 8, we report the detailed classification accuracy.

PFMSRC outperforms its competitors on most gene expression

profile datasets, whereas SRC and MSRC-SVD perform the

second best.

Comparsion of CV performance
To evaluate the classification performance on imbalanced split

training/testing sets, we perform 10-fold stratified CV on tumor

subtype dataset. All samples are randomly divided into 10 subsets

based on stratified sampling: nine subsets are used for training, and

the remaining samples are used for testing. This evaluation process

is repeated 10 times, and the average result is presented. The 10-

fold CV results are summarized in Table 9.

Table 9 shows that as the training sample size increases, the

performance of these five classification methods is significantly

improved. Model based methods LDA+SVM and ICA+SVM

perform very well, with the classification accuracy increased

significantly. In particular, the prediction accuracy of ICA+SVM

ranges from 86.5% to 96.57% in all tumor expression profile

datasets, which is comparable with those of SRC, MSRC and

PFMSRC.

We can conclude that model-based approaches are more

vulnerable to the small sample size problem, over-fitting should be

resolved properly.

Discussion

Based on the above experiments, we can draw the following

observations:

Table 9. 10-fold CV prediction accuracy of eight tumor microarray datasets using different classification methods.

Dataset name LDA+SVM ICA+SVM SRC MSRC-SVD PFMSRC

colon 81.67 90.00 87.14 90.24 90.24

DLBCL 92.14 97.14 97.14 91.96 95.89

Gliomas 86.50 86.50 78.33 78.33 84.00

Acute leukemia 96.50 95.57 96.07 97.50 95.00

SRBCT 96.64 95.75 1 1 1

ALL 97.61 94.83 96.46 93.59 97.63

MLLLeukemia 95.65 95.89 98.75 98.75 97.32

LukemiaGloub 97.32 96.32 98.57 98.57 96.07

doi:10.1371/journal.pone.0104314.t009
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1. Sparse representation based methods (SRC, MSRC,

PFMSRC) consistently outperform the model-based methods

(LDA+SVM, ICA+SVM) on all experiments. Especially, in

balance splited datasets the prediction accuracy of model-based

methods is significantly lower than that of sparse representation

methods which may be attributed to the small sample size

problem. However, SRC, MSRC, and PFMSRC perform well

even when we take 5 samples per subclass for training and the

rest for testing.

2. SRC, MSRC and PFMSRC are robust to various sample sizes

and feature dimensions, as well as converge fast to the optimal

classification rate. The experiments verify the results in [7],

which favors the application of those methods. Note that,

model-based methods (LDA+SVM, ICA+SVM) exhibit im-

proved 10-fold CV classification accuracy. A reasonable

explanation is that the over-fitting phenomena are dramatically

reduced when 90% of original samples are used for training

and the remaining 10% are used for evaluation in our

experiments.

3. PFMSRC outperforms SRC and MSRC in most cases, which

implies that the parameter free sparse representation and

weighting strategies can capture more discriminating informa-

tion, especially in multiclass classification. See Figure 5.

4. PFMSRC is a parameter-free method, in which the data

dependent sparsity can be self-adaptively tuned, compared with

SRC and MSRC in which search for a regularization

parameter is laborious work. Moreover, the number of meta-

samples is a key parameter for MSRC, as shown in Figure 2,

which makes model selection more difficult.

Conclusions

In this study, we proposed a novel non-parametric meta-

sample-based sparse representation. The algorithm assumes that

test samples can be well reconstructed within a linear combination

of weighed meta-samples in the same class. We theoretically

proved the rationality of the weighting strategy. A simple but

efficient projection function is constructed by the sparse represen-

tation coefficients to complete the classification work. We also

compare the performance of PFMSRC with that of two model-

based methods and two sparse representation-based methods on

eight tumor expression datasets. Experimental results have shown

the superiority of the proposed method. We then drew some

conclusions on the effects of both balanced split and imbalanced

split testing/training sets on tumor classification problems.

PFMSRC exhibits stable performance with respect to different

training sample sizes and feature dimensions compared with the

other four algorithms. Thus, the extension of the sparse

representation with dimensionality reduction (feature selection or

feature extraction) in a unified framework is one of our future

works.
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