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Abstract

Studies attempting to identify and understand the function of mutated genes and deregulated

molecular pathways in cancer have been ongoing for many years. The PI3K-PTEN-mTOR

signaling pathway is one of the most frequently deregulated pathways in cancer. PIK3CA

mutations are found 11%–33% of head and neck cancer (HNC). The hotspot mutation sites for

PIK3CA are E542K, E545K and H1047R/L. The PTEN somatic mutations are in 9–23% of HNC,

and they frequently cluster in the phosphatase domain of PTEN protein. PTEN loss of

heterozygosity (LOH) ranges from 41%–71% and loss of PTEN protein expression occurs in

31.2% of the HNC samples. PIK3CA and PTEN are key molecules in the PI3K-PTEN-mTOR

signaling pathway. In this review, we provided a comprehensive overview of mutations in the

PI3K-PTEN-mTOR molecular circuitry in HNC, including PI3K family members, TSC1/TSC2,

PTEN, AKT, and mTORC1 and mTORC2 complexes. We discussed how these genetic alterations

may affect protein structure and function. We also highlight the latest discoveries in protein kinase

and tumor suppressor families, emphasizing how mutations in these families interfere with PI3K

signaling. A better understanding of the mechanisms underlying cancer formation, progression and

resistance to therapy will inform selection of novel genomic-based personalized therapies for head

and neck cancer patients.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) represents 90% of all malignant tumors

in the head and neck region. It is formed by a solid mass of epithelial cells in various

anatomical sites, such as oral mucosa, tongue, oropharynx, hypopharynx, and larynx.

Although HNSCC has very standard histological features, the anatomical sites differ, and

various risk factors (e.g., tobacco and HPV infection) contribute to its clinical behavior and
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response to therapy. This tumor is remarkably heterogeneous and success of future

treatments relies on a better understanding of its diversity; this will allow us to identify

groups of patients with similar HNSCC biological behavior and response to therapy. A

major challenge in the scientific community is assessing the heterogeneity of HNSCC.

Large screening projects, such as the Head and Neck Genome Anatomy Project (HN-

CGAP), started more than 10 years ago (http://cgap.nci.nih.gov) and were followed by the

International Cancer Genome Consortium (ICGC) [1]. These joint efforts led to whole-

exome sequencing analysis of HNSCC, resulting in identification of the most common

genomic alterations [2, 3]. These results confirmed that HNSCC is extremely heterogeneous

and there is no single genetic alteration or dysregulated molecular pathway responsible for

its development and progression. Rather, it is evident that distinct genetic tumor signatures

and dysregulated signaling pathways are shared within HNSCC subtypes, which may result

in different clinical courses of the disease. In order to further advance therapy and improve

survival of HNSCC patients, it is likely that patients with varying HNSCC should not be

treated similarly.

Based on dysregulated pathways and genetic signatures in HNSCC, new therapies need to

be developed that target specific subgroups of patients. For example, HPV-associated

HNSCC became a subgroup of HNSCC with a distinct prognosis and response to therapy

[4]. HPV-positive HNSCC displays several mutations but less than HPV-negative HNSCC.

Indeed, the mutation rate in HPV-positive tumors is approximately half the mutation rate in

HPV-negative HNSCC, suggesting that HPV oncogenes may play a role with acquired

mutations to promote HPV-associated HNSCC [2]. Furthermore, additional studies revealed

that PIK3CA or PIK3R1 were the only mutated genes in a subset of HPV-positive HNSCC

[5].

The overall mutation rate of HNSCC is similar to other smoking-related tumors, such as

small cell lung cancer and lung adenocarcinoma [2, 6]. HPV-negative HNSCC has a great

diversity of genetic alterations in a variety of critical genes, which may underlie HNSCC

formation, progression, and response to therapy. Mutations in the TP53 gene are common

and occur in little over 50% of HNSCC, and mutations in Notch genes (NOTCH1, NOTCH2,

and NOTCH3) are present in ~22% of HNSCC. Remarkably, PI3K/mTOR pathway genes,

such as PTEN, TSC1 and PIK3CA, comprise 30.5% of the mutations found in HNSCC [3,

6]. Regardless of genomic heterogeneity, the phosphoinositide 3-kinase (PI3K) pathway is

the most frequently somatically mutated pathway in HNSCC [5].

As seen in Figure 1, the PI3K pathway impacts most cellular functions involved in tumor

behavior, including cell growth, local invasion, metastasis, survival, and resistance to

therapy [7–9]. Genomic aberrations in HNSCC include posttranslational alterations and

mutations in proteins downstream of PI3K and PTEN, including AKT, TSC1/TSC2, mTOR,

RICTOR, and RAPTOR [2, 3, 5, 10]. Additional gene mutations and amplifications

contribute to aberrant activation of the PI3K pathway. For example, increased Receptor

Tyrosine Kinase (RTK) (e.g., EGFR, ErbBs, and MET) signaling induces PI3K/PTEN

pathway activation [11]. Mutations in Ras genes (i.e., HRAS and KRAS) activate the PI3K
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pathway via p110α [12–15] and loss of p53 function promotes mTORC1 activation and

regulation of PTEN transcription [16–18].

This article reviews the profiling of genetic alterations in the PI3K/PTEN/mTOR pathway in

HNSCC to understand how mutations alter HNSCC behavior and phenotype. This is an

essential step towards personalized treatments of HNSCC using genomic-based therapy

selection.

PTEN mutations

Phosphatase and Tensin homologue (PTEN; also known as MMAC1 and TEP1) is

frequently mutated in multiple cancers [19, 20]. PTEN is well-known for its tumor

suppressor role as a dual protein phosphatase. PTEN dephosphorylates phosphatidylinositol

3,4,5-trisphosphate (referred to as PIP3, PtdIns(3,4,5)P, or PI(3,4,5)P3) into

phosphatidylinositol 4,5-bisphosphate (referred to as PIP2, PtdIns(4,5)P, or PI(4,5)P2),

thereby broadly inhibiting oncogenic PI3K signaling. AKT relies on PIP3 for activation, an

effect that is opposed by PTEN. Consequently, loss of PTEN function leads to increased

oncogenic activity and enhanced PIP3 levels and PI3K/mTOR signaling. The phosphatase

domain is the functional area of the PTEN protein responsible for modulating the levels of

PIP3 (Figure 1A)[9].

PTEN encodes for a protein with 403 amino acids and 2 major functional domains, the N-

terminus and the C-terminus domains. Exons 1–5 encode the N-terminus, and exons 6–9

encode the C-terminus. Particularly, exon 5 encodes for the phosphatase domain [21]

(Figure 2A).

Point mutations in the PTEN gene on 10q23.3 locus have been found in 9–23% of HNSCC

(Table 1) [2, 3, 22–24]. Although not well understood, PTEN synonymous or silent

mutations in HNSCC were identified in introns (i.e.,1, 2, 4, 6 and 7) and in exon 1 prior to

the PTEN start codon (Figure 2A). To date, nonsynonymous mutations in PTEN have been

found in exons 5–8. Recurrent mutations occur primarily in exon 5 codons, which results in

p. D92E, p.D92G, and p. A121E at the phosphatase domain. In addition, recurrent mutations

were also found in exon 8, resulting in p.D331G at the C2 domain (Figure 2A). Although the

mutations appear dispersed mostly on exons 5–8 of the PTEN gene, the resulting amino acid

changes are non-randomly distributed. Notably, the amino acids changes are concentrated in

the functional areas of the PTEN protein. As seen in Figure 2B, nonsynonymous mutations

in HNSCC cluster in the phosphatase domain, disrupting the functional area between active

site cysteine residues 71 (C71) and 124 (C124). PTEN mutation in residue R14 has been

described in HNSCC (Table 1). R14 mutation participates in PTEN decrease nuclear

localization and it is important for PTEN membrane biding and catalytic activity [25, 26].

Sporadic somatic mutations in PTEN are not an isolated event in HNSCC. Rather, they are

one of the most common genetic alterations in human malignancies, particularly in solid

tumors [19, 20]. However, the functional and biological roles of these mutations in HNSCC

are largely unknown. Insights into PTEN structure and its role in various biological

processes may help us understand how PTEN mutations and loss of expression contribute to

HNSCC development, progression, and response to therapy.
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The crystal structure of PTEN reveals important details about its three-dimensional folding

that can add to our understanding of potential associations between distinct mutations and

functional changes in HNSCC. The structure of the phosphatase domain displays an active

pocket rich in basic residues that are essential for the ability of PTEN to dephosphorylate its

substrates (i.e., acid phospholipids). The active pocket is also wide enough to fit the

phosphorylated inositol moiety of PIP3. This active site has 3 catalytic loops: WPD-loop

(residues 88–98), P-loop (residues 121–131) and TI loop (residues 160–171). Mutations in

these phosphatase-binding loops are frequently found in human cancer, patients with

hereditary PTEN related syndromes, and neurodevelopmental disorders, such as autism

spectrum disorders (ASDs) [21, 27]. PTEN mutations in the phosphatase-binding loops in

HNSCC are restricted to the WPD-loop (p.Y88C, p.F90L, p.D92G, p.D92E) and the P-loop

(p.A121E) (Figure 3A and 3B). The PTEN catalytic signature (HCKAGKGR) is comprised

of residues 123 to 130 and forms the bottom of the active pocket. The wall of the pocket is

partly formed by the WPD-loop and the TI-loop [21, 27].

The amino acids within the phosphatase domain are a common area for cancer-associated

point mutations to arise, and they can lead to a reduction or abrogation of PTEN

phosphatase activity. In order to understand the effects of PTEN mutations, extensive site-

direct mutagenesis using comprehensive Ala–scanning mutagenesis (Ala-substitutions) was

performed in the phosphatase binding loops of PTEN [27]. A humanized-yeast assay

revealed that mutations in ASD influence the catalytic properties of PTEN. The Ala-

substitutions in the WPD-loop resulted in partial enzymatic activity of PTEN. Interestingly,

the p.D92E, p.D92G, and p.A121E mutations resulted in the inability of PTEN to catalyze

PIP3 and P110α (catalytic subunit of class I PI3K) mediated growth. Conversely, p.Y88C

and p.F90L did not alter PTEN lipid phosphatase activity, although p.Y88C partially

affected growth in yeast [27]. Certain mutations, including p.Y88C, p.92AG, p.Y225C and a

silent mutation (281A>T), were also paired with loss of heterozygosity (LOH) of

chromosome 10 that involves the PTEN locus [23].

Located at the carboxy-terminus (C-terminus) is the C2 domain, a region important in

protein-protein interaction, lipid membrane binding, and PTEN protein stability. The C2

domain (residues 192–350) binds to phospholipids at the cell membrane and allows PTEN to

modulate cell migration. In HNSCC, p.M205I, p.Y225C, p.Q245*, p.P246L, p. D252Y,

p.D331G, and p. R335* mutations are found in the C2 domain (Figure 3C and Table 1).

There is little information regarding how mutations in the C2 domain affect PTEN function.

The p.P246L and p.R335L mutations have also been identified in PTEN hereditary

syndromes. Although located in the C2 domain, these two mutations partially interfere with

PTEN lipid phosphatase activity and cell growth [27]. This may be related to the ability of

the C2 domain to position the PTEN phosphatase active site towards to the cell membrane.

Expression of the p.D331G mutation, located in the C2α loop, significantly reduces PTEN

expression in U-87 MG glioblastoma cell lines. These results are consistent with the role of

the C2 domain in PTEN protein stability [28].

C2 domain mutations found in HNSCC are closely related to mutations in endometrial

carcinoma (D331G and S227F), lung cancer (G251C), and glioblastoma (P204S) [29–32].

P204S (present in the Cβ1/2 loop) and G125C mutations are associated with reduced PTEN
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expression and the inability to suppress cell growth [28]. Mutations in the C2α loop (i.e.

D331G) and the Cβ1/2 loop (i.e. pM205I) likely affect PTEN protein stability and catalytic

activity. Nonsense (i.e., p.Q245* and p.R335*) mutations, frameshift mutations, and

mutations that produce splice variants also occur in the C2 domain and can prematurely

terminate the open reading frame of PTEN to produce a truncated and nonfunctional protein.

These newly described HNSCC PTEN mutations are located in important functional areas of

PTEN and their effects on protein function and biological implications in HNSCC are

unknown.

In addition to mutations, loss of heterozygosity (LOH) on chromosome 10 in the PTEN gene

locus region is detected in HNSCC tissue samples at frequencies ranging from 41% to 71%

[18, 22, 23, 33]. A second inactivation event (mutation or homozygous deletion) among the

LOH of PTEN is only detected in up to 25% of HNSCC, suggesting that a single functional

copy of PTEN in epithelial cells is insufficient for PTEN to function as a tumor suppressor

(i.e.,PTEN haploinsufficiency). Additionally, LOH on chromosome 10 in the PTEN locus

and loss of PTEN expression correlate to invasive and poorly differentiated carcinomas,

lymph node involvement/metastases, and poor prognosis of HNSCC. Furthermore, loss of

PTEN protein expression occurs in 31.2% (221/709) of human HNSCC samples [34].

Evidence from animal models implicates PTEN in epithelial lesions and benign tumors [35,

36]. To understand the biological relevance of PTEN alterations (i.e., mutations, LOH, and

complete loss of function) and PI3K/mTOR activation in HNSCC initiation and progression,

a novel oral specific HNSCC animal model was developed [34]. This genetically and

environmentally defined HNSCC animal model has Pten LOH and full deletion of PTEN in

the intraoral epithelia. Conditional deletion of Pten was achieved using the keratin promoter

14 CRE-lox system. Because tobacco is the most common etiological factor in HNSCC,

animals were exposed to a tobacco surrogate (4-nitroquinoline-1-oxide or 4NQO) to

increase their susceptibility to oral cancer. Deactivation and/or downregulation of PTEN due

to mutations, epigenetic changes, or posttranslational regulation were recapitulated by

hemizygous (partial) or homozygous (complete) deletion of the Pten gene. Pten ablation

also resulted in increased activation of PI3K and other pathways. These mice showed rapid

development of oral-specific premalignant lesions and carcinomas [34]. Notably, HNSCC

with deregulated PTEN lack p53 and show overexpression of pAKT and mTOR. In addition,

animals lacking PTEN expression have increased COX2 expression and angiogenesis in the

surrounding stroma [34].

PI3K family gene mutations

PI3Ks belong to a family of intracellular lipid kinases that phosphorylate the 3′-hydroxyl

group of phosphatidylinositol (also known as PI or PtdIns) and phosphoinositides. The lipid

products of PI3K act as second messengers by binding and activating several signaling

pathway molecules.

PI3K signaling is involved in the control of fundamental cellular functions and properties,

including cell growth, proliferation, differentiation, survival, metabolism, vesicular

trafficking, degranulation, cytoskeletal rearrangement, and motility (Figure 1) [8, 9, 37].
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PI3Ks are divided into Class I, Class II, and Class III according to their structural features,

in vitro lipid substrate specificity, tissue distribution, mechanism of activation, and function

(Figure 6) [8, 12].

The in vitro substrates for class I PI3Ks are PI, Phosphatidylinositol 4-phosphate (referred to

as PI(4)P or PtdIns4P), and PIP2; and the primary in vivo substrate is PIP2. Therefore, class

I PI3Ks primarily catalyzes the conversion of PIP2 to PIP3. PIP3 activates many

downstream signaling proteins, including the protein serine-threonine kinase AKT. The lipid

phosphatase PTEN dephosphorylates PIP3, thereby regulating PI3K signaling [12].

Class I PI3K isoforms are comprised of p110α (also called PIK3CA), p110β (also called

PIK3CB), p110γ (also called PIK3CG), and p110δ (also called PIK3CD). In mammals,

Class I PI3Ks is divided into two groups, Class IA and Class IB, based on structural and

functional differences. Receptor tyrosine kinases (RTKs), such as epidermal growth factor

receptor (EGFR), hepatocyte growth factor receptor (HGFR or MET), platelet-derived

growth factor receptor (PDGFR), fibroblast growth factor receptor (FGFR), and insulin-like

growth factor 1 receptor (IGF-1R), act as primary activators of Class IA PI3Ks. Hras also

activates Class I PI3Ks isoforms [13, 14]. Hras is frequently mutated in HNSCC, specially

in Asia [14], and its interaction with p110α is mediated by the RBD domain in p110α. The

Class IA PI3Ks isoform, PIK3CA, is a critical effector for RAS-driven tumorigenesis [15].

Additionally, G-protein-coupled receptors (GPCRs) activate Class IB PI3Ks (GPCRs) [12,

37, 38].

Class IA is the most common PI3K class involved in human cancers [12]. Class IA PI3Ks

are comprised of p110 catalytic subunits (i.e., p110α, p110β, and p110δ) that form

heterodimeric protein complexes with p85 regulatory subunits. p110α, p110β, and p110δ are

encoded by PIK3CA, PIK3CB, and PIK3CD genes, respectively. There are five isoforms of

the p85 regulatory subunit, including p50α, p55α, p55γ, p85α, and p85β.p85α, and its

splices variants p50α, p55α, are encoded by a single PIK3R1 gene, but p85β and p55γ

isoforms are encoded by PIK3R2 and PIK3R3, respectively [12]. Binding of p85 subunits

with p110 subunits promotes stabilization of p110 subunits. Once at the plasma membrane,

p110 subunits phosphorylate its lipid substrates [12, 37, 39, 40].

Class IB PI3Ks are found exclusively in mammals. They are formed by dimerization

between the p110δ and p101 (also called PIK3R5) or p87 (also called PIK3R6, p87PIKAP or

p84). p101 is encoded by the PIK3R5 gene, p87 is encoded by the PIK3R6 gene, and the

p110γ is encoded by the PIK3CG gene. GPCRs activate Class IB PI3Ks through a

mechanism in which p101 recruits p110γ, permitting their activation and translocation to the

plasma membrane by βγ subunits of trimeric G proteins [41–43]. The p110α and p110β are

ubiquitously expressed, and p110δ and p110γ are primarily found in the hematopoietic

system, especially in leukocytes [44]. This tissue-specific distribution suggests a more

specific and essential function of PI3Kδ and PI3Kγ signaling in the microenvironment of

tumors and in hematopoietic tumors and diseases.

Class II PI3Ks have three mammalian isoforms named PI3K-C2α (also called PIK3C2A),

PI3K-C2β (also called PIK3C2B), and PI3K-C2γ (also called PIK3C2G), which are encoded
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by PIK3C2A, PIK3C2B and PIK3C2G genes, respectively [45–49]. PI3K-C2α and PI3K-

C2β are ubiquitously expressed, and PI3K-C2γ is a liver-restricted protein [50]. Unlike class

I PI3Ks, class II PI3Ks are monomers with only a catalytic domain [47]. Class II PI3Ks have

well-recognized in vitro substrates, PI and PI(4)P, but the in vivo targets are still being

identified. PI(4)P is used to generate PI(3,4)P2, and PI is used to generate PI3P [12].

Class III PI3K has a single member, the vacuolar protein-sorting 34 (VPS34, also called

PIK3C3) that was first identified in mammals in 1995 [51]. It is highly conserved among

yeast, plants, and mammals. The catalytic subunit VPS34 is encoded by the PIK3C3 gene.

VPS34 forms a complex with serine threonine protein kinase p150 (also called VSP15 or

PIK3R4), which is encoded by the PIK3R4 gene. The regulatory subunit is essential for

activation and recruitment of VPS34 to intracellular membranes where it phosphorylates PI

into PI3P, the only substrate of class III PI3Ks [12]. The most recognized function of class

III PI3Ks is the regulation of vesicular trafficking in the endosomal/lysosomal system [52–

56]. Class III PI3Ks also activate additional mechanisms in mammalian cells, such as

endocytosis and phagocytosis. Additionally, VPS34 kinase may also play a role in

autophagy and protein synthesis through an mTOR-dependent mechanism. PI3P, which is

primarily localized in endosomes, phagosomes and intracellular organelles such as

endoplasmic reticulum, can be converted to PI(3,5)P2 by the lipid FYVE finger-containing

phosphoinositide kinase (PIKfyve, also called FAB1) [57–60].

Regardless of PI3K class distinctions, genetic alterations in PI3K genes and epigenetic

aberrations in PI3K signaling are commonly found in cancer development and progression

[61–64]. Multiple tumors, including colon, brain, gastric, breast and lung, were sequenced to

determine which PI3Ks were mutated. PIK3CA was the only gene in the PI3K family with

tumor-specific somatic mutations [64]. Several subsequent studies confirmed the presence of

PIK3CA mutations in solid tumors [62, 64]. Sequencing of ~150 HNSCC tumor samples

revealed mutations in the PI3K pathway in 30.5% of cases, making it the most frequently

mutated oncogenic pathway in HNSCC [2, 3, 5]. HNSCC tumors harboring PI3K pathway

mutations have greater genomic instability than tumors lacking mutations in PI3K genes.

These data are supported by the finding that tumors with PI3K pathway mutations have a

larger number of non-synonymous and cancer gene mutations than tumors without PI3K

mutations. Additionally, tumors with PI3K mutations show increased frequency of

mutations in DNA damage/repair genes [5].

Notably, advanced (i.e., Stage IV) ovarian, colorectal, and pancreatic tumors may exhibit

concomitant mutational events in PI3K pathway genes and in other pathways, such as

MAPK. These concomitant-activating mutations result in a poor response to chemotherapy

[65, 66]. Simultaneous mutations in PI3K and MAPK pathways have not been reported in

HNSCC [2, 3, 5, 65, 66], indicating that activation of concomitant signaling in these

pathways is due to posttranslational activation and/or crosstalk between pathways in

HNSCC. Furthermore, advanced stage HNSCC tumors have mutations in more than one

PI3K pathway molecule, as evidenced by mutations in PI3C2G and PTEN; PIK3R1 and

mTOR; PIK3CA and mTOR; PIK3CA and PTEN; PIK3C2G, PIK3R5 and PIK3CA [5]

Therefore, combined aberrations in PI3K pathway molecules may be associated with

progression of HNSCC, while mutually exclusive mutations and alterations within this
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pathway is related to HNSCC formation and initial progression. Indeed, amplification of

PIK3CA is detected in oral dysplastic lesions, and amplification associated with mutations

was associated to invasive HNSCC [67, 68]. Mutually exclusive mutations of PI3KCA and

PTEN have also been observed in breast cancer and gastric carcinomas [69, 70].

More than 30% of human solid tumors, such as gastric, lung, breast, hepatocellular,

colorectal, ovarian and glioblastoma carcinomas, exhibit mutations in PIK3CA [62, 64].

Moreover, PIK3CA is mutated in 11%–33% of HNSCC, making it one of the most

commonly mutated genes in this disease [2, 3, 5, 71–73]. PIK3CA is located on chromosome

3q26.32 and encodes the p110α catalytic subunit of PI3K. In addition to the activating

mutations, PI3KCA is also amplified in most human malignancies [62, 64], including

HNSCCs [5, 67, 74, 75]. PIK3CA has been associated with advanced stage tumors, vascular

invasion, and metastasis in HNSCC [67, 72, 74, 75]. Across cancer types, PIK3CA

alterations impact cancer predisposition, progression, recurrence, metastasis, and prognosis

[69, 76–81].

The PIK3CA mutations in human tumors are somatic, cancer-specific, heterozygous, and

primarily missense [62, 64]. The pattern of PIK3CA mutation is normally characterized by

more than 75% of mutations grouped in the helical (exon 9) and kinase domains (exon 20)

of the gene. These domains are described as hot spots for PIK3CA mutations [64]. In

HNSCC, hotspot mutation sites for PIK3CA mutations are E542K, E545K and H1047R/L

[5, 64, 82–84], which comprise ~90% of PIK3CA mutations identified in HNSCC (Figure

5A and Table 2). Most commonly, the glutamic amino acid in positions 542 and 545 (i.e.,

E542 and E545) is substituted with a lysine (K), and histidine1047 (i.e., H1047) is

frequently substituted with arginine (R).

PIK3CA mutations are activating mutations that often result in biological behavioral changes

to the tumor. At all three hotspot mutation sites, aberrations lead to a gain of enzymatic

function [64]. For example, in HNSCC, colorectal, breast and ovarian cancers, the primary

functional consequence of PI3KCA hotspot mutations is elevated lipid kinase activity that

results in constitutive AKT signaling, as revealed by increased phosphorylation of AKT and

its downstream targets S6K and 4EBP [5, 73, 83, 85–88]. These hotspot mutations can also

transform chicken-embryo fibroblasts, NIH 3T3 cells, and mammary epithelial cells [83, 85,

88]. These mutations cause increased proliferation rates and more severe metastatic

phenotypes in HNSCC and breast and colorectal cancers, as evidenced by increased

migration and invasion in vitro and in vivo [73, 86, 89].

Recently, four novels PIK3CA mutations, R115L, G363A, C971R, R975S, were reported in

HNSCC tumors. Functional assays showed increased HNSCC cell growth when R975S,

R115L and H1047R were overexpressed and AKT was phosphorylated at threonine 308 and

serine 473 [5]. Xenografts of a HNSCC tumor sample containing the PIK3CA mutation

(E542K) showed a better response to the BEZ235 dual inhibitor compared to HNSCC

tumors expressing wildtype PIK3CA [5]. These findings support previous studies that

showed tumors with altered and mutated PI3K family genes, including PI3KCA and PTEN,

are exquisitely sensitive to PI3K/mTOR inhibitors [65, 90–95]. Therefore PI3K/mTOR

inhibitors, used as a single or coadjuvant treatment, may be a novel targeted therapy for
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HNSCC treatment, especially HNSCC tumors with mutated and altered PI3K signaling

molecules.

Janku et al., 2011 detected PIK3CA mutations in 11.5% of patients with different solid

tumors, including endometrial, ovarian, colorectal, breast, cervical and HNSCC. Patients

with PIK3CA mutations show a better response to PI3K/mTOR pathway inhibitors

compared to patients without PIK3CA mutations [65]. However, as previously mentioned,

malignant tumors expressing simultaneous mutations in MAPK and PI3K pathways have

poor responses to PI3K/AKT/mTOR pathway inhibitors [65, 66], suggesting that inhibitors

that target PI3K pathway effectors in combination with MEK inhibitors could be an

effective molecular targeted therapy to treat HNSCC.

In addition to PIK3CA mutations, mutations in PIK3CB and PIK3CD, genes that encode the

catalytic subunits p110β and p110δ, respectively, have been found in HNSCC.

p110βharborsa synonymous mutation (p.P422P), and p110δ has missense mutations

(p.T423S and p.T458S) (Table 2) [2, 5]. The significance of these mutations in PI3K

signaling in HNSCC is unknown. Mutation in the PIK3CD gene was also described in

neuroblastoma, and its biological function correlates to tumor development and progression

[96].

Additional PI3K class I components are also mutated in HNSCC (Table 2). PIK3R1 has an

in frame insertion (c.1914–1916 - TAT>TATAAT) and missense mutations (p.I290V and

p.D560H). PIK3R1 encodes p85α, p55α and p50α [97, 98]. Mutations in PIK3R1 alone

represent 7% of HNSCC mutations (3/41). Studies have reported p85α mutations in certain

human tumors, including breast [99], colon [99, 100], ovarian [100], glioblastoma [101], and

HNSCC [5], but their roles in tumor development and/or behavior are still unknown. Mice

lacking PIK3R1 in the liver (L-Pik3r1KO mice) develop aggressive high-grade

hepatocellular carcinomas and lung metastases [102]. p.D560Y induces anchorage-

independent growth, increased proliferation and AKT activation in vitro. Mice implanted

with BaF3 cells containing p85α D560Y develop metastases in the liver and spleen [97].

Potential effects of HNSCC mutations are suggested by where they arise in the p85α (Figure

5B). Mutation at D560 occurs in the p85α iSH2 domain, a protein domain that permits

formation of a complex with p110α [103]. The p85 regulatory subunit is required to stabilize

and inhibit the catalytic activity of p110 in basal conditions [40, 104]. The PIK3R1 mutation

in colon carcinomas disrupts p85 inhibition of p110, resulting in constitutive activation of

the PI3K pathway beyond p110α activation. Therefore, p85α mutants may promote AKT

activation, cell survival, and oncogenesis in a p110-dependent manner [97]. Further PI3K

activation via the p85αmutation may also regulate PTEN because reduced p85α expression

is associated with decreased PTEN expression and activity [102, 105, 106].

Mutations in PIK3CG (p110γ), PIK3R5 (p101) and PIK3R6 (p84/p87PIKAP) were identified

in HNSCCs (Table 2). [5]. These PI3K family members belong to Class IB PI3K, but the

consequences of these mutations to HNSCC are still unknown. Notably, p110γ−/− mice

develop tumors in the colon (colorectal adenocarcinomas) [107] and hematologic defects

[108–110]. Although mutations in PIK3R5 and PIK3R6 have been identified in lung

adenocarcinoma [111], their effects on tumorigenesis are unknown.
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Mutations in PIK3C2A, PIK3C2B and PIK3C2G, members of the Class II PI3Ks, were also

identified in HNSCC (Table 2). PIK3C2B is associated with prostate cancer risk [112], and

surprisingly, PI3KC2B may promote resistance of leukemia cells to chemotherapeutics

[113].

Lastly, the PIKfyve gene that encodes for PIKfyve protein is also mutated in HNSCC (Table

2). PIKFyve regulates key cellular processes, such as membrane trafficking, stress-induced

signaling, cytoskeletal dynamics, nuclear transport, gene transcription and cell cycle

progression [114]. PIKfyve regulation and functionality depends on stable complex

formation between PIKFyve and the antagonistic PI(3,5)P2-specific phosphatase Sac3. Sac3

originated from the FIG 4 gene and orchestrates the coordinated regulation of PI(3,5)P2

synthesis and turnover [115]. In addition to HNSCC mutations, dysfunction and mutations

in PIKfyve and Sac3 are also found cancers of the ovary, endometrium, and lung, among

others (COSMIC database: http://www.sanger.ac.uk/cosmic) [71].

Additional mutations in the PI3K/PTEN/mTOR pathway (AKT, mTOR, TSC1,

TSC2, RICTOR, and RPTOR)

AKT2 mutations

AKT2 is mutated at p.Y351C in HNSCC (Table 1) [5]. Although Y351 is a putative

phosphorylation site in AKT2 that is conserved among multiple species (Figure 6) (http://

www.kinexus.ca), its contribution to AKT2 protein function and effect on cells is not

understood. AKT2 overexpression also occurs in HNSCC [116].

AKT gene family members are AKT1, AKT2, and AKT3, which are ubiquitously expressed in

most tissue types (www.genecards.org). These genes encode AKT1/PKB-α, AKT2/PKB-β,

and AKT3/PKB-γ proteins isoforms, which share a high degree of amino acid similarity and

are activated by similar pathways in a PI3K-dependent manner [117–119]. The well-known

phosphorylation sites of AKT are threonine 308 (pAKTThr308) and serine 473 (pAKTSer473).

These AKT phosphorylation sites, along with markers of mTOR activation (e.g. PRAS40),

have prognostic value and have been implicated in predicting chemotherapeutic response in

lung and breast cancer [94, 120, 121].

In HNSCC, AKT activation occurs in premalignant lesions and late stage carcinomas and is

correlated with poor clinical outcome [10, 122–124]. Nonetheless, analyses of total AKT

function is revealing specific roles for the isoforms [125]. In vivo studies using constitutive

AKT1 (myrAKT) overexpression resulted in oral lesions that are blocked by senescence;

subsequent ablation of Trp53 permits malignant progression [126]. In breast cancer mouse

models, AKT1 participates in ErbB-2 induced tumorigenesis and but not in tumor invasion.

Upregulation of AKT2 is involved in migration, invasion, metastases, and treatment

resistance in neuroblastoma, breast, and colorectal cancers [125, 127–131]. Furthermore, in

vivo studies showed that AKT2 directly affects glucose uptake [132]. Upregulation of AKT2

is induced during epithelial mesenchymal transition (EMT) by Twist [127]. Conversely,

downregulation of AKT2 induces caspase-dependent apoptosis and suppresses EMT and

migration [130, 133–135].
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TSC1 and TSC2 mutations

The tumor suppressor genes TSC1 and TSC2 are on chromosome 9q34.13 and 16p13.3,

respectively. TSC1 encodes Hamartin and TSC2 encodes Tuberin, which form heterodimers

[136, 137]. The Hamartin/Tuberin formation is referred to as the TSC1/TSC2 complex,

which is located downstream of AKT/PKB. AKT phosphorylates and inactivates TSC2, and

inactivation of the TSC1/TSC2 complex leads to enhanced mTOR signaling through

activation of mTORC1 [138, 139]. AKT can also signal to mTORC1 in a TSC1/TSC2-

independent manner by phosphorylating the PRAS40, amTORC1 inhibitor [140, 141]. Pro-

inflammatory cytokines important to HNSCC, such as TNFα, also activate mTOR via IKKβ

phosphorylation of TSC1 [142]. In addition, Wnt signaling modulates mTOR via TSC1/

TSC2 interaction and GSK3 [143].

Mutations in TSC1/TSC2 tumor suppressor genes that result in inactivation of the complex

are commonly found in patients with tuberous sclerosis [144–146]. In HNSCC, unique

mutations have been described in TSC1 (p.R245*) and TSC2 (p.S1514*) (Table 1) [2, 3]

and DNA methylation and LOH in TSC1/TSC2 also occur [147]. How mutations in TSC1/

TSC2 contribute to HNSCC may be revealed by the function of the TSC1/TSC2 complex.

For example, the TSC1/TSC2 complex is the main regulator of mTORC1, and inactivation

of TSC1/TSC2 promotes mTORC1 activation [148]. TSC2 overexpression inhibits growth

of HNSCC cells [149].

Mutations in mTOR, Rictor, Raptor, and FOX gene families

The mTOR, RICTOR, and RPTOR genes are mutated in HNSCC (Table 1). Specifically, the

mTOR mutations are p.L2260H and p.R1161Q, the RICTOR mutations are p.E1633*and

p.D175H, and the RAPTOR mutation is p.P407L [2, 5]. RICTOR is also amplified in 38.7%

of HNSCC, some of which also contain PI3KCA (45.2%) and EGFR (32.3%) amplification

[82]. It is unclear how these newly described mutations and amplifications affect HNSCC.

mTOR, RICTOR, and RPTOR genes encode for mTOR, RICTOR and RAPTOR proteins,

respectively. The mTOR is the catalytic subunit of two distinctive molecular complexes

known as mTOR complex 1 (mTORC1 and mTOR complex 2 (mTORC2) [150]. mTORC1

is comprised of RAPTOR, PRAS40, mTOR, mLST8, DEPTOR, and TTIL/TEL2 complex

proteins. mTORC2 has seven known protein components, including RICTOR, mSIN,

PROTOR1/2 mTOR, mLST8, DEPTOR, and TTIL/TEL2. mTORC1 and mTORC2

complexes can sense and respond to a variety of endogenous and exogenous signals,

including growth factors, stress, oxygen, and amino acids, among others. mTORC1 is a

well-known activator of translation regulators and initiation factors, such as p70/S6 and 4E

binding protein 1 (4E-BP1) and Garb10 [151]. mTORC1 activation induces cell growth, cell

cycle progression, protein and lipid syntheses, and autophagy [150]. In contrast to

mTORC1, activation of mTORC2 seems to be independent of nutrients, but it does respond

to growth factors stimuli such as insulin (citation). mTORC2 controls several molecules,

including AKT, SGK1 (serum/glucocorticoid regulated kinase 1), and PKC-α (protein

kinase C-α) [152–154]. mTORC2 phosphorylates AKT at Ser473 [155]. Notably, depletion

of mTORC2 impairs AKT signaling, resulting in deficient activation of Forkhead Box

proteins, such as FOXO1 and FOXO3A, but having no effect on TSC2 and GSK3

phosphorylation [152–154]. Finally, mTORC2 also controls paxillin and Rho GTPases via
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PKC-α [150]. Therefore, mTORC2 regulates cell shape, migration, cytoskeleton

organization, survival, and metabolism [150]. FOX family genes, including FOXO1,

FOXO3, FOXD1, FOXD3, FOXJ2, FOXK1, FOXI1, FOXN1, FOXN3, FOXP1, FOXP2, and

FOXP4, are also mutated in HNSCC [2, 3]. FOX proteins belong to a large family of

transcriptional regulators that affect the behavior of breast, prostate and colon tumors and

may serve as a target for therapeutic intervention [61, 156, 157].

In Conclusion

There has been much progress in identifying mutated genes and proteins in HNSCC, but

numerous questions remain regarding their physiological and pathological roles. In vitro and

in vivo studies using genetic and pharmacological tools are necessary to better understand

HNSCC tumor biology and to improve cancer therapy in order to increase patient survival,

quality of life, and ultimately, disease resolution. Cancer, particularly of the head and neck,

is a very complex genetic disease. The acquisition of oncogenic signals, such those driven

by HPV infection and somatic mutations, affect cellular transformation, tumor development,

progression, and metastases. Interestingly, distinct cell types, including cancer stem cell,

may respond differently to mutations in p53, PI3KCA, PTEN and other proteins.

Furthermore, not every group of head and neck cancer patients with distinctive group of

mutations or deregulated signaling pathways will respond the same to therapy.

Individualized therapies catering these different subgroups of HNSCC tumors may yield

better outcomes. Much work is still needed to understand the contribution of these mutations

and deregulated pathways to HNSCC and to determine the effects of inhibitors that target

molecules in this pathway. This information will guide the discovery of novel drugs and

treatment approaches for HNSCC.
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Figure 1.
The PI3K-PTEN-mTOR pathway. Activation of PI3K pathway via exogenous stimuli,

endogenous signals and/or mutations promotes cancer formation, progression and resistance

to therapy. The major signal modulators are PI3K in green and PTEN in red. The PI3Ks are

shown as a simplified heterodimeric complex that combines the PI3K regulatory and

catalytic subunits discussed in this review. As seen in the schematic representation, activated

upstream cellular receptors (i.e. RTKs, GFRs, GPCRs) lead to activation of PI3Ks, which

phosphorylate the membrane phospholipid substrate (i.e PIP2 into PIP3). PTEN is a

phosphatase that opposes PI3K action; therefore, mutation or ablation of PTEN leads to

PI3K/mTOR pathway over activation. Next, AKT is translocated to the cell membrane and

is phosphorylated by PDK1 and PDK2. Once AKT is activated, it inhibits TSC1/TSC2

complex, which leads to RHEB inhibition. mTOR complexes (mTORC1 and mTORC2)

collect the signals. mTORC1 activates downstream molecules. As a result, mTORC1

controls major processes, including cell cycle progression, growth, protein synthesis, lipid

synthesis, and autophagy. mTORC2 functions are less understood, yet it is known to

regulated, cell shape, cytoskeleton organization, cell survival, and cell metabolism.

Therefore, PI3K/PTEN/mTOR pathway can control essential cancer cell processes, such as

growth, invasion, metastases, and response to therapy. Black circles identify proteins that
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were found mutated in HNSCC. RTK: receptors of tyrosine kinase; GFR: growth factors

receptors; PI3K: phosphatidylinositol 3-kinase; PIP2: Phosphatidylinositol 4,5-

bisphosphateor PtdIns(4,5)P2; PIP3: Phosphatidylinositol (3,4,5)-trisphosphate or

PtdIns(3,4,5)P3; PTEN: Phosphatase and tensin homolog; MAPK: Mitogen-activated

protein kinases; FOXO: forkhead box O; GSK3: glycogen-synthase-kinase-3; PKC: protein

kinase C; Rac1: ras-related C3 botulinum toxin substrate 1; SGK1: serum/glucocorticoid

regulated kinase 1; S6K: ribosomal protein S6 kinase; TSC1/2: tuberous sclerosis 1/2; 4E-

BP1: eukaryotic initiation factor 4E-binding protein 1; eEF-4E: Eukaryotic translation

initiation factor 4E; Rheb: Ras homolog enriched in brain; mTORC1/2: rapamycin-sensitive

mTOR complex 1 and 2.
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Figure 2.
PTEN mutations in HNSCC. A. Analyses of the mutations sites are shown in the exons and

introns of the PTEN gene. B. Nonsynonymous mutations affecting the PTEN protein are

clustered mostly within functional area of the phosphatase domain, between the active site

cysteine residues 71 (C71) and 124 (C124). Additional mutations were in the C2-domain

between the amino acids 192 and 350.

Giudice and Squarize Page 24

J Carcinog Mutagen. Author manuscript; available in PMC 2014 August 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3.
Mutations of tumor suppressor PTEN in HNSCC. Crystal structure of PTEN protein is

represented as ribbon diagrams. A. The functional active pocket of the phosphatase domain

is shown. The mutated residues in the WPD-loop are highlighted in green (Y88), blue (F90),

and white (D92). The mutated residue A121 is in yellow. B. Sequence of the WPD-loop and

P-loop depicting the mutated residues within the walls of the active pocket present in the

PTEN phosphatase domain. Mutated amino acid residues are in red. C. Mutated residues

Q245 (in blue) and R335 (in cyan) in the C2 domain are nonsense mutations. Y225, P246,

and D252 are shown in red, gray, and black respectively. M205 (in green) is in the Cβ 1/2

loop; and D331G (in yellow) is in the C2α loop.
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Figure 4.
Overview of the PI3K family members and their phospholipid substrates. PI3Ks constitute a

large family of enzymes/oncogenes that is divided in the three classes as shown. Gene and

protein names are paired by the catalytic and regulatory subunits that originate the PI3K

heterodimers. Most common phospholipid substrate for each PI3K class is depicted.
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Figure 5.
Mutations observed in the PI3KCA and p85α. The amino acids residues show mutations in

the indicated protein domains. A. Hot spot mutations of PI3KCA in HNSCC are E545K/G/K

and p.H1047R/L as indicted in orange boxes. B. The site of mutations of regulatory subunit

PIK3R1 (also known as p85α) are found within the RhoGAP-binding domain and the iSH2

domain.
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Figure 6.
AKT2 mutation in HNSCC. Protein sequences of the putative phosphorylation site (Y) for

AKT2 are conserved across species. The amino acid residue change found in the HNSCC

(Y351C) is shown in red.
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