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Abstract

Multivariate Gaussian mixtures are a class of models that provide a flexible parametric approach

for the representation of heterogeneous multivariate outcomes. When the outcome is a vector of

repeated measurements taken on the same subject, there is often inherent dependence between

observations. However, a common covariance assumption is conditional independence—that is,

given the mixture component label, the outcomes for subjects are independent. In this paper, we

study, through asymptotic bias calculations and simulation, the impact of covariance

misspecification in multivariate Gaussian mixtures. Although maximum likelihood estimators of

regression and mixing probability parameters are not consistent under misspecification, they have

little asymptotic bias when mixture components are well-separated or if the assumed correlation is

close to the truth even when the covariance is misspecified. We also present a robust standard

error estimator and show that it outperforms conventional estimators in simulations and can

indicate the model is misspecified. Body mass index data from a national longitudinal study is

used to demonstrate the effects of misspecification on potential inferences made in practice.
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1. Introduction

Multivariate Gaussian mixtures are a class of models that provide a flexible parametric

approach for the representation of heterogeneous multivariate outcomes potentially

originating from distinct subgroups in the population. An overview of finite mixture models

is available in many texts [1, 2, 3, 4, 5]. We can estimate covariate effects on the outcome as

well as group membership probabilities by extending mixture models to include a regression

structure for both the mean and mixing proportions. See De la Cruz-Mesía et al. [6] for a

review of finite mixture models with a regression mean structure and Wedel [7] for the
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history of concomitant variable models that use baseline variables to explain variation in

subgroups. These extensions are used in several medical applications [8] including

epidemiology, genomics, and pharmacology in addition to other fields including astronomy,

biology, economics, and speech recognition. When the multivariate outcome is a vector of

repeated measures taken over time, these methods are identified as group-based trajectory

modeling [9, 10] or latent-class growth analysis [11, 12]. See Pickles and Croudace [13] and

references within for a review of mixture methods applied to longitudinal data. The use of

mixture models for multivariate data is increasing due to computational advances that have

made maximum likelihood (ML) parameter estimation possible, via the Expectation

Maximization (EM) algorithm, through model-specific packages such as Proc Traj in SAS

[14], Flexmix [15] and mclust [16] in R, and software such as Mplus [17] and Latent Gold

[18].

Despite the increased use of these models, the sensitivity of estimated regression coefficients

to model assumptions has only been explored to a limited degree. In a multivariate mixture

model, one must specify the component distribution, the form of the mean, the structure of

the covariance matrix, and the number of components; therefore, there are many ways to

misspecify the model. For example, in practice, the number of components is unknown and

model selection procedures based on the Bayesian information criterion are often employed.

However, if the specified covariance structure is too restrictive relative to the truth, the

estimated number of components will typically be greater than the true number because

more components are needed to model the extra variability. The literature in estimating the

number of components is vast [19] and continues to debate this unresolved issue. Due to the

potential complexity of mixture models, simplifying assumptions are made to reduce the

dimension of the parameter space, to make estimation possible, and for computational

convenience. In particular, many researchers assume Gaussian components and/or restrict

the components to have equal variance, both of which are known to result in asymptotic bias

if the assumptions are not met [20, 21]. In this paper, we assume that the number of

components, mean structure, and distribution are known and focus on other indeterminacies

such as the covariance matrix.

In terms of the covariance matrix, eigenvalue and Cholesky decompositions [22, 23], as well

as mixed effects structures [24], are used to impose structure and parsimony. Additionally,

one common assumption is conditional independence—given the mixture component label,

the outcomes for a subject are assumed independent [25, 26]. Of the available software that

estimate regression effects for the mean and mixing probabilities, most of them make this

simplifying assumption. This restriction is convenient when the data are unbalanced or if the

sample size is small to make estimation of the covariance parameters more stable. Despite

the wealth of proposed covariance models, there has been little work done in the area of

mixture models with misspecified covariance structures, and the conditional independence

assumption is unlikely to hold in many multivariate data settings, specifically in longitudinal

applications. If the mixture consists of one component, work done by Liang, Zeger [27] and

others suggest that regression estimates are asymptotically unbiased. However, these

properties do not hold with additional components since estimation includes mixing

proportions as well as component parameters.
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Here, we investigate the impact of covariance misspecification on ML estimation of

parameters and standard errors in multivariate Gaussian mixture models. In particular, our

focus is on the assumption of conditional independence for the covariance structure;

therefore, we assume the number of components, the distribution, and the mean structure is

known. This paper is organized as follows. Section 2 presents the model specification.

Section 3 describes the estimation procedure, issues, and asymptotic properties of the

parameter estimators based on the seminal results of White [28]. In Section 4, we present a

series of simulations of a simple misspecified example to compare asymptotic and finite-

sample bias of parameter and standard error estimates under varying levels of dependence

and separation between components. In Section 5, we apply these ideas to body mass index

data from a national longitudinal study to demonstrate the effects of misspecification on

potential inferences made in practice.

2. Model Specification

In a finite multivariate mixture, the density of a random vector y takes the form

where πk > 0 for k = 1, …, K and . The parameters πk are mixing proportions and

the functions f1, …, fK are component densities, assumed multivariate Gaussian here.

We extend the general model to allow other factors to affect the mean as well as the mixing

proportions. Let  be a random vector whose distribution, conditional on regression

covariates, x, and concomitant variables, z, is a mixture of K Gaussian densities with mixing

proportions: π1(z,γ),…., πK(z,γ). That is, the conditional mixture density for y is defined by

(1)

where fk(y|x, θk) denotes the m-variate Gaussian probability density function with mean xβk

and covariance matrix Σk (k = 1, …, K), θk includes both βk and Σk, x is a m × p matrix, and

z is a vector of length q. The regression covariates include measures that affect the mean

while the concomitant variables influence the mixing proportions. This general structure

allows the possibility that some baseline variables could be in both x and z.

We parameterize the mixing proportions using the multinomial logit with the form

for k = 1, …, K where  where γK = 0.
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Throughout this paper, we generally assume conditional independence with constant

variance within a component where  as the proposed estimation model, but it is

straightforward to extend the covariance model to include other correlation structures such

as exchangeable or exponential. Therefore, the vector of all unknown parameters, θ, consists

of the mixing proportion parameters, γk, and the component regression and variance

parameters, , for k = 1,…, K and could include correlation parameters.

3. Estimation

3.1. EM Algorithm

Under the assumption that y1,…,yn are independent realizations from the mixture

distribution, f(y|x, z, θ), defined in 1, the log likelihood function for the parameter vector, θ

is given by

The ML estimate of θ is obtained by finding an appropriate root of the score equation, ∂ log

L(θ)/∂θ = 0. Solutions of this equation corresponding to local maxima can be found

iteratively through the Expectation-Maximization (EM) algorithm [29]. This algorithm is

applied in the framework where given (xi,zi) each yi is assumed to have stemmed from one

of the components and the indicator denoting its originating component is missing. The

complete-data log likelihood is based on these indicator variables as well as the observed

data {(yi, xi, zi)}. The Expectation step (E-step) involves replacing the indicators by current

values of the conditional expectation, which is the posterior probability of component

membership, written as

for i = 1, …,n and k = 1, …, K using current estimates of the parameters. In the

Maximization step (M-step), the parameter estimates for the mixing proportions, regression

effects, and covariance matrices are updated by maximizing the complete-data log

likelihood using the posterior probabilities from the E-step in place of the indicator variables

using numerical optimization. The E- and M-steps are alternated repeatedly until

convergence. The EM algorithm guarantees convergence to a local maximum; global

convergence may be attained through initializing the algorithm by randomly assigning

individuals to initial components, running the algorithm multiple times and using the

estimates associated with the highest log likelihood.

3.2. Issues

Although an estimation tool exists, there are potential issues of parameter identifiability with

mixture models. Frühwirth-Schnatter [5] distinguishes between three types of
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nonidentifiability: invariance to relabeling of components, potential overfitting, and

nonidentifiability due to the family of component distribution and the covariate design

matrix. The first two issues are resolved through constraints such as θk ≠ θk′ for all k, k′ = 1,

…,K, k ≠ k′. The last concern is solved by assuming Gaussian components since finite

mixtures of multivariate Gaussians are identifiable [30, 31]. However, Hennig [32] suggests

that the introduction of a regression structure to a Gaussian mixture requires a full rank

design matrix as well as a rich covariate domain for regression parameters to be identifiable.

On the other hand, mixing proportions parameters from a multinomial logit based on

concomitant variables are identifiable by setting the parameters of one component to zero

such as γK = 0 [33].

Besides identifiability, there are other known issues with finite mixture models. McLachlan

and Peel [4] note that the sample size must be quite large for asymptotic theory to accurately

describe the finite sampling properties of the estimator. Also, when component variances are

allowed to vary between components, the mixture likelihood function is unbounded and

each observation gives rise to a singularity on the boundary of the parameter space [34, 35].

However, Kiefer [36] outlines theory that guarantees that there exists a particular local

maximizer of the mixture likelihood function that is consistent, efficient, and asymptotically

normal if the mixture is not overfit. To avoid issues of singularities and spurious local

modes in the EM algorithm, Hathaway [37] considers constrained maximum likelihood

estimation for multivariate Gaussian mixtures based on the following constraint on the

smallest eigenvalue of the matrix , denoted as ,

for some positive constant c ∈ [0, 1] to ensure a global maximizer.

3.3. Asymptotic Properties

If the true underlying data-generating distribution is a member of the specified model class,

then maximum likelihood estimation via the EM algorithm gives parameter estimates that

are consistent [38, 39]. However, if the model specified does not contain the true underlying

mixture, then the ML estimators potentially have asymptotic bias [20, 21]. Here, we are

interested in the impact of misspecifying the covariance matrix structure on parameter

estimation and inference.

General theoretical results for ML estimators are given by White [28]. Our investigation is a

special case where the covariance matrices of mixture components are incorrectly specified

but the mean structure and distribution are known. Let f(y|θ) be the assumed estimation

model, g(y) be the true density, and C be a compact subset of the parameter space. It follows

that the ML estimator, , is consistent for the parameter vector, θ*, that minimizes the

Kullback-Leibler (KL) divergence,

, under some
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regularity conditions [28], which is equivalent to maximizing  with

respect to θ.

In the case of mixture densities, this integral is mathematically intractable. Lo [21] used a

modified EM algorithm for univariate data that maximized  with respect

to θ in order to estimate θ*. This procedure could be adapted to bivariate data, but for

outcome vectors of larger dimension, this procedure is not as useful. We know that for

{yi}i=1,…n generated from the true density, under suitable regularity conditions [40],

Therefore, to investigate asymptotic bias under a misspecified covariance structure when

g(y) is known, we numerically approximate θs using the EM algorithm on a large sample

from g(y) of size n = 100, 000.

In addition to consistency, White [28] also showed that  where

the asymptotic covariance matrix is C(θ*)= A(θ*)−1B(θ*)A(θ*)−1, with

Moreover, , with

Following a similar procedure as Boldea and Magnus [41], we derive the score vector and

Hessian needed to calculate An and Bn for a multivariate Gaussian mixture model.

Derivations are available from the first author.

If the model is correctly specified, then both  and  are consistent

estimators of C(θ*) [28], and two possible variance-covariance estimates for the parameter

estimator are

On the other hand,  provides a consistent estimator of C(θ*)

despite any misspecification. Therefore, a third and robust variance estimate of the

parameter estimator is given by
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We refer to calculated standard error estimates corresponding to these three indexed

variance-covariance estimates throughout the rest of the paper.

4. Simulations

We carry out two series of simulations to examine the behavior of the maximum likelihood

estimators in terms of bias under misspecification of the covariance structure for finite

samples from a multivariate mixture. Specifically, we are mainly interested in the impact of

dependence in the true error structure on bias in parameter and standard error estimates

when the conditional independence is assumed incorrectly and how this is affected by the (i)

level of dependence and (ii) the separation between mixture components. Secondly, we

investigate the behavior of the bias when the estimation structure gets closer to the true

correlation structure by comparing the bias under three correlation structures.

In all of the simulations, the data with sample size n are generated from an m-variate

Gaussian mixture model with parameters  for k = 1,…,K where Vk is the

true correlation structure as follows:

• Fix K.

• For each subject, i = 1,…, n,

– Fix xi = 1m and zi = 1.

– Construct matrices Ak such that  for k = 1, …, K using the

Cholesky decomposition.

– Randomly assign group membership, hi, by drawing a value from the

categorical distribution defined by P(h = k)= πk(zi, γ) for k = 1,…,K.

– Draw m standard normal random values ei and let

Thus,  We then estimate the parameters and standard errors, ,

, , using constrained maximum likelihood via the EM algorithm [37] doing five

random initializations, based on a multivariate mixture model with a specified correlation

structure and known design matrix.

For simplicity, we focus on a example of two Gaussian components (K =2) with constant

mean vectors (i.e. no relationship between covariates and y), one component with

independent errors, the other with some level of dependency in the errors. For the first

series, the latter dependence is based on an exchangeable correlation structure where all
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outcomes in an observational unit are equally correlated, which is mathematically equivalent

to a random intercept model.

To investigate the influence of the level of dependence, we set the vector length to m =5,

equal mixing proportions (γ1 =0 and baseline variables have no effect), mean of the

components to β1 = 1 and β2 = 3, and the variance of the components to  and .

The errors are independent (V1 = Im) in component one and we let the level of dependence

vary with ρ = 0,0.5, 0.99 within the exchangeable structure (V2= ρ(Jm − Im) + Im where Jm is

a m × m matrix of 1’s) for component two. We present the bias of parameter estimates and

the three standard error estimates under these conditions.

Then, we consider the separation between two component distributions using the concept of

c-separation [42]. Two Gaussian distributions, N(μ1,Σ1) and N(μ2,Σ2), in  are c-

separated if where λmax(Σ) is the largest

eigenvalue of Σ. Dasgupta [42] notes that two Gaussians are almost completely non-

overlapping when c = 2. This inequality can be rearranged to establish a measure of

separation,

which is a standardized Euclidean distance between mean vectors. In this simulation, we

calculate the value of S for data-generating component densities as a measure of the

separation between the two components and if S > 2, the components do not overlap and are

well-separated. For this series of simulations, we again use a strong level of dependence (ρ =

0.99) in the exchangeable structure, a vector length of m = 5, but vary the mean and variance

of the second component (β2 = 3, 5 and ) to invoke different degrees of

separation between components.

We perform 1000 replications of each simulation for sample sizes n = 100,500,1000. We

approximate the true standard error with the standard deviation of the replicates. To estimate

the asymptotic bias of the model parameters (n = ∞), we complete one replication with n =

100,000.

The two prong simulation described above focuses on the impact of using a conditional

independence estimation model under different levels of dependence and separation in the

data-generating components. In practice, we can choose correlation structures other than

conditional independence. To explore the bias under difference covariance assumptions, we

run a short simulation adjusting the data-generating model from above to use an exponential

correlation structure, such that the dependence decreases as the time lag increases, rather

than the constant dependence from the exchangeable structure. Therefore, for component

two, the correlation between two measurements within a subject that are observed d time

units apart is exp(−d/r) where r, the range parameter, determines how quickly the correlation

decays to zero. This structure is general enough so that if r is close to zero, the correlation
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matrix is close to conditional independence and if r is very large, the structure is close to

exchangeable correlation.

For this simulation, we continue using the two Gaussian components (K =2) with constant

mean vectors (β1 = 1 and β2 = 3) of length m = 5 with observations at times t=1,2, 3,4 and 5,

one component with independent errors, and the second component with a moderate level of

dependence that decays exponentially (r =3). We estimate the mixing proportion, mean, and

variance parameters assuming different correlation structures: conditional independence,

exchangeable, and exponential correlation. We estimate and compare the finite-sample bias

of parameters and standard errors by letting n = 500 with 1000 replications. Additionally, we

compare the conventional estimate  of the covariance matrix of  and the robust estimate

 since if the estimation model is close to the true structure, the matrices should be similar

and  should be close to the identity matrix. We calculate RJ = tr(Q)/ν where ν

is the length of , which has been termed the RJ criteria and should be close to 1 if the

estimation model is close to the truth [43, 44].

4.1. Results

Table 1 lists bias estimates for the dependence-varying simulation study. The estimates

range from close to zero when ρ = 0 to magnitudes of upwards of 0.3 when ρ = 0.99. It is

clear from this table that stronger dependence in the errors results in greater finite-sample

and asymptotic bias when estimating under the conditional independence assumption.

Additionally, the magnitude of bias seems to reach the level of asymptopia at sample sizes

of n = 500, but it is important to note that the estimates for the asymptotic bias, based on one

replication with n = 100,000, are only numerically accurate to two decimal places for γ1, ,

and  even when using computationally large sample sizes. We see this numerical

inaccuracy when ρ =0 since the asymptotic bias should be zero when the conditional

independence assumption is met. In terms of standard error estimates, the bias increases with

increased dependence with values ranging from 0.001 when ρ = 0 to 0.111 when ρ = 0.99.

We see a divergence between the three variance estimators with , the robust estimator,

consistently having the least bias (Table 2). When the model is correctly specified with ρ=0,

the three estimators are similar as supported by asymptotic theory.

Figure 1 shows that the relationship between the level of component separation and the

magnitude of bias is complex. As in the previous simulation, sample sizes of n = 500 and

larger produce similar bias estimates so we only present the asymptotic results. When the

level of separation is high, S > 2, then the magnitude of the bias is small, but when there is

some overlap, S < 2, there is not a clear, consistent relationship between the value of S and

the magnitude of the estimated bias for all parameters. That is, for two sets of parameter

values, such as (β2 = 3, ) and (β2= 5, ), that have the same level of separation,

S = 2.836, the magnitude of the bias for all parameter estimates is drastically different for

the two settings. However, in general, the bias decreases as the level of separation increases

for a fixed mean parameter. The only exception is that the estimator for the first component

mean ( ) has increased bias when S= 1.418 as compared to S = 0.709, but the bias then
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decreases when S = 2.836. It appears that when there is high overlap between two

components, there is a point at which the bias peaks and then starts to decrease as σ2

increases even though the amount of overlap continues to increase. Lastly, similar to the

parameter estimates, the greater amount of separation results in less bias in the standard

errors with biases as large as 1.0 unit in the situation with the most overlap and as little as

less than 0.001 when components are well-separated. Again, the robust estimator again has

the lowest bias. Tables available upon request.

The simulations based on dependence and separation demonstrate the finite-sample and

asymptotic bias in the ML estimators when the covariance structure is misspecified as

conditional independence and the mixture components overlap. However, if two

components are well-separated, the misspecification of the dependence in the errors does not

result in large biases and thus any finite-sample bias could be removed potentially

conventional techniques such as bootstrapping with careful tracking of component labels

[45]. Additionally, when there is no covariance misspecification or when components are

well-separated, all of the standard error estimates are similar and have little bias. However,

when there is misspecification in the dependence structure, the estimates basely solely on

the Hessian matrix or the score vector understate the true variability while the robust

estimate has little bias. In cases where the true level of dependence is high, the bias in the

Hessian estimator, , and the robust version, , can differ by as much as a relative

factor of 2. In simulations not shown, using unequal mixing proportions result in similar

conclusions. When the component proportions are unbalanced, the magnitude of bias

increases when a majority of observations units originate from the misspecified component

(here component two).

Figure 2 shows the absolute bias of parameter estimates under the three different covariance

assumptions when the data was generating with the exponential correlation structure for

component two. As expected, when the model is correctly specified, there is very little bias.

We note that assuming the exchangeable structure, while incorrect, results in less bias than

assuming conditional independence. As the RJ criteria gets closer to 1 from 1.97 to 1.02 to

0.99 using independence, exchangeable, and then exponential, the estimation correlation

structure gets closer to the true structure resulting in little bias in the parameter estimates.

5. Data Example

To look at the behavior of the parameter and standard error estimates in practice, we use

data from the 1979 National Longitudinal Survey of Youth (NLSY79). The NLSY79 is a

nationally representative sample of 12,686 young American men and women aged 14–22

years in 1979, that oversampled Hispanic, Black, and economically disadvantaged non-

Black/non-Hispanics. The cohort, interviewed annually from 1979 to 1994 and biennially

thereafter, provide health and economic data for a total of 23 interviews (until 2008). In

particular, the available body weight data for the 1979 cohort span a twenty-five year period

[25]. We study body mass index (BMI) over time as it is an important longitudinal measure

for public health and elucidating obesity development. Self-reported weight was collected in

17 interviews and height in five of those. BMI [weight (kg)/height (m2)] was calculated for

each interview based on the weight and the average height.

Heggeseth and Jewell Page 10

Stat Med. Author manuscript; available in PMC 2014 August 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



For the purposes of this paper, the complex sampling structure is ignored and we randomly

sample 500 subjects who were at least 18 years of age in 1981 and reported all 17 weight

measurements. Of this sample, 51% are female, 54% are non-Hispanic/non-Black, 29.2%

Black and 16.8% Hispanic. To model the BMI outcomes, we allow a quadratic relationship

between mean BMI and age and include sex as a baseline concomitant variable. Therefore,

for i = 1,…, 500, we assume that the observed data were generated according to

with probability

where  for k = 1,…, 4. The choice of four groups is based on previous

research [25]. Using the EM algorithm with five random initializations, we estimate

parameters and standard errors and present the estimates that produced the highest log

likelihood. For the sake of comparison, we complete the estimation assuming conditional

independence (Vk = Im), and under an exchangeable (Vk = pk(Jm − Im) + Im) and exponential

(Vk = exp(−D/rk) where D is the Euclidean distance matrix of the ages at interviews for a

subject) correlation model.

5.1. Results

Parameter and standard errors are estimated for a four component multivariate Gaussian

mixture model assuming conditional independence, exchangeable, and exponential

correlation (Table 3). The regression parameter estimates are used to calculate the mean

curves for the four groups under all three covariance assumptions and we see that the mean

curves differ between the models mainly in terms of the innermost curves (Figure 3). Under

exchangeable correlation, one of the middle curves represents little BMI increase over time

in contrast to the other groups. Under the exponential correlation assumption, the two lowest

groups have a similar pattern over time, but the dependence differs between these groups

with the range parameters estimated as r1 = 2.973 and r2 = 23.579 indicating that component

2 has more long range dependence between the BMI outcomes than component 1. Our

simulation results suggest the magnitude of bias in the parameter estimator depends on how

close the estimation correlation structure is to the truth and the overlap between components.

We note there are no well-separated components and we see bias in the mean estimates by

comparing the three covariance assumptions.

Given that the repeated outcome is BMI, we expect some dependence in the error structure

within individuals. We consider the level of dependence in errors by plotting the estimated

autocorrelation function by calculating the empirical variogram of the residuals from the

conditional independence model [46] for each estimated component by randomly assigned

each individual to a component using posterior probabilities [47]. The estimated

autocorrelation function of the residuals shows strong dependence between residuals within
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5 to 10 years and the correlation decreases with increasing time lags (Figure 4). This

correlation structure is therefore neither consistent with conditional independence nor

exchangeable correlation, but rather decreases to zero which is more consistent with the

exponential correlation structure. We see that the robust standard estimators are almost twice

those of estimates using the standard estimators under conditional independence, and the RJ

criteria, which compares the naive and robust estimates of the covariance matrix the

parameters, suggests that the exponential correlation structure is the one closest to the truth.

In this data example, we see the influence of the covariance structure on the estimates,

especially in terms of the regression parameters. Based on the simulation results and the RJ

criteria, we expect the exponential correlation model fits the data the best out of the three

structures. However, we note that we fixed the number of components to be four for the sake

of consistency and this may not be the optimal number of components. In practice, this value

is estimated from the data as mentioned earlier. This data application highlights the impact

of covariance misspecification as well as the fact that the mean structure may not be the only

aspect differing between individuals; the level of dependence and variability also distinguish

groups of individuals.

6. Discussion

We have shown that covariance misspecification of a two-component Gaussian mixture may

produce very little bias in regression and mixing probability parameter estimates when the

components are well-separated. This is well-aligned with Lo’s univariate findings [21].

However, when there is some overlap in the component distributions, assuming the wrong

correlation structure can produce asymptotically biased parameter estimates, the magnitude

dependent on the level of separation and how close the structure is to the truth. With

misspecified mixture models, the potential for biased mixing and regression parameters

estimates differs from the one component models for which general estimating equations

[27] produce unbiased estimates despite dependence present in the errors. Depending on the

context and precision of the estimates, the bias may or may not have practical significance,

but it is important to note that the ML estimators are inconsistent under covariance

misspecification and there may be substantial bias when the components are not well-

separated.

In addition to potential biases in the parameter estimates, the simulations provide evidence

that conventional standard errors estimates which are based solely on the score equation, or

the Hessian, can be extremely biased and underestimate the true variability of the estimators

when the covariance structure is misspecified. Therefore, standard errors should be robustly

estimated using White’s estimator that sandwiches the two conventional estimators. We use

the exact formula for this estimator since the numerical approximations to the Hessian

matrix and score vector are not by-products produced by the EM algorithm. To the authors’

knowledge, very few software programs currently have implemented a robust standard error

estimator, but it should be implemented in every mixture model software as the default

variance estimator and presented along with standard estimators to allow for comparisons,

calculation of the RJ criteria, and the detection of misspecification bias.
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Given our results, we recommend three things when estimating parameters in a mixture

model. First, count the number of subjects whose maximum posterior probability is less than

0.95. If this count is non-zero, this indirectly indicates that the component distribution are

not well-separated, suggesting that specifying the correct correlation structure is important.

Second, if the components are not well-separated, fit the mixture model using several

correlation structures such as conditional independence, exchangeable, and exponential

correlation. For each model, calculate the RJ criteria based on the conventional and robust

estimated variance-covariance matrix. Compare the parameter estimates to see if they

change under the different assumptions and assess the RJ criteria values to see which

structure results in a value closest to one. Choose the most parsimonious model that has an

RJ criteria value close to one. Third, if none of these three structure fulfills this requirement,

consider a more complex, potentially non-stationary covariance matrix as well as other

sources of misspecification such as an incorrect number of components, assumed

distribution, or an inflexible mean structure.

Our simulation study is limited, but the results likely apply to more complex mean structures

and a larger number of components. In future studies, the impact of bias should be explored

for more than two components with all components potentially having a misspecified

covariance structure and for non-stationary covariance structures. Additionally, mixture

models as specified in this paper group individuals with similar trajectories over time; we

are currently investigating methods that distinguish between the shape of the trajectory and

the vertical level of the curve when grouping individuals together.
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Figure 1.
Asymptotic bias estimates of maximum likelihood parameter estimators when the

covariance structure of a 2-component Gaussian mixture is assumed to be conditionally

independent based on 1 replication with n=100,000 under each mixture distribution with

m=5, γ1=γ2=0, β1=1, V1=Im, σ1

2=0.25, V2=V(ρ), and

ρ=0.99 where V(ρ) is the exchangeable correlation matrix. The level of separation (S) is

calculated using the true mixture distribution. For β2 = 3, variance parameters, σ2

2=0.25, 1, 4 result in S=2.836, 1.418, 0.709,

respectively. For β2 = 5, variance parameters, σ2

2=0.25, 1, 4 result in S=5.671, 2.836, 1.418, respectively.

Values of S≥2 indicate almost completely separated components.
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Figure 2.
Bias estimates of maximum likelihood parameter estimators when the covariance structure

of a 2-component Gaussian mixture is assumed to be conditionally independent,

exchangeable, and exponential structure based on 1000 replications under each mixture

distribution with n=500, m=5, γ1=γ2=0, β1=1, V1=Im, σ1

2=0.25, β2=3, V2=V(r) and σ2

2=2 where V(r) is the exponential correlation matrix and r=3. Mean

values of the RJ criteria are RJ = 1.97, 1.02, 0.99 for the three covariance assumptions,

respectively.
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Figure 3.
Random sample of 500 BMI trajectories from NLSY and mean curves for the four

components estimated using a Gaussian mixture model specified with a quadratic mean

under the covariance assumptions: conditional independence, exchangeable, and exponential

correlation. The labeled are consistent with the tables in the text: component 1 (solid),

component 2 (dashed), component 3 (dotted), and component 4 (dashed-dot). Additionally,

the RJ criteria was calculated each covariance assumption: RJ=7.34, 3.02, 2.22 under

conditional independence, exchangeable, and exponential, respectively.
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Figure 4.
Smoothed sample autocorrelation of component residuals of estimated Gaussian mixture

model specified with a quadratic mean and conditional independence with a random sample

of 500 BMI trajectories from NLSY randomly assigned to components based on estimated

posterior probabilities. The dashed line represents the estimated variance for each

component.
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