Skip to main content
. Author manuscript; available in PMC: 2014 Aug 12.
Published in final edited form as: Stat Med. 2013 Jan 7;32(16):2790–2803. doi: 10.1002/sim.5729

Table 2.

Bias estimates of the three standard error estimators (SE1, SE2, SE3) when the covariance structure of a 2-component Gaussian mixture is assumed to be conditionally independent based on 1000 replications under each mixture distribution with m = 5, γ1 = γ2 = 0, β1 = 1, V1 = Im, σ12=0.25, β2 = 3, V2 = V (ρ) and σ22=1 where V (ρ) is the exchangeable correlation matrix. Approximate standard error is based on the estimated standard deviation of the simulation distribution. Values equal to zero represent values less than 0.001.

Bias Estimates
ρ n
SE^1(γ^1)
SE^2(γ^1)
SE^3(γ^1)
SE^1(β^1)
SE^2(β^1)
SE^3(β^1)
SE^1(σ^12)
SE^2(σ^12)
SE^3(σ^12)
0.00 100 0.007 0.007 0.007 0.000 0.001 −0.000 −0.001 0.001 −0.001
500 0.002 0.002 0.002 −0.000 0.000 −0.000 0.000 0.000 0.000
1000 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
0.50 100 0.004 0.004 0.004 −0.006 −0.008 −0.002 −0.007 −0.009 −0.004
500 0.002 0.002 0.002 −0.003 −0.004 −0.001 −0.002 −0.004 −0.001
1000 −0.001 −0.001 −0.001 −0.002 −0.002 −0.000 −0.001 −0.002 −0.000
0.99 100 −0.003 −0.003 −0.002 −0.026 −0.035 −0.010 −0.013 −0.016 −0.008
500 −0.005 −0.005 −0.004 −0.011 −0.015 −0.003 −0.005 −0.007 −0.002
1000 −0.003 −0.003 −0.002 −0.007 −0.010 −0.001 −0.003 −0.005 −0.002

ρ n
SE^1(β^2)
SE^2(β^2)
SE^3(β^2)
SE^1(σ^22)
SE^2(σ^22)
SE^3(σ^22)

0.00 100 0.001 0.003 0.001 −0.008 −0.004 −0.010
500 0.001 0.001 0.001 0.001 0.001 0.000
1000 0.000 0.000 0.000 0.001 0.001 0.001
0.50 100 −0.046 −0.070 −0.005 −0.019 −0.028 −0.004
500 −0.021 −0.032 −0.002 −0.010 −0.016 −0.001
1000 −0.014 −0.021 −0.000 −0.009 −0.013 −0.002
0.99 100 −0.092 −0.122 −0.017 −0.085 −0.111 −0.022
500 −0.040 −0.054 −0.006 −0.035 −0.049 −0.003
1000 −0.027 −0.037 −0.002 −0.026 −0.036 −0.004