

NIH Public Access

Author Manuscript

Nutr Metab Cardiovasc Dis. Author manuscript; available in PMC 2015 September 0

Published in final edited form as:

Nutr Metab Cardiovasc Dis. 2014 September ; 24(9): 969–975. doi:10.1016/j.numecd.2014.03.004.

Body adiposity index and incident hypertension: The Aerobics Center Longitudinal Study

D Moliner-Urdiales¹, **E** G Artero², **X** Sui³, **V** España-Romero⁴, **DC** Lee⁵, and **S** N Blair^{3,6} ¹Department of Education, University Jaume I, Castellón, Spain

²Area of Physical Education and Sport, University of Almería, Almería, Spain

³Department of Exercise Science, University of South Carolina, Columbia, South Carolina, USA

⁴Department of Physical Education, School of Education, University of Cadiz, Puerto Real, Spain

⁵Department of Kinesiology, Iowa State University, Ames, Iowa, USA

⁶Department of Epidemiology/Biostatistics, University of South Carolina, Columbia, South Carolina, USA

Abstract

Background and Aim—The body adiposity index (BAI) has been recently proposed as a new method to estimate the percentage of body fat. The association between BAI and hypertension risk has not been investigated yet. The aim of our study was to evaluate the ability of BAI to predict hypertension in males and females compared with traditional body adiposity measures.

Methods and Results—The present follow-up analysis comprised 10 309 individuals (2259 females) free of hypertension from the Aerobics Center Longitudinal Study, who completed a baseline examination during 1988–2003. Body adiposity measures included BAI, body mass index (BMI), waist circumference, hip circumference, percentage of body fat and waist to hip ratio (WHR). Incident hypertension was ascertained from responses to mail-back surveys between 1990 and 2004. During an average of 9.1 years of follow-up, 872 subjects (107 females) became hypertensive. Hazard ratios (HRs) and 95% confidence intervals (95% CI) showed that males in the highest categories of all body adiposity measures showed a higher incident risk of hypertension (HRs ranged from 1.37 to 2.09). Females showed a higher incident risk of hypertension only in the highest categories of BAI, BMI and WHR (HRs ranged from 1.84 to 3.36).

Conclusion—Our results suggest that in order to predict incident hypertension BAI could be considered as an alternative to traditional body adiposity measures.

^{© 2014} Elsevier B.V. All rights reserved.

Corresponding author, Diego Moliner-Urdiales, University Jaume I - Faculty of Humanities and Social Sciences, Av. Sos Baynat s/n - PC 12071 - Castellón (Spain), dmoliner@uji.es Phone number: +34 964 729 782, Fax number: +34 964 729 2641.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Keywords

Obesity; blood pressure; adiposity; body composition; adults

INTRODUCTION

Hypertension, defined as a persistent resting systolic/diastolic blood pressure 140/90 mmHg, has reached epidemic proportions worldwide. In fact, more than a quarter of the world's adult population had hypertension in the year 2000, and this proportion is estimated to increase to around 30% in the year 2025 [1]. Currently, high blood pressure is well recognized as a major cause of morbidity and mortality [2].

Overweight and obesity may also increase risk of co-morbidities, which can lead to further morbidity and mortality [3]. In recent years, there have been an increased number of studies showing the strong association between obesity and the risk of hypertension [4, 5].

Body mass index (BMI), waist circumference and waist to hip ratio (WHR) are strong predictors of obesity-related morbidity and mortality [6, 7]. Despite their limitations, both are commonly used as adiposity measures in large epidemiological studies where the use of more accurate methods are not available due to complexity and/or cost [8].

Recently, Bergman et al. [9], proposed the body adiposity index (BAI) as a new method to estimate percentage of body fat (%BF) without requiring a measure of body weight. Several validation studies have analyzed the correlation between BAI and %BF estimated by accurate methods such as DXA [9–13], magnetic resonance [14], or computed tomography [11]. Moreover, other studies have examined the association of BAI with traditional and novel cardiovascular disease (CVD) risk factors [11, 14–19].

In our best knowledge, the association between BAI and hypertension risk has not been investigated. Therefore, the aim of our study was to compare BAI and established body adiposity measures with respect to their ability to predict hypertension risk in a sample of men and women participating in the Aerobics Center Longitudinal Study (ACLS). Furthermore, we analyzed the cross-sectional association of BAI and established body adiposity measures with traditional CVD risk factors.

METHODS

Subjects

Data for this report are from the ACLS, a prospective epidemiological study of individuals who received extensive preventive medical examinations at the Cooper Clinic in Dallas, Texas, USA. Details of the study design and the characteristics of the cohort have been reported previously [20]. Study participants were referred by their employers or physicians, or were self-referred. They were mainly Caucasian, relatively well-educated, and from middle-to-upper socioeconomic strata. After receiving complete information about the aims and methods of the study, all participants gave written informed consent for the

examinations and follow-up. The study protocol was reviewed and approved annually by Cooper Institute's Institutional Review Board.

For the present analysis we included all individuals who received a baseline medical examination between 1988 and 2003, responded to at least one mail-back health survey during follow-up, and with valid data for all the body adiposity measures. Among 12 303 participants aged 20 years at baseline, we excluded 53 reporting myocardial infarction or stroke; 52 reporting cancer; 127 with BMI <18.5 kg/m²; 887 with resting systolic/diastolic blood pressure 140/90 mmHg or physician diagnosis of hypertension; and 633 not reaching 85% of their age-predicted maximal heart rate (220 minus age in years) on a treadmill test. In addition, 242 subjects with <1 year of follow-up were excluded to minimize potential bias due to undetected hypertension. The final sample size for the present report comprised 8050 males and 2259 females for analyses of incident hypertension.

Clinical Examination

Clinical examinations were completed after 12h fast and have been described in detail elsewhere [20]. Briefly, weight, height, waist and hip circumferences were measured with a standard clinical scale, stadiometer and plastic tape according to ACLS standard procedures. BMI was computed as weight in kilograms divided by height in meters squared (kg/m²), and WHR as waist circumference in centimeters divided by hip circumference in centimeters. BAI was calculated according to Bergman et al. [9] equation ((hip circumference in cm/ height in meters^{1.5})-18). %BF was assessed using hydrostatic weighing, the sum of seven skinfold measures, or both methods, following standardized protocols [21]. Participants were classified according to adiposity categories using standard clinical definitions for BMI (18.5 to 24.9 as normal weight; 25 to 29.9 as overweight; 30 as obese) and waist circumference (102 cm for males and 88 cm for females as having central obesity) [22]. Since there is not a specific agreement about obesity cut-off points for BAI, hip circumference, %BF and WHR, specific tertiles from this population were used.

Resting blood pressure was measured by trained technicians using auscultatory methods in the seated position and was recorded as the first and fifth Korotkoff sounds after 5 minutes of sitting quietly using mercury sphygmomanometers. Two readings separated by 2 minutes were averaged. If the first 2 readings differed by >5 mmHg, additional readings were obtained and averaged. Electrocardiogram (ECG) was measured at rest and with exercise, and abnormal ECG responses included rhythm and conduction disturbances and ischemic ST-T wave abnormalities. Serum samples were analyzed for glucose and total cholesterol using standardized automated bioassays at the Cooper Clinic Laboratory. Diabetes mellitus was defined as fasting plasma glucose concentration of 126 mg/dL, a history of physician diagnosis, or insulin use. Hypercholesterolemia was defined as total cholesterol of 240 mg/dL or a history of physician diagnosis.

Physical activity, cigarette smoking, alcohol intake, and parental history of CVD and hypertension were assessed by self-report on a medical history questionnaire. Physically inactive was defined as reporting no leisure-time physical activity in the 3 months before the baseline examination. Smoking status was classified as current smoker or not. Heavy alcohol consumption was defined as >14 units/week for males and >7 units/week for

females. One unit of alcohol intake was defined as a bottle or can of beer [355 mL (12 oz)], a glass of wine [148 mL (5 oz)], or 44 mL (1.5 oz) of hard liquor. Parental history of CVD was defined as the occurrence of heart attacks, coronary disease, angioplasty, or stroke before the age of 50 years in either father or mother. Parental history of hypertension was defined as a history of physician diagnosis in either father or mother.

Cardiorespiratory fitness (CRF) was quantified as the total time of a symptom-limited maximal treadmill exercise test, using a modified Balke protocol [23]. To standardize exercise performance, we estimated maximal metabolic equivalents (METs; 1 MET = 3.5 mL O₂ uptake per kilogram per minute) from the final treadmill speed and grade [24].

Incident hypertension

Incident hypertension was ascertained from responses to mail-back surveys in 1990, 1995, 1999, and 2004. A case-finding question for physician-diagnosed illness was used to identify cases of hypertension. Participants were asked if a physician had ever told them they had hypertension. If yes, respondents were asked to report the year of diagnosis. In participants who completed multiple surveys, the first survey in which hypertension was reported was used in the analyses. This method of case ascertainment has been used in other large, population-based epidemiologic studies of hypertension [23]. The aggregate survey response rate across all survey periods in the ACLS is about 65%, but it has been investigated in ACLS and does not present a major source of bias [25]. Sensitivity and specificity of self-reported, physician-diagnosed hypertension was verified in this cohort and observed 98% and 99%, respectively [23].

Statistical analysis

Descriptive analyses summarized baseline characteristics of the participants based on sexspecific BAI tertiles. Differences between groups were tested using analysis of the variance (ANOVA) for continuous variables and chi-square tests for categorical variables. Partial correlations between body adiposity measures were calculated after controlling for age and baseline examination year. We also examined the association of body adiposity measures with CVD risk factors using linear regression, controlling for age, baseline examination year, and survey response pattern. Cox proportional hazards regression analysis was used to estimate hazard ratios (HRs), and associated 95% confidence intervals (95% CIs) for incidence of hypertension, according to adiposity exposure categories from BAI, BMI, waist and hip circumferences, %BF and WHR. The lowest adiposity category was ever used as the reference category. To allow comparisons between adiposity measures, the results were also presented as standardized HRs by transforming each variable to have a mean of 0 and SD of 1. Indicator variables (yes/no) were constructed for each survey period to account for differences in survey response patterns in order to reduce the influence of ascertainment bias. In multivariable analyses, model 1 accounted for age, baseline examination year, and survey response pattern. Model 2 included physical activity, smoking habit, alcohol intake, abnormal ECG, hypercholesterolemia, diabetes, and parental history of CVD and hypertension as confounders. Model 3 additionally adjusted for CRF. The proportional hazards assumption was examined by comparing the cumulative hazard plots grouped on exposure and no appreciable violations were noted. All the analyses were performed using

PASW statistical package version 18.0 (SPSS Inc, Chicago, IL), considering P<0.05 as statistically significant.

RESULTS

During an average follow-up of 9.1 years, 872 subjects (107 females) became hypertensive.

The characteristics of the study population by sex-specific BAI tertiles are shown in Table 1. Except for current smokers and parental history of hypertension in males, and diabetes, parental history of CVD and hypertension in females, all variables presented significant differences across BAI tertiles.

Partial correlations examining the associations between body adiposity measures after controlling for age and examination year are shown in Table 2. All body adiposity measures were positively correlated each other (P 0.001). The highest correlation values for BAI were observed with BMI in males (r=0.787) and with hip circumference in females (r=0.832).

According to Table 3, all body adiposity measures were significantly associated with CVD risk factors (all P 0.001). BAI showed the lowest correlation values with fasting blood glucose when it was compared with the other body adiposity measures in both males and females. BAI associations with total cholesterol, fasting blood glucose and CRF were stronger among males, while BAI associations with systolic and diastolic blood pressure were stronger among females. Except for the WHR in females, all body adiposity measures showed the strongest association with CRF among all the risk factors in males and females.

Table 4 shows HRs for incidence of hypertension according to 3 different sets of confounders (model 1, model 2 and model 3). In the fully-adjusted model, males in all the highest categories of body adiposity measures showed a higher incidence risk of hypertension (HRs ranged from 1.37 to 2.09). Females showed a higher incidence risk of hypertension in the highest categories of BAI, BMI and WHR (HRs 1.84 and 3.36, respectively). Per 1 SD increase, HRs were similar between all the body adiposity measures in males (ranging from 1.15 to 1.29) and between BAI, BMI and WHR in females (ranging from 1.25 to 1.31).

DISCUSSION

The results of this report suggest that in order to predict incident hypertension among participants enrolled in the ACLS between 1988 and 2003, BAI could be considered as an alternative to established body adiposity measures.

The BAI has recently been proposed by Bergman et al. [9] to provide valid direct estimates of %BF. In our study, the mean intra-individual difference between BAI and %BF ranged from 2.5 to 3.9% in males, and from 1.8 to 2.0% in females across BAI tertiles. Moreover, in general BAI showed slightly lower correlation values with %BF than other body adiposity measures. Similar results have been found in some BAI validation studies when correlation

Moliner-Urdiales et al.

analyses were sex-stratified, indicating that calculation of BAI results in inaccurate estimation of %BF [10, 12–14].

Previous studies showed a strong association of established body adiposity measures with CVD risk factors [6, 26, 27], but the association with BAI seemed to be weaker [11, 14–19]. Our results concur with previous ones reporting significant associations between all adiposity measures and CVD risk factors (e.g. cholesterol, glucose, blood pressure, and CRF). However, in general BAI showed weaker associations than established body adiposity measures, indicating that in our sample BAI did not provide a meaningful alternative to established adiposity measures as a CVD risk indicator.

Due to the limitations of established body adiposity measures, the development of other simple, accurate, and inexpensive methods to assess %BF are needed for clinical and epidemiological research. Those methods need to be valid to assess body composition and to derive some insight into health risks associated with obesity. We tested if the new BAI proposed by Bergman et al. [9] may be a valid method to assess body composition by analyzing its ability to predict incidence risk of hypertension in adults. Such data may be essential to establish the validity of BAI for screening agent, as well as to be used in research protocols were a high number of participants are involved.

In our best knowledge, no previous studies have analyzed the ability of BAI to predict the risk of incident hypertension. Combined with previous results, our study shows that BAI may not be a better indicator of body fat [10, 12–14] or CVD risk [11, 14–19] than the established body adiposity measures. Nevertheless, in order to predict incident hypertension BAI could be considered as an alternative to established body adiposity measures, particularly when a weight measurement is not available. The middle tertile of BAI only identified higher risk of hypertension in males, thus showing lower discrimination accuracy in females. These gender differences could indicate that BAI is an approach of %BF, but does not reflect fat distribution, which is known to have large differences between males and females (android vs. gynoid obesity).

The results of the present analysis should be interpreted with caution due to several limitations. First, since our study mainly included Caucasian, well-educated men from middle-to-upper socioeconomic strata, the results may not extend to other populations. However, the homogeneity of the sample enhances internal validity of our findings because it reduces the likelihood of confounding by these characteristics. Second, %BF was estimated from skinfold measures or hydrostatic weighing, each of which have well known methodological limitations. Third, as we only have baseline data of exposures, we do not know whether changes in any of these variables occurred during follow-up and how this might have influenced the results. Fourth, we could not take into account dietary habits (e.g. sodium intake) or medication use to control for these potential confounders in the analysis. Finally, because of the widespread geographical distribution of participants, we were unable to verify all reported hypertension events. However, it appears that an acceptable level of agreement exists between participants' self-reported histories and their medical records based on a validation study [23]. Despite these limitations, the main strengths of this study include the large, well-characterized cohort, the prospective design of the study, the

In conclusion, the findings of the present analyses add information about the newly proposed BAI, suggesting that in order to predict incident hypertension BAI could be considered as an alternative to established body adiposity measures. Also, our results show that the association of BAI with CVD risk factors is slightly weaker than for traditional body adiposity measures. Further epidemiological studies examining the utility of BAI for other populations are still needed for a better understanding of the validity of this new index.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors thank the Cooper Clinic physicians and technicians for collecting the data, and staff at the Cooper Institute for data entry and data management.

This work was supported by "Conselleria de Educación de la Generalitat Valenciana" [BEST/2012/257]; Spanish Ministry of Education [EX-2010-1008]; National Institutes of Health [AG06945, HL62508, R21DK088195] and in part by an unrestricted research grant from The Coca-Cola Company. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding institutions.

Abbreviations

ACLS	Aerobics center longitudinal study
ANOVA	Analysis of the variance
BAI	Body adiposity index
BF	Body fat
BMI	Body mass index
CI	Confidence interval
CRF	Cardiorespiratory fitness
CVD	Cardiovascular disease
DXA	Dual-energy X-ray absorptiometry
ECG	Electrocardiogram
HR	Hazard ratio
MET	Maximal metabolic equivalent

REFERENCES

- 1. Kearney PM, Whelton M, Reynolds K, Whelton PK, He J. Worldwide prevalence of hypertension: a systematic review. J Hypertens. 2004; 22:11–19. [PubMed: 15106785]
- Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. Jama. 2003; 289:2560–2572. [PubMed: 12748199]

- 3. Haslam DW, James WP. Obesity. Lancet. 2005; 366:1197-1209. [PubMed: 16198769]
- de Simone G, Devereux RB, Chinali M, Roman MJ, Best LG, Welty TK, et al. Risk factors for arterial hypertension in adults with initial optimal blood pressure: the Strong Heart Study. Hypertension. 2006; 47:162–167. [PubMed: 16380527]
- Gus M, Fuchs SC, Moreira LB, Moraes RS, Wiehe M, Silva AF, et al. Association between different measurements of obesity and the incidence of hypertension. Am J Hypertens. 2004; 17:50– 53. [PubMed: 14700512]
- 6. van Dijk SB, Takken T, Prinsen EC, Wittink H. Different anthropometric adiposity measures and their association with cardiovascular disease risk factors: a meta-analysis. Netherlands heart journal : monthly journal of the Netherlands Society of Cardiology and the Netherlands Heart Foundation. 2012; 20:208–218.
- Berrington de Gonzalez A, Hartge P, Cerhan JR, Flint AJ, Hannan L, MacInnis RJ, et al. Body-mass index and mortality among 1.46 million white adults. The New England journal of medicine. 2010; 363:2211–2219. [PubMed: 21121834]
- Norgan NG. Laboratory and field measurements of body composition. Public health nutrition. 2005; 8:1108–1122. [PubMed: 16277823]
- 9. Bergman RN, Stefanovski D, Buchanan TA, Sumner AE, Reynolds JC, Sebring NG, et al. A better index of body adiposity. Obesity. 2011; 19:1083–1089. [PubMed: 21372804]
- Freedman DS, Thornton JC, Pi-Sunyer FX, Heymsfield SB, Wang J, Pierson RN Jr, et al. The Body Adiposity Index (Hip Circumference / Height(1.5)) Is Not a More Accurate Measure of Adiposity Than Is BMI, Waist Circumference, or Hip Circumference. Obesity. 2012; 20:2438– 2444. [PubMed: 22484365]
- Barreira TV, Staiano AE, Harrington DM, Heymsfield SB, Smith SR, Bouchard C, et al. Anthropometric correlates of total body fat, abdominal adiposity, and cardiovascular disease risk factors in a biracial sample of men and women. Mayo Clinic proceedings Mayo Clinic. 2012; 87:452–460.
- 12. Kuhn PC, Vieira Filho JP, Franco L, Dal Fabbro A, Franco LJ, Moises RS. Evaluation of body adiposity index (BAI) to estimate percent body fat in an indigenous population. Clin Nutr. 2013
- Vinknes KJ, Elshorbagy AK, Drevon CA, Gjesdal CG, Tell GS, Nygard O, et al. Evaluation of the body adiposity index in a Caucasian population: the Hordaland health study. American journal of epidemiology. 2013; 177:586–592. [PubMed: 23444101]
- Schulze MB, Thorand B, Fritsche A, Haring HU, Schick F, Zierer A, et al. Body adiposity index, body fat content and incidence of type 2 diabetes. Diabetologia. 2012; 55:1660–1667. [PubMed: 22349074]
- Martin BJ, Verma S, Charbonneau F, Title LM, Lonn EM, Anderson TJ. The Relationship Between Anthropometric Indexes of Adiposity and Vascular Function in the FATE Cohort. Obesity. 2012
- Moliner-Urdiales D, Artero EG, Lee DC, Espana-Romero V, Su X, Blair SN. Body adiposity index and all-cause and cardiovascular disease mortality in men. Obesity. 2013
- Lichtash CT, Cui J, Guo X, Chen YD, Hsueh WA, Rotter JI, et al. Body adiposity index versus body mass index and other anthropometric traits as correlates of cardiometabolic risk factors. PLoS One. 2013; 8:e65954. [PubMed: 23776578]
- Bennasar-Veny M, Lopez-Gonzalez AA, Tauler P, Cespedes ML, Vicente-Herrero T, Yanez A, et al. Body adiposity index and cardiovascular health risk factors in Caucasians: a comparison with the body mass index and others. PLoS One. 2013; 8:e63999. [PubMed: 23734182]
- Melmer A, Lamina C, Tschoner A, Ress C, Kaser S, Laimer M, et al. Body adiposity index and other indexes of body composition in the SAPHIR study: association with cardiovascular risk factors. Obesity. 2013; 21:775–781. [PubMed: 23712981]
- Blair SN, Kohl HW 3rd, Paffenbarger RS Jr, Clark DG, Cooper KH, Gibbons LW. Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA. 1989; 262:2395– 2401. [PubMed: 2795824]
- Lee CD, Blair SN, Jackson AS. Cardiorespiratory fitness, body composition, and all-cause and cardiovascular disease mortality in men. The American journal of clinical nutrition. 1999; 69:373– 380. [PubMed: 10075319]

Moliner-Urdiales et al.

- 22. Expert Panel on Detection E, Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the national cholesterol education program (ncep) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel iii). JAMA: The Journal of the American Medical Association. 2001; 285:2486–2497. [PubMed: 11368702]
- Blair SN, Goodyear NN, Gibbons LW, Cooper KH. Physical fitness and incidence of hypertension in healthy normotensive men and women. JAMA : the journal of the American Medical Association. 1984; 252:487–490. [PubMed: 6737638]
- Thompson, WR.; Gordon, NF.; Pescatello, LS. ACSM's guidelines for exercise testing and prescription. 8th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2010. American College of Sports Medicine.
- Macera CA, Jackson KL, Davis DR, Kronenfeld JJ, Blair SN. Patterns of non-response to a mail survey. J Clin Epidemiol. 1990; 43:1427–1430. [PubMed: 2254781]
- de Koning L, Merchant AT, Pogue J, Anand SS. Waist circumference and waist-to-hip ratio as predictors of cardiovascular events: meta-regression analysis of prospective studies. European heart journal. 2007; 28:850–856. [PubMed: 17403720]
- Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of comorbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health. 2009; 9:88. [PubMed: 19320986]

HIGHLIGHTS

- High blood pressure is well recognized as a major cause of morbidity and mortality.
- A strong association between obesity and the risk of hypertension has been reported.
- BAI has been recently proposed as a new method to estimate percentage of body fat.
- BAI is revealed as an alternative to traditional body adiposity measures in order to predict incident hypertension in adults.

NIH-PA Author Manuscript

~	
Ð	
ab	
Ĥ	

BAI (tertliles)

Moliner-Urdiales et al.

Baseline characteristics of participants by sex-specific body adiposity index (BAI) tertiles.

CumentenistLawer $\alpha_{-3}(37)$ Midde $\alpha_{-3}(38)$ Lawer $\alpha_{-3}(38)$ Midde $\alpha_{-3}(38)$ Lawer $\alpha_{-3}(38)$ Midde $\alpha_{-3}(38)$ Lawer $\alpha_{-3}(38)$ Midde $\alpha_{-3}(38)$ Value $\alpha_{-3}(38)$ Mid bio match (quit) $366(43)$ $916(73)$ $266(43)$ $000(68)$ $260(1)$ $266(43)$ 0001 Mid bio match (quit) $211(13)$ $236(13)$ $266(13)$ $266(13)$ $266(13)$ $266(13)$ $260(1)$ $260(1)$ Mid match (quit) $211(13)$ $260(1)$ $266(1)$ </th <th></th> <th></th> <th>Male</th> <th>s</th> <th></th> <th></th> <th>Fema</th> <th>les</th> <th></th>			Male	s			Fema	les	
<tbody<tr>Age (years)$461 (67)$$479 (4)$$48. (8,4)$$6001$$45. (8,8)$$48. (1,9)$$42. (7)$$6001$Body mass index ($yemy$)$25. (1,8)$$25. (2,1)$$25. (2,1)$$25. (2,1)$$25. (4,1)$$0001$Wast eironufrenex ($emy$)$86. (6,9)$$16. (7,2)$$86. (9,4)$$0001$$89. (5,1)$$75. (4,1)$$0001$Hy cincumfrenex ($emy$)$26. (4,1)$$100. (4,2)$$106. (6,2)$$100. (4,3)$$106. (6,3)$$21. (1,1)$$23. (1,0)$$23. (1,0)$$23. (1,0)$$20. (1,1)$But ($my$)$21. (1,1)$$23. (1,0)$$20. (1,1)$$24. (5.5)$$20. (1,2)$$23. (1,0)$$20. (1,1)$But ($my$)$17. (5.0)$$20. (1,1)$$24. (5.5)$$23. (1,0)$$23. (1,0)$$23. (1,0)$$20. (1,1)$Wast mall met ($mi$)$17. (5.0)$$20. (1,1)$$24. (5.5)$$23. (1,1)$$23. (1,2)$$23. (1,2)$$23. (1,2)$Matimal metholic equivalents (MET)$17. (5.0)$$20. (1,1)$$24. (1,2)$$1001$$23. (1,2)$$23. (1,2)$$20. (1,1)$Matimal metholic equivalents (MET)$13. (1,2)$$20. (1,1)$$23. (1,2)$$20. (1,1)$$23. (1,2)$$23. (1,2)$$23. (1,2)$Matimal metholic equivalents (MET)$13. (1,2)$$23. (1,2)$$23. (1,2)$$23. (1,2)$$23. (1,2)$$20. (1,1)$Matimal metholic equivalents (MET)$13. (1,2)$$23. (1,2)$$23. (1,2)$$23. (1,2)$$23. (1,2)$$23. (1,2)$Matimal metholic equivalents (MET)</tbody<tr>	Characteristic	Lower (n=2677)	Middle (n=2693)	Upper (n=2680)	P value ^a	Lower (n=749)	Middle (n=755)	Upper (n=755)	P value ^a
Body mass index (gm ³) $256(13)$ $256(2)$ $256(2)$ $256(2)$ $256(2)$ $256(2)$ $256(2)$ $256(1)$ $256(4)$ 0001 Hj circumfreene (em) $866(6)$ $167(2)$ $866(6)$ 0001 $233(2)$ $276(1)$ 2001 BH circumfreene (em) $96(4)$ $1003(4)$ $160(6)$ 2001 $233(2)$ $237(4)$ 1001 BH circumfreene (em) $211(1,3)$ $239(0)$ $249(5)$ 2001 $233(2)$ $237(4)$ 2001 BH circumfreene (em) $09(01)$ $09(01)$ $09(01)$ $249(5)$ 2001 $237(2)$ $230(1)$ $236(1)$ 2001 Mark 0001 $214(1)$ $249(2)$ 2001 $237(2)$ 2001 Mark 0001 $09(1)$ $09(1)$ $09(1)$ $09(1)$ $236(1)$ $206(1)$ 2001 Mark 0001 $09(1)$ $126(2)$ $126(2)$ 2001 $126(2)$ 2001 Mark 0001 $020(1)$	Age (years)	46.1 (9.7)	47.9 (9.4)	48.8 (9.4)	<0.001	45.2 (8.8)	48.1 (9.5)	49.2 (9.7)	<0.001
Wais circumference (cm) $866(69)$ $916(72)$ $866(9)$ $1067(2)$ $866(9)$ $1060(69)$ 6001 $837(8)$ $715(61)$ $796(101)$ 4001 Hp circumference (cm) $966(49)$ $1003(48)$ $1060(69)$ 0001 $833(1)$ $955(44)$ $1046(83)$ 0001 BAI (6) $211(1.2)$ $239(07)$ $274(22)$ 0001 $233(23)$ $273(1)$ $325(3,4)$ 0001 $96F$ $172(50)$ $206(47)$ $249(52)$ 0001 $215(51)$ $253(53)$ 3001 0001 WH $172(50)$ $290(1)$ $09(01)$ $09(01)$ $09(01)$ $09(01)$ 0001 0001 Whatmal metabolic equivalents (MET) $194(360)$ $2029(73)$ 2000 $1172(21)$ $102(17)$ $90(17)$ 0001 Unal metabolic equivalents (MET) $194,3(20)$ $2029(73)$ 2000 $113(21)$ $90(17)$ 0001 Unal metabolic equivalents (MET) $194,3(20)$ $2029(73)$ 2000 $113(21)$ $90(17)$ 2001 Unal metabolic equivalents (MET) $194,3(20)$ $2029(73)$ 2000 $113(10)$ 2001 2001 Unal metabolic equivalents (MET) $194,3(20)$ $2029(73)$ 2000 $113(10)$ $210(17)$ 2001 Unal metabolic equivalents (MET) $194,3(2)$ $113(40)$ $113(41)$ $113(10)$ 2001 Unal metabolic equivalents (MET) $126(9)$ $113(10)$ $2001(17)$ 2001 $2001(17)$ $2001(17)$ $2001(17)$ Unal metabolic equivalents (MET) <t< td=""><td>Body mass index (kg/m²)</td><td>23.6 (1.8)</td><td>25.6 (2.0)</td><td>28.7 (3.2)</td><td><0.001</td><td>20.9 (1.7)</td><td>22.6 (1.9)</td><td>26.6 (4.0)</td><td><0.001</td></t<>	Body mass index (kg/m ²)	23.6 (1.8)	25.6 (2.0)	28.7 (3.2)	<0.001	20.9 (1.7)	22.6 (1.9)	26.6 (4.0)	<0.001
Hip circumfeence (m)966 (4)100.3 (4)106.0 (6)-0.001 $83.3 (5.1)$ $95.4 (4.7)$ $104.6 (8.3)$ -0.001BAI (%)21.1 (1.3)23.9 (0.7) $27.4 (2.2)$ -0.001 $23.3 (2.3)$ $27.3 (1.0)$ $32.5 (3.4)$ -0.001WH172 (5,0) $20.0 (1,1)$ $0.9 (0.1)$ $0.9 (0.1)$ $0.9 (0.1)$ $0.9 (0.1)$ $0.9 (0.1)$ $0.9 (0.1)$ 0.001 WH $0.9 (0.1)$ $0.9 (0.1)$ $0.9 (0.1)$ $0.9 (0.1)$ $0.9 (0.1)$ $0.9 (0.1)$ $0.9 (0.1)$ 0.001 WHR $0.9 (0.1)$ $0.9 (1.1)$ $0.9 (1.1)$ $0.9 (1.1)$ $0.9 (1.1)$ 0.001 0.01 WHR $0.9 (1.1)$ $0.9 (1.1)$ $0.9 (1.1)$ $0.9 (1.1)$ $0.9 (1.1)$ 0.001 Waitim metabolic quivalents (MET) $13.6 (1.2)$ $10.9 (1.2)$ $10.9 (1.2)$ $10.9 (1.3)$ 0.001 Fastim footesen (mgdL) $71.1 (4.1)$ $82.0 (2.2)$ 0.001 $11.2 (2.1)$ $10.2 (1.2)$ 0.001 Fastim footesen (mgdL) $71.1 (4.1)$ $82.0 (2.2)$ $10.9 (1.72)$ $10.8 (1.0)$ 0.001 Stool $10.9 (1.2)$ $10.9 (1.2)$ $10.9 (1.2)$ $10.8 (1.0)$ 0.001 Maximul metabolic quivalents (MET) $71.1 (4.1)$ $82.0 (2.2)$ $10.9 (1.2)$ $10.8 (0.1)$ 0.001 Fastim footesen (mgdL) $71.1 (4.1)$ $82.0 (2.2)$ $10.9 (1.2) (2.2)$ $10.8 (0.1)$ 0.001 Stool $10.8 (1.2)$ $0.9 (1.2)$ $10.9 (1.2) (2.2)$ $10.8 (1.2)$ 0.001 Maximul met	Waist circumference (cm)	86.6 (6.9)	91.6 (7.2)	98.6 (9.4)	<0.001	68.7 (8.0)	71.5 (6.1)	79.6 (10.1)	<0.001
BA1(%) $21.1(1.3)$ $23.9(0.7)$ $27.4(2.2)$ 0.001 $23.5(3.1)$ $32.5(3.1)$ $32.5(3.1)$ $30.7(5.5)$ 0.001 WHK $0.9(0.1)$ $0.9(1.1)$ $0.9(1.1)$ $0.9(1.1)$ $24.9(5.2)$ 0.001 $11.2(5.0)$ $30.6(4.7)$ $24.9(5.2)$ 0.001 $0.9(0.1)$ $0.8(0.1)$ $0.8(0.1)$ $0.8(0.1)$ 0.001 WHK $0.9(1.1)$ $13.6(2.4)$ $13.6(2.4)$ $11.2(2.1)$ $0.1(1.7)$ 0.01 0.001 $0.8(0.1)$ 0.001 0.001 Waximal metabolic equivalents (MET) $13.6(2.4)$ $12.6(2.1)$ $11.3(2.0)$ 0.001 $11.2(2.1)$ $0.2(1.7)$ 0.001 Total cholesterol (mgdL) $19.4(3.2)$ $20.01(1.2)$	Hip circumference (cm)	96.6 (4.9)	100.3 (4.8)	106.0 (6.9)	<0.001	89.3 (6.1)	95.4 (4.7)	104.6 (8.3)	<0.001
%BF 172 (5.0) 206 (4.7) 249 (5.2) (4001 23.5 (5.1) 30.7 (5.5) (4001 WHR 09(0.1) 09 (0.1) 09 (0.1) 09 (0.1) 09 (0.1) 09 (0.1) 09 (0.1) 09 (0.1) 09 (0.1) 09 (0.1) 09 (0.1) 09 (0.1) 09 (0.1) 09 (0.1) 09 (0.1) 09 (0.1) 09 (0.1) 0.8 (0.1) 0.8 (0.1) 0.9 (0.1) 0.0 (0.1) Tradmill ime (min) 13 (5.4) 12.6 (2.1) 11.3 (2.0) 0.001 11.3 (2.1) 10.2 (1.7) 0.0 (1.7) 0.001 Tradmill ime (min) 13 (5.4) 12.6 (2.1) 11.3 (2.0) 0.001 11.3 (2.1) 12.3 (3.7) 0.001 Tradial biolog glucose (mg/d1) 13 (5.4) 92 (12.2) 0001 13 (3.1) 92 (12.7) 92 (13.3) 0.001 Biolod pressue (mmHg) 116 (6/95) 117 4 (9.1) 118 (4.10) 118 (4.10) 13.6 (11.0) 0.001 Diastolic 72 (6.8) 73 (6.4) 73 (6.1) 73 (7.1) 73 (7.1) 73 (7.1) 73 (7.1) 73 (7.1) 73	BAI (%)	21.1 (1.3)	23.9 (0.7)	27.4 (2.2)	<0.001	23.3 (2.3)	27.3 (1.0)	32.5 (3.4)	<0.001
WHR $0.9(0.1)$ $0.9(0.1)$ $0.9(0.1)$ $0.9(0.1)$ $0.8(0.1)$ $0.8(0.1)$ $0.8(0.1)$ $0.0(1)$ Tradmill time (min) $1.9(4.4)$ $1.9(4.2)$ $1.2(4.2)$ $1.02(1.2)$ $0.0(1)$ $1.02(1.7)$ $0.0(1)$ Maximal metabolic equivalents (MET) $1.94(2.3)$ $1.26(2.1)$ $11.3(2.0)$ 0.001 $11.2(2.1)$ $0.0(1.7)$ 0.001 Total choleserol (mg/dL) $1.94,3(5.0)$ $202,9(7.7)$ $208,6(3.8.3)$ -0.001 $18.78(3.19)$ $196,4(3.3.8)$ $202,0(3.3.1)$ 0.001 Fasting blood glucose (mg/dL) $7.1(14.1)$ $98.2(12.2)$ $100.9(17.2)$ -0.001 $18.78(3.19)$ $196,4(3.3.8)$ $200,0(3.3.1)$ 0.001 Fasting blood glucose (mg/dL) $115,4(1.0)$ $113,4(1.0)$ $112,6(1.1)$ $920,1(1.3)$ $920,1(1.3)$ $920,1(1.3)$ 0.001 Systolic $117,4(9.1)$ $118,4(9.2)$ -0.001 $129,7(1.4.8)$ $920,6(3.3)$ 0.001 Diastolic $772,6(8)$ $780,6(8)$ $790,6(2.2)$ -0.001 $129,7(1.4.8)$ $920,1(3.3)$ 0.001 Diastolic $772,6(8)$ $780,6(8)$ $790,6(2.2)$ 0.001 $113,6(1.0)$ $713,6(1.0)$ 0.001 Diastolic $115,6(1.2)$ $299,(1.1.1)$ $316,(1.1.8)$ $0.364,80$ $92,7(1.4.8)$ $23,7(2.8)$ 0.001 Diastolic $172,6(8)$ $290,(1.2)$ $219,(1.2)$ $113,6(1.0)$ $113,6(1.0)$ $713,6(1.0)$ 0.001 Diastolic $112,6(1.2)$ $299,(1.2)$ $219,(1.2)$ $214,(1.6,7)$ <td>%BF</td> <td>17.2 (5.0)</td> <td>20.6 (4.7)</td> <td>24.9 (5.2)</td> <td><0.001</td> <td>21.5 (5.1)</td> <td>25.3 (5.1)</td> <td>30.7 (5.5)</td> <td><0.001</td>	%BF	17.2 (5.0)	20.6 (4.7)	24.9 (5.2)	<0.001	21.5 (5.1)	25.3 (5.1)	30.7 (5.5)	<0.001
Tradmill time (min) $219 (4.4)$ $199 (4.2)$ $172 (4.2)$ 6001 $169 (4.4)$ $148 (3.7)$ $2.3 (3.7)$ 6001 Maximal metabolic equivalents (MET) $136 (2.4)$ $12.6 (2.1)$ $11.3 (2.0)$ 6001 $11.2 (2.1)$ $90 (1.7)$ $90 (1.7)$ 0001 Total cholesterol (mg/dL) $97.1 (14.1)$ $98.2 (12.2)$ $1009 (17.2)$ 0001 $187.8 (31.9)$ $96.4 (33.8)$ $200 (33.1)$ 0001 Fasting blood glucose (mg/dL) $97.1 (14.1)$ $98.2 (12.2)$ $1009 (17.2)$ $2000 (17.2)$ $200 (13.3)$ $200 (13.3)$ 2000 Blood pressure (mmHg) $116.6 (9.5)$ $117.4 (9.1)$ $118.4 (9.2)$ 0001 $92.7 (14.8)$ $93.0 (8.3)$ $95.0 (18.4)$ 0001 Systolic $116.6 (9.5)$ $117.4 (9.1)$ $118.4 (9.2)$ 0001 $108.4 (10.7)$ $1109 (10.9)$ $113.6 (11.0)$ 0001 Diastolic $772 (58)$ $78.0 (6.4)$ $79.0 (5.2)$ 0001 $72.9 (7.5)$ $74.5 (7.1)$ $75.9 (7.2)$ 0001 Diastolic $772 (68)$ $78.0 (6.4)$ $79.0 (5.2)$ 0001 $72.9 (7.5)$ $74.5 (7.1)$ $75.9 (7.2)$ 0001 Diastolic $772 (68)$ $78.0 (6.4)$ $79.0 (5.2)$ 0001 $72.9 (7.5)$ $74.5 (7.1)$ $75.9 (7.2)$ 0001 Diastolic $772 (68)$ $79.0 (6.2)$ $209 (11.1)$ $316 (11.8)$ $0.54 (1.8)$ $0.54 (1.8)$ 0.001 Diastolic $199 (7.4)$ $229 (12.9)$ $237 (12.6)$ 0.001 $124 (1.6)$ $114 (15.1)$ 124	WHR	0.9(0.1)	0.9(0.1)	(0.9)	>0.001	0.8~(0.1)	0.8 (0.1)	0.8~(0.1)	<0.001
Maximal metabolic equivalents (MET) 13.6 (2.4) 12.6 (2.1) 11.3 (2.0) 0001 11.2 (2.1) 10.2 (1.7) 90 (1.7) -0001 Total cholescerol (mg/dL) 97.1 (14.1) 98.2 (12.2) 1009 (17.2) 20.9 (37.3) 202.0 (33.1) -0001 Fasting blood plucose (mg/dL) 97.1 (14.1) 98.2 (12.2) 1009 (17.2) -0001 97.7 (14.8) 95.0 (18.4) 0.003 Blood pressure (mmHg) 116.6 (9.5) 117.4 (9.1) 118.4 (9.2) -0001 92.7 (14.8) 93.0 (8.3) 95.0 (18.4) 0.001 Systolic 116.6 (9.5) 117.4 (9.1) 118.4 (9.2) -0001 02.7 (14.8) 93.0 (8.3) 95.0 (18.4) 0.001 Distolic 77.2 (6.8) 78.0 (6.4) 79.0 (6.2) -0001 72.9 (7.5) 74.5 (7.1) 75.9 (7.2) -0.001 Distolic 77.2 (6.8) 78.0 (6.8) 78.0 (6.9) 117.4 (9.1) $316.11.6$ 0.001 129.7 (7.5) 74.5 (7.1) 75.9 (7.2) -0.001 Distolic 77.2 (6.8) 78.0 (6.8) 78.0 (6.7) $114.15.1$) 153.7 (7.3) 20.012 0.001 Distolic $298.10.6$ $299(11.1)$ $316(11.6)$ $0.297.7$ $114.15.1$) $153.72.0$ 0.001 Distolic $298.10.6$ $299(11.1)$ $316(11.6)$ $0.297.7$ $114.15.1$) $153.72.0$ 0.001 Distolic $298.10.6$ $299(11.1)$ $216(11.6)$ $0.297.7$ 124.56 0.001 $129.72.6$ 0.001 Heavy di	Treadmill time (min)	21.9 (4.4)	19.9 (4.2)	17.2 (4.2)	<0.001	16.9 (4.4)	14.8 (3.7)	12.3 (3.7)	<0.001
Total cholesterol (mg/dL) $194.3(50)$ $202.6(37.0)$ $208.6(38.3)$ <0001 $187.8(31.9)$ $196.4(33.8)$ <0001 <001 Fasting blood glucose (mg/dL) $77.1(14.1)$ $98.2(12.2)$ $100.9(17.2)$ <0001 $92.7(14.8)$ $93.0(8.3)$ $95.0(18.4)$ 0.003 Blood pressure (mmHg) $116.6(9.5)$ $117.4(9.1)$ $188.4(9.2)$ <0.001 $92.7(14.8)$ $93.0(8.3)$ $95.0(18.4)$ 0.003 Systoic $116.6(9.5)$ $117.4(9.1)$ $118.4(9.2)$ <0.001 $108.4(10.7)$ $110.9(10.9)$ $113.6(11.0)$ <0.001 Distoic $77.2(6.8)$ $78.0(6.4)$ $79.0(6.2)$ <0.001 $72.9(7.5)$ $74.5(7.1)$ $75.9(7.2)$ <0.001 Physically inactive, No (%) $402.(15.0)$ $509(18.9)$ $665(24.8)$ <0.001 $95(12.7)$ $114(15.1)$ $153(2.03)$ <0.001 Havy dinkers, No (%) $233(10.6)$ $299(11.1)$ $316(11.8)$ 0.364 $36(4.8)$ $24(15.7)$ $126(7.3)$ <0.001 Havy dinkers, No (%) $199(7.4)$ $257(9.4)$ $257(9.6)$ 0.009 $143(19.1)$ $133(17.6)$ $102(13.9)$ 0.001 Havy dinkers, No (%) $199(7.4)$ $257(9.4)$ $257(9.6)$ 0.001 $102(17.7)$ $114(15.1)$ $123(2.3)$ 0.001 Havy dinkers, No (%) $199(7.4)$ $257(9.4)$ $257(9.6)$ 0.001 $123(19.1)$ $133(17.6)$ 0.001 Havy dinkers, No (%) $199(7.4)$ $257(9.6)$ $261(9.7)$ 0.002 $113(19.1)$ $133(17.6)$ <td>Maximal metabolic equivalents (MET)</td> <td>13.6 (2.4)</td> <td>12.6 (2.1)</td> <td>11.3 (2.0)</td> <td><0.001</td> <td>11.2 (2.1)</td> <td>10.2 (1.7)</td> <td>9.0 (1.7)</td> <td><0.001</td>	Maximal metabolic equivalents (MET)	13.6 (2.4)	12.6 (2.1)	11.3 (2.0)	<0.001	11.2 (2.1)	10.2 (1.7)	9.0 (1.7)	<0.001
Fasting blood glucose (mg/dL) $97.1(14.1)$ $98.2(12.2)$ $100.9(17.2)$ 6.001 $92.7(14.8)$ $95.0(18.4)$ 0.003 Blood pressure (mmHg)	Total cholesterol (mg/dL)	194.3 (36.0)	202.9 (37.0)	208.6 (38.3)	<0.001	187.8 (31.9)	196.4 (33.8)	202.0 (33.1)	<0.001
Blood pressure (mmHg) Systolic $1166(9.5)$ $1174(9.1)$ $1184(9.2)$ <0.001 $1084(10.7)$ $1109(10.9)$ $113.6(1.10)$ <0.001 Diastolic $772(6.8)$ $78.0(6.4)$ $79.0(6.2)$ <0.001 $72.9(7.5)$ $74.5(7.1)$ $75.9(7.2)$ <0.001 Physically inactive. No $(\%)^b$ $402(15.0)$ $590(18.9)$ $665(24.8)$ <0.001 $95(12.7)$ $114(15.1)$ $153(72.0)$ <0.001 Uternet smokens. No $(\%)^c$ $283(10.6)$ $290(11.1)$ $316(11.8)$ 0.364 $36(4.8)$ $44(5.8) 23(3.0) 0.002 Havy drinkers. No (\%)^c 199(74) 252(9.4) 257(9.6) 0.001 95(12.1) 133(17.6) 105(13.9) 0.002 Havy drinkers. No (\%)^c 199(74) 252(9.4) 257(9.6) 0.000 143(19.1) 133(17.6) 105(13.9) 0.002 Abnormal ECdd 195(7.3) 238(8.8) 261(9.7) 0.000 143(19.1) 133(17.6) 105(13.9) 0.022 Abnormal ECdd 195(7.3) 238(8.8) 261(9.7) 0.001 18(15.8)$	Fasting blood glucose (mg/dL)	97.1 (14.1)	98.2 (12.2)	100.9 (17.2)	<0.001	92.7 (14.8)	93.0 (8.3)	95.0 (18.4)	0.003
Systolic $116.6(9.5)$ $117.4(9.1)$ $118.4(9.2)$ <0.001 $108.4(10.7)$ $119.6(11.0)$ <0.001 Diastolic $77.2(6.8)$ $78.0(6.4)$ $79.0(6.2)$ <0.001 $72.9(7.5)$ $74.5(7.1)$ $75.9(7.2)$ <0.001 Physically inactive, $No(\%)$ $402.(15.0)$ $509.(18.9)$ $665.(24.8)$ <0.001 $95.(12.7)$ $114.(15.1)$ $153.20.3)$ <0.001 Unrent smokers, $No(\%)$ $199(7.4)$ $299(11.1)$ $316(11.8)$ 0.364 $36.(4.8)$ $44.(5.8)$ <0.001 Heavy drinkers, $No(\%)$ $199(7.4)$ $257.(9.4)$ $257(9.6)$ 0.009 $143.(19.1)$ $133.(17.6)$ $105.(13.9)$ 0.022 Bascline medical conditions, $No(\%)$ $199(7.4)$ $252.(9.4)$ $257(9.6)$ 0.009 $143.(19.1)$ $133.(17.6)$ $105.(13.9)$ 0.022 Heavy drinkers, $No(\%)$ $199(7.4)$ $252.(9.4)$ $257(9.6)$ 0.000 $143.(19.1)$ $133.(17.6)$ $105.(13.9)$ 0.022 Bascline medical conditions, $No(\%)$ $195.(7.3)$ $238.(8.8)$ $261(9.7)$ 0.001 $118.(15.8)$ $127.(4.7)$ 0.002 Hypercholesterolemia ^e $63.2.4)$ $68.(2.5)$ $86.(32.3)$ 0.001 $118.(15.8)$ $178.(23.6)$ 0.001 Diabetes mellitus ^f $63.2.4)$ $60.22.8)$ $60.22.9$ 0.001 $170.(22.7)$ $196.(26.0)$ $0.012Diabetes mellitusf63.2.30690.25.9)690.25.90.001170.(22.7)196.(26.0)0.012Diabetes mellitusf$	Blood pressure (mmHg)								
Diastolic 772 (6.8) 780 (6.4) 790 (6.2) <0001 729 (7.5) 745 (7.1) 759 (7.2) <0001 Physically inactive, No (%)b 402 (15.0) 509 (18.9) 665 (24.8) <0001 95 (12.7) 114 (15.1) 153 (20.3) <0001 Current smokers, No (%)b 283 (10.6) 299 (11.1) 316 (11.8) 0.364 36 (4.8) 44 (5.8) 23 (3.0) 0.032 Heavy dinkers, No (%)c 199 (7.4) 252 (9.4) 257 (9.6) 0.009 143 (19.1) 133 (17.6) 105 (13.9) 0.022 Baseline medical conditions, No (%)c 199 (7.4) 252 (9.4) 257 (9.6) 0.009 143 (19.1) 133 (17.6) 105 (13.9) 0.022 Abnormal ECGd 199 (7.3) 238 (8.8) $261 (9.7)$ 0.009 143 (19.1) 133 (17.6) 105 (13.9) 0.022 Abnormal ECGd 195 (7.3) 238 (8.8) $261 (9.7)$ 0.009 143 (19.1) 133 (17.6) 105 (13.9) 0.022 Abnormal ECGd 195 (7.3) 238 (8.8) $261 (9.7)$ 0.009 143 (19.1) 133 (17.6) 105 (13.9) 0.022 Abnormal ECGd 195 (7.3) 257 (3.9) 257 (3.9) 257 (3.9) 263 (3.2) 201 (18.15) 102 (13.9) 0.022 Abnormal ECGd 542 (2.2) 725 (2.69) 865 (2.2.9) 865 (2.2.9) 261 (2.7.9) 277 (3.9) 27 (3.6) 27 (3.6) 2002 Diabetes mellitusf 63 (2.4) 68 (2.5) 127 (4.7) <0.0	Systolic	116.6 (9.5)	117.4 (9.1)	118.4 (9.2)	<0.001	108.4 (10.7)	110.9 (10.9)	113.6 (11.0)	<0.001
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Diastolic	77.2 (6.8)	78.0 (6.4)	79.0 (6.2)	<0.001	72.9 (7.5)	74.5 (7.1)	75.9 (7.2)	<0.001
Current smokers, No (%) $283 (10.6)$ $299 (11.1)$ $316 (11.8)$ 0.364 $36 (4.8)$ $44 (5.8)$ $23 (3.0)$ 0.032 Havy drinkers, No (%) $199 (7.4)$ $252 (9.4)$ $257 (9.6)$ 0.009 $143 (19.1)$ $133 (17.6)$ $105 (13.9)$ 0.022 Baseline medical conditions, No (%) $195 (7.3)$ $257 (9.6)$ 0.009 $143 (19.1)$ $133 (17.6)$ $105 (13.9)$ 0.022 Abnormal ECGd $195 (7.3)$ $238 (8.8)$ $261 (9.7)$ 0.005 $55 (7.3)$ $63 (8.3)$ $85 (11.3)$ 0.022 Hypercholesterolemiae $542 (20.2)$ $725 (26.9)$ $865 (32.3)$ <0.001 $118 (15.8)$ $178 (23.6)$ 2001 Diabetes mellitusf $63 (2.4)$ $68 (2.5)$ $127 (4.7)$ <0.001 $170 (22.7)$ $196 (26.0)$ 0.01 Parental history of CVD, No (%) $501 (18.7)$ $560 (20.8)$ $615 (22.9)$ 0.001 $170 (22.7)$ $196 (26.0)$ 0.171 Parental history of hypertension, No (%) $623 (23.3)$ $690 (25.7)$ 0.064 $287 (38.3)$ $310 (41.1)$ $322 (42.6)$ 0.171	Physically inactive, No (%) b	402 (15.0)	509 (18.9)	665 (24.8)	<0.001	95 (12.7)	114 (15.1)	153 (20.3)	<0.001
Heavy drinkers, No (%) $199 (7.4)$ $252 (9.4)$ $257 (9.6)$ 0.009 $143 (19.1)$ $133 (17.6)$ $105 (13.9)$ 0.022 Baseline medical conditions, No (%) $195 (7.3)$ $238 (8.8)$ $261 (9.7)$ 0.005 $55 (7.3)$ $63 (8.3)$ $85 (11.3)$ 0.022 Abnormal ECGd $195 (7.3)$ $238 (8.8)$ $261 (9.7)$ 0.005 $55 (7.3)$ $63 (8.3)$ $85 (11.3)$ 0.022 Hypercholesterolemiae $542 (20.2)$ $725 (26.9)$ $865 (32.3)$ <0.001 $118 (15.8)$ $178 (23.6)$ <0.001 Diabetes mellitusf $63 (2.4)$ $68 (2.5)$ $127 (4.7)$ <0.001 $12 (2.9)$ $27 (3.6)$ $33 (4.4)$ 0.330 Parental history of CVD, No (%) $501 (18.7)$ $560 (20.8)$ $615 (22.9)$ 0.001 $170 (22.7)$ $196 (26.0)$ 0.171 Parental history of hypertension, No (%) $623 (23.3)$ $690 (25.7)$ 0.064 $287 (38.3)$ $310 (41.1)$ $322 (42.6)$ 0.171	Current smokers, No (%)	283 (10.6)	299 (11.1)	316 (11.8)	0.364	36 (4.8)	44 (5.8)	23 (3.0)	0.032
Baseline medical conditions, No (%) $195 (7.3)$ $238 (8.8)$ $261 (9.7)$ 0.005 $55 (7.3)$ $63 (8.3)$ $85 (11.3)$ 0.022 Hypercholesterolemia ^e $542 (20.2)$ $725 (26.9)$ $865 (32.3)$ <0.001 $118 (15.8)$ $178 (23.6)$ $211 (27.9)$ <0.001 Diabetes mellitus ^f $63 (2.4)$ $68 (2.5)$ $127 (4.7)$ <0.001 $127 (3.6)$ $231 (4.4)$ 0.330 Parental history of CVD, No (%) $501 (18.7)$ $560 (20.8)$ $615 (22.9)$ 0.001 $170 (22.7)$ $196 (26.0)$ 0.171 Parental history of hypertension, No (%) $623 (23.3)$ $690 (25.7)$ 0.064 $287 (38.3)$ $310 (41.1)$ $322 (42.6)$ 0.171	Heavy drinkers, No (%) c	199 (7.4)	252 (9.4)	257 (9.6)	0.009	143 (19.1)	133 (17.6)	105 (13.9)	0.022
Abnormal ECGd $195 (7.3)$ $238 (8.8)$ $261 (9.7)$ 0.005 $55 (7.3)$ $63 (8.3)$ $85 (11.3)$ 0.022 Hypercholesterolemiae $542 (20.2)$ $725 (26.9)$ $865 (32.3)$ <0.001 $118 (15.8)$ $178 (23.6)$ $211 (27.9)$ <0.001 Diabetes mellitusf $63 (2.4)$ $68 (2.5)$ $127 (4.7)$ <0.001 $22 (2.9)$ $27 (3.6)$ $33 (4.4)$ 0.330 Parental history of CVD, No (%) $501 (18.7)$ $560 (20.8)$ $615 (22.9)$ 0.001 $170 (22.7)$ $196 (26.0)$ $201 (26.6)$ 0.171 Parental history of hypertension, No (%) $623 (23.3)$ $689 (25.6)$ $690 (25.7)$ 0.064 $287 (38.3)$ $310 (41.1)$ $322 (42.6)$ 0.171	Baseline medical conditions, No (%)								
Hypercholesterolemiae $542 (20.2)$ $725 (26.9)$ $865 (32.3)$ <0.001 $118 (15.8)$ $178 (23.6)$ $211 (27.9)$ <0.001 Diabetes mellitusf $63 (2.4)$ $68 (2.5)$ $127 (4.7)$ <0.001 $22 (2.9)$ $27 (3.6)$ $33 (4.4)$ 0.330 Parental history of CVD, No (%) $501 (18.7)$ $560 (20.8)$ $615 (22.9)$ 0.001 $170 (22.7)$ $196 (26.0)$ $201 (26.6)$ 0.171 Parental history of hypertension, No (%) $623 (23.3)$ $689 (25.6)$ $690 (25.7)$ 0.064 $287 (38.3)$ $310 (41.1)$ $322 (42.6)$ 0.224	Abnormal ECG^d	195 (7.3)	238 (8.8)	261 (9.7)	0.005	55 (7.3)	63 (8.3)	85 (11.3)	0.022
Diabetes mellitusf 63 (2.4) 68 (2.5) 127 (4.7) <0.001 22 (2.9) 27 (3.6) 33 (4.4) 0.330 Parental history of CVD, No (%) 501 (18.7) 560 (20.8) 615 (22.9) 0.001 170 (22.7) 196 (26.0) 201 (26.6) 0.171 Parental history of hypertension, No (%) 623 (23.3) 689 (25.6) 690 (25.7) 0.064 287 (38.3) 310 (41.1) 322 (42.6) 0.224	Hypercholesterolemia e	542 (20.2)	725 (26.9)	865 (32.3)	<0.001	118 (15.8)	178 (23.6)	211 (27.9)	<0.001
Parental history of CVD, No (%) 501 (18.7) 560 (20.8) 615 (22.9) 0.001 170 (22.7) 196 (26.0) 201 (26.6) 0.171 Parental history of hypertension, No (%) 623 (23.3) 689 (25.6) 690 (25.7) 0.064 287 (38.3) 310 (41.1) 322 (42.6) 0.224	Diabetes mellitus ^f	63 (2.4)	68 (2.5)	127 (4.7)	< 0.001	22 (2.9)	27 (3.6)	33 (4.4)	0.330
Parental history of hypertension, No (%) 623 (23.3) 689 (25.6) 690 (25.7) 0.064 287 (38.3) 310 (41.1) 322 (42.6) 0.224	Parental history of CVD, No (%)	501 (18.7)	560 (20.8)	615 (22.9)	0.001	170 (22.7)	196 (26.0)	201 (26.6)	0.171
	Parental history of hypertension, No (%)	623 (23.3)	689 (25.6)	690 (25.7)	0.064	287 (38.3)	310 (41.1)	322 (42.6)	0.224

Nutr Metab Cardiovasc Dis. Author manuscript; available in PMC 2015 September 01.

 a Analysis of the variance (ANOVA) for continuous variables and chi-square tests for categorical variables.

NIH-PA Author Manuscript

 b Defined as reporting no physical activity during leisure time in the 3 months before the examination.

 $^{\rm C}$ Defined as >14 and >7 drinks/week for males and females, respectively.

dAbnormal resting or exercise electrocardiogram.

 $^{\ell}$ Defined as total cholesterol 240 mg/dL or previous physician diagnosed hypercholesterolemia.

 $f_{
m Defined}$ as fasting blood glucose 126 mg/dL, previous physician diagnosed diabetes or use of insulin.

Table 2

Partial correlations examining the association between body adiposity measures after controlling for age and baseline examination year.

			Ma	ıles					Fem	ales		
	BAI	BMI	Waist	Hip	%BF	WHR	BAI	BMI	Waist	Hip	%BF	WHR
BAI												
BMI	0.787						0.780					
Waist	0.616	0.864					0.519	0.819				
Hip	0.687	0.804	0.831				0.832	0.791	0.658			
%BF	0.607	0.694	0.740	0.669	·		0.638	0.724	0.620	0.660		
WHR	0.255	0.548	0.754	0.264	0.500		0.172	0.260	0.629	0.156	0.143	

BAI indicates body adiposity index; BMI, body mass index; waist, waist circumference; hip, hip circumference; % BF, percentage of total body fat; WHR, waist to hip ratio.

All correlations were statistically significant at P = 0.001

Moliner-Urdiales et al.

Table 3

Standardized regression coefficients examining the association of body adiposity index (BAI), body mass index (BMI), waist circumference, hip circumference, percentage of body fat (%BF), and waist to hip ratio (WHR) with cardiovascular disease risk factors.

Moliner-Urdiales et al.

				30dy Adiposi	y Index	(BAI)		
		F	Males			Ŧ	emales	
	${f R}^2$	ß	r	R ² change	${f R}^2$	ß	r	R ² change
Total cholesterol	0.054	0.162	0.170	0.026	0.137	0.117	0.163	0.013
Fasting blood glucose	0.027	0.114	0.127	0.013	0.043	0.084	0.086	0.007
Systolic blood pressure	0.022	0.085	0.099	0.007	0.122	0.171	0.212	0.028
Diastolic blood pressure	0.023	0.122	0.128	0.014	0.061	0.154	0.180	0.023
Cardiorespiratory fitness ^a	0.321	-0.400	-0.450	0.157	0.353	-0.401	-0.460	0.155
				Body Mass	Index (B)	(IIV		
Total cholesterol	0.052	0.157	0.143	0.024	0.147	0.156	0.186	0.024
Fasting blood glucose	0.040	0.163	0.164	0.026	0.049	0.113	0.119	0.012
Systolic blood pressure	0.033	0.136	0.145	0.018	0.143	0.224	0.250	0.049
Diastolic blood pressure	0.042	0.187	0.194	0.034	0.080	0.207	0.222	0.042
Cardiorespiratory fitness ^a	0.348	-0.437	-0.467	0.184	0.359	-0.404	-0.447	0.160
				Waist Circ	umferen	e		
Total cholesterol	0.053	0.158	0.174	0.024	0.147	0.155	0.199	0.024
Fasting blood glucose	0.045	0.179	0.194	0.031	0.058	0.148	0.156	0.021
Systolic blood pressure	0.028	0.114	0.127	0.013	0.132	0.199	0.237	0.039
Diastolic blood pressure	0.039	0.177	0.179	0.030	0.080	0.208	0.229	0.042
Cardiorespiratory fitness ^a	0.395	-0.488	-0.541	0.231	0.320	-0.353	-0.411	0.121
				Hip circu	mferenc	e		
Total cholesterol	0.038	0.102	0.094	0.010	0.132	0.093	0.120	0.008
Fasting blood glucose	0.029	0.124	0.128	0.015	0.046	0.100	0.091	0.010
Systolic blood pressure	0.026	0.106	0.115	0.011	0.123	0.174	0.198	0.029
Diastolic blood pressure	0.033	0.160	0.167	0.025	0.068	0.177	0.195	0.030
Cardiorespiratory fitness ^a	0.315	-0.392	-0.423	0.150	0.345	-0.389	-0.426	0.147
			2	ercentage of l	odv fat ((%BF)		

Body Adiposity Index (BAI)

Moliner-Urdiales et al.

		E	Males			H	emales	
	${f R}^2$	β	r	R ² change	${f R}^2$	ß	r	R ² change
Total cholesterol	0.059	0.185	0.188	0.031	0.152	0.173	0.237	0.028
Fasting blood glucose	0.030	0.131	0.152	0.016	0.041	0.068	0.101	0.004
Systolic blood pressure	0.019	0.066	0.094	0.004	0.112	0.139	0.193	0.018
Diastolic blood pressure	0.029	0.151	0.159	0.021	0.063	0.164	0.186	0.025
Cardiorespiratory fitness ^a	0.463	-0.572	-0.641	0.298	0.440	-0.505	-0.574	0.241
				Waist to hip	ratio (W	HR)		
Total cholesterol	0.052	0.159	0.189	0.024	0.133	0.098	0.129	0.010
Fasting blood glucose	0.038	0.159	0.176	0.024	0.043	0.082	0.100	0.007
Systolic blood pressure	0.020	0.071	0.082	0.005	0.099	0.072	0.097	0.005
Diastolic blood pressure	0.022	0.121	0.114	0.014	0.045	0.083	0.093	0.007
Cardiorespiratory fitness ^a	0.306	-0.388	-0.437	0.141	0.203	-0.070	-0.107	0.005
All analyses adjusted for age	and basel	ine exami	nation yea					
All P values were significant	at 0.00	1.						

Nutr Metab Cardiovasc Dis. Author manuscript; available in PMC 2015 September 01.

^aMaximal metabolic equivalents, MET.

NIH-PA Author Manuscript

Table 4

Hazard ratios for incidence of hypertension according to different measures of adiposity.

Hazard ratio (95% CI)

		Males			Females	
	Model 1 a	Model 2 b	Model 3 ^c	Model 1 a	Model 2 b	Model 3 ^c
BAI						
Low	1.00 (Referent)	1.00 (Referent)	1.00 (Referent)	1.00 (Referent)	1.00 (Referent)	1.00 (Referent)
Middle	1.47 (1.22 – 1.78)	$1.45\ (1.20-1.75)$	1.39 (1.15 – 1.68)	$1.15\ (0.67 - 1.95)$	1.13 (0.66 – 1.92)	$1.09\ (0.64 - 1.87)$
Upper	1.92(1.60-2.31)	1.86 (1.55 – 2.23)	1.68 (1.38 – 2.04)	2.01 (1.24 – 3.27)	1.99 (1.22 – 3.26)	$1.84 \ (1.10 - 3.08)$
Per 1 SD increase	1.33(1.24 - 1.42)	1.31 (1.22 – 1.40)	1.26 (1.16 – 1.35)	$1.32\ (1.10-1.58)$	$1.32 \ (1.10 - 1.59)$	1.28 (1.04 - 1.56)
BMI						
$18.5-24.9\;kg/m^2$	1.00 (Referent)	1.00 (Referent)	1.00 (Referent)	1.00 (Referent)	1.00 (Referent)	1.00 (Referent)
$25.0 - 29.9 \ kg/m^2$	$1.56\ (1.34 - 1.83)$	1.53 (1.30 – 1.79)	1.45 (1.23 – 1.71)	1.73 (1.11 – 2.69)	1.67 (1.07 – 2.62)	1.61 (1.01 - 2.58)
$30.0 \ kg/m^2$	2.53 (2.02 – 3.17)	2.37 (1.88 – 2.98)	2.09 (1.63 – 2.70)	3.62 (1.97 – 6.65)	3.59 (1.92 – 6.72)	3.36 (1.71 – 6.60)
Per 1 SD increase	$1.35\ (1.26 - 1.44)$	1.32 (1.24 – 1.42)	$1.28\ (1.18-1.38)$	1.34 (1.14 - 1.57)	$1.35\ (1.14 - 1.59)$	$1.31 \ (1.08 - 1.58)$
Waist circumference ^d						
Low	1.00 (Referent)	1.00 (Referent)	1.00 (Referent)	1.00 (Referent)	1.00 (Referent)	1.00 (Referent)
High	$1.80\ (1.51-2.14)$	1.70 (1.42 – 2.03)	1.49 (1.23 – 1.81)	1.98 (1.13 – 3.45)	$1.92\ (1.09 - 3.39)$	1.72 (0.95 – 3.09)
Per 1 SD increase	1.36(1.27 - 1.45)	$1.33\ (1.24 - 1.43)$	$1.29\ (1.19 - 1.40)$	1.31 (1.11 – 1.55)	$1.30\ (1.09 - 1.54)$	1.25(1.04 - 1.51)
Hip circumference						
Low	1.00 (Referent)	1.00 (Referent)	1.00 (Referent)	1.00 (Referent)	1.00 (Referent)	1.00 (Referent)
Middle	$1.21 \ (1.01 - 1.46)$	$1.20\ (0.99 - 1.44)$	$1.14\ (0.95 - 1.38)$	$1.15\ (0.71 - 1.87)$	$1.12\ (0.68 - 1.82)$	$1.06\ (0.65 - 1.74)$
Upper	1.70 (1.42 – 2.02)	1.64 (1.37 – 1.96)	1.46 (1.21 – 1.77)	1.39 (0.87 – 2.23)	1.31 (0.81 – 2.11)	1.16(0.70 - 1.90)
Per 1 SD increase	1.28(1.19 - 1.37)	1.26 (1.17 – 1.35)	1.20(1.11 - 1.29)	1.22(1.01 - 1.47)	$1.20\ (0.99 - 1.45)$	$1.14 \ (0.92 - 1.40)$
% BF						
Low	1.00 (Referent)	1.00 (Referent)	1.00 (Referent)	1.00 (Referent)	1.00 (Referent)	1.00 (Referent)
Middle	$1.23\ (1.02 - 1.48)$	1.19(0.99 - 1.44)	$1.10\ (0.90 - 1.33)$	1.19(0.71 - 1.97)	$1.14\ (0.68 - 1.91)$	$1.04 \ (0.62 - 1.76)$
Upper	1.69(1.41 - 2.02)	1.60(1.33 - 1.93)	1.37 (1.11 – 1.69)	$1.40\ (0.86 - 2.29)$	$1.34\ (0.81-2.23)$	$1.12 \ (0.64 - 1.95)$
Per 1 SD increase	1.26(1.17 - 1.36)	1.23(1.14 - 1.33)	1.15(1.05 - 1.26)	$1.20\ (0.99 - 1.47)$	$1.19\ (0.97 - 1.46)$	$1.12 \ (0.89 - 1.41)$
Waist to hip ratio						

				~		
		Males			Females	
	Model 1 ^a	Model 2 ^b	Model 3 ^c	Model 1 ^a	Model 2 ^b	Model 3 ^c
Low	1.00 (Referent)	1.00 (Referent)	1.00 (Referent)	1.00 (Referent)	1.00 (Referent)	1.00 (Referent)
Middle	$1.84\ (1.50-2.25)$	1.81 (1.47 – 2.21)	1.73 (1.41 – 2.12)	$0.98\ (0.56 - 1.71)$	0.99 (0.57 – 1.72)	$0.97\ (0.56 - 1.70)$
Upper	2.20 (1.80 – 2.69)	2.11 (1.72 – 2.58)	1.90 (1.54 – 2.36)	2.00 (1.23 – 3.24)	1.98 (1.21 – 3.24)	1.90 (1.16 – 3.12)
Per 1 SD increase	$1.29\ (1.20 - 1.38)$	1.26 (1.17 – 1.36)	1.20 (1.11 – 1.30)	1.13(0.98 - 1.31)	1.13(0.97 - 1.31)	1.12 (0.96 – 1.31)

BAI indicates body adiposity index; BMI, body mass index; SD, standard deviation; % BF, percentage of body fat.

 $^{a}\mathrm{Adjusted}$ for age, baseline examination year, and survey response pattern.

b Adjusted for model 1 plus physical activity (active or inactive), smoking (current smoker or not), alcohol intake (> 14 drinks/week O'>7 drinks/week Q or not), abnormal electrocardiogram, hypercholesterolemia and diabetes (present or not for each), and parental history of CVD and hypertension.

 $^{\mathcal{C}}$ Adjusted for model 2 plus cardiores piratory fitness (treadmill test duration in minutes). d Low waist circumference indicates < 102 cm σ and < 88 cm Q; High waist circumference, 102 cm σ and 88 cm Q.

Table 5

Baseline characteristics of participants who developed incident hypertension by sex.

	Males (n=765)	Females (n=107)	Total (n=872)	P value ^a
Age (years)	50.8 (9.6)	51.5 (9.9)	50.9 (9.7)	
Body mass index (kg/m ²)	26.5 (3.3)	24.4 (4.5)	26.3 (3.6)	< 0.001
Waist circumference (cm)	94.7 (9.3)	75.9 (11.0)	92.4 (11.3)	< 0.05
Hip circumference (cm)	101.8 (6.9)	97.4 (10.2)	101.3 (7.5)	< 0.001
BAI (%)	24.8 (3.0)	28.8 (4.9)	25.3 (3.5)	<0.001
%BF	21.9 (5.6)	27.5 (6.2)	22.6 (6.0)	
WHR	0.9 (0.1)	0.8 (0.1)	0.9 (0.1)	< 0.01
Treadmill time (min)	18.8 (4.6)	13.3 (3.8)	18.1 (4.8)	< 0.05
Maximal metabolic equivalents (MET)	12.0 (2.2)	9.5 (1.8)	11.7 (2.3)	< 0.01
Total cholesterol (mg/dL)	207.4 (35.6)	200.9 (29.0)	206.6 (34.9)	< 0.05
Fasting blood glucose (mg/dL)	100.3 (19.0)	99.0 (24.9)	100.1 (19.8)	
Blood pressure (mmHg)				
Systolic	122.2 (8.5)	120.5 (10.6)	122.0 (8.8)	< 0.01
Diastolic	80.7 (5.8)	78.0 (7.0)	80.4 (6.0)	< 0.01
Physically inactive, No $(\%)^b$	172 (22.5)	23 (21.5)	195 (22.4)	
Current smokers, No (%)	83 (10.8)	7 (6.5)	90 (10.3)	
Heavy drinkers, No (%) ^C	79 (10.3)	21 (19.6)	10 (11.5)	< 0.01
Baseline medical conditions, No (%)				
Abnormal ECG ^d	88 (11.5)	15 (14.0)	103 (14.8)	
Hypercholesterolemia ^e	209 (23.7)	28 (26.2)	237 (27.2)	
Diabetes mellitus ^f	32 (4.2)	4 (3.7)	36 (4.1)	
Parental history of CVD, No (%)	161 (21.0)	33 (30.8)	194 (22.2)	< 0.05
Parental history of hypertension, No (%)	170 (22.2)	50 (46.7)	220 (25.2)	< 0.001

Values are means (standard deviations) or numbers (percentage). BAI indicates body adiposity index; %BF indicates percentage of body fat; WHR indicates waist to hip ratio; CVD, cardiovascular disease; MET: metabolic equivalents.

 a Analysis of the variance (ANOVA) for continuous variables and chi-square tests for categorical variables.

 b Defined as reporting no physical activity during leisure time in the 3 months before the examination.

^cDefined as >14 and >7 drinks/week for males and females, respectively.

 d Abnormal resting or exercise electrocardiogram.

 e Defined as total cholesterol 240 mg/dL or previous physician diagnosed hypercholesterolemia.

 f Defined as fasting blood glucose 126 mg/dL, previous physician diagnosed diabetes or use of insulin.