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The cortico– basal– ganglia circuit plays a critical role in decision making on the basis of probabilistic information. Computational
models have suggested how this circuit could compute the probabilities of actions being appropriate according to Bayes’ theorem. These
models predict that the subthalamic nucleus (STN) provides feedback that normalizes the neural representation of probabilities, such
that if the probability of one action increases, the probabilities of all other available actions decrease. Here we report the results of an
experiment testing a prediction of this theory that disrupting information processing in the STN with deep brain stimulation should
abolish the normalization of the neural representation of probabilities. In our experiment, we asked patients with Parkinson’s disease to
saccade to a target that could appear in one of two locations, and the probability of the target appearing in each location was periodically
changed. When the stimulator was switched off, the target probability affected the reaction times (RT) of patients in a similar way to
healthy participants. Specifically, the RTs were shorter for more probable targets and, importantly, they were longer for the unlikely
targets. When the stimulator was switched on, the patients were still faster for more probable targets, but critically they did not increase
RTs as the target was becoming less likely. This pattern of results is consistent with the prediction of the model that the patients on DBS
no longer normalized their neural representation of prior probabilities. We discuss alternative explanations for the data in the context of
other published results.
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Introduction
The basal ganglia are a group of subcortical nuclei that play a
critical role in action selection (Redgrave et al., 1999), and are
affected by Parkinson’s disease (PD; Obeso et al., 2000). An im-
portant role is played by the subthalamic nucleus (STN), which
sends widespread projections to neurons in other nuclei of the
basal ganglia (Parent and Hazrati, 1995) including the output
nuclei (the internal segment of the globus pallidus and the sub-
stantia nigra pars reticulata). Although STN neurons are gluta-
matergic, their activity effectively inhibits movements, because
they excite the inhibitory output nuclei. It has been suggested that
the function of the STN is to inhibit the neural representations of
actions other than the one being selected (Mink, 1996) and to
slow down the initiation of movement in the presence of conflict-

ing sensory information (Frank, 2006, 2007b; Zaghloul et al.,
2012).

It has also been suggested that many aspects of the anatomy
and physiology of the basal ganglia are exactly those required to
compute the probabilities of actions being appropriate in a given
context according to Bayes’ theorem (Bogacz and Gurney, 2007;
Ditterich, 2010; Bogacz and Larsen, 2011; Lepora and Gurney,
2012). One model (Bogacz and Larsen, 2011) describes how the
equation of Bayes’ theorem (Fig. 1A), can be mapped on the
anatomy of the circuit (Fig. 1B; see Materials and Methods). In
the model the feedback from the STN ensures that the repre-
sented probabilities of actions add up to 1. Because of this nor-
malization, the model can compute the actual probabilities of
actions being appropriate, rather than just which action is most
likely. This allows judgment of whether the probability of the
“winning” action is sufficiently high to select it, or whether more
sensory input should be gathered. It has been shown that select-
ing actions when their normalized probabilities reach an appro-
priately chosen threshold allows maximization of reward rate for
correct choices in a wide range of tasks (Bogacz, 2009). The
model predicts that disrupting information processing in the
STN should disrupt the normalization of the neural representa-
tion of probabilities.

To test the above prediction we used the fact that in tasks
involving saccades to a target (Fig. 2), the probability of the target
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appearing in a particular location estimated by a participant is
reflected in the saccadic reaction time (RT) to this target (Car-
penter and Williams, 1995; Forstmann et al., 2010; Mulder et al.,
2012). In particular, if participants learn that one of two possible
target locations is more likely, the RT to the likely target de-
creases, and importantly the RT to the less likely target increases.
This suggests that as the estimated probability of one location
increases, the estimated probability of the other location de-

creases, which is consistent with the two
probabilities being normalized. The
model (Bogacz and Larsen, 2011) predicts
that when information processing in the
STN is disrupted, the normalization of
probabilities will be disrupted and the
change in RT for one target may no longer
be accompanied by the opposite change in
RT for the other. In line with these predic-
tions, our results suggest that in patients
with STN deep brain stimulator (DBS)
systems for Parkinson’s disease the nor-
malization of probabilities is intact
when the stimulator is switched off but
fails when it is turned on.

Materials and Methods
Participants. The present study was approved
by the Regional Ethics Committee (REC refer-
ence 04/Q0406/60) and was conducted in the
John Radcliffe Hospital, Oxford, UK. Six PD
patients (Table 1) and six male healthy aged-

matched controls (age: 46, 58, 67, 68, 70, and 70) participated in the
study. All participants were recruited from the Oxford Functional
Neurosurgery unit and gave their informed consent after the proce-
dures had been explained to them. All PD patients underwent bilat-
eral DBS of the STN and the system implanted was connected to a
stimulator set to deliver 60 �s or 90 �s pulses at 130 Hz (Table 2). No
additional inclusion or exclusion criteria were applied in selecting
patients for this study.
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Figure 1. Mapping of Bayes’ theorem on the cortico— basal— ganglia–thalamic circuit. A, Bayes’ theorem in its original (top) and logarithmic (bottom) form. B, Mapping of Log of Bayes’
equation on the subset of cortico— basal— ganglia–thalamic circuit. Black and light gray circles denote neuronal populations selective for two actions situated in different brain regions labeled
next to the circles. Output, output nuclei of the basal ganglia; cortex,� frontoparietal cortical areas including neurons selective for actions. Arrows denote excitatory connections, while lines ended
with circles denote inhibitory connections.
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Figure 2. Time course of a trial. A trial started with presentation of a central fixation point. After a random interval between 0.5
and 1 s, the fixation point disappeared and a target appeared on the left or right to which participants were required to saccade. The
probability of the target appearing on a particular side was constant within a block, but differed between the blocks. After the
saccade, the target remained for a random period between 0.5 and 1.5 s, and then disappeared while the central fixation appeared.
Once the participants saccaded back to the central fixation a new trial began.
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Task. Visually guided horizontal saccades were recorded using a min-
iaturized infrared 1 kHz saccadometer, low-pass filtered at 250 Hz with
12-bit resolution (Antoniades et al., 2012). Patients wore the oculometer
on their head, secured by an elastic strap and resting on the bridge of the
nose; three built-in, low-power lasers projected red 13 cd m �2 spots
subtending �0.1 degrees in a horizontal line in the midline at �10 de-
grees (Ober et al., 2003). Because the stimuli move exactly with the head,
no head restraint was necessary. Each trial started with a central fixation
light, and then after a random delay a second target light appeared ran-
domly either to the left or right. The participants were instructed to make
a saccade as quickly and as accurately as they could to the second target
light (Fig. 2). Trials were conducted in five blocks and the probabilities of
the target appearing on the left or right differed between the blocks of
trials. The different blocks had the following fractions of trials with the
target appearing on the left: 10, 25, 50, 75, and 90%. The number of trials
for each block varied according to the probability being tested (250 trials
for the 10 and 90% blocks, 200 trials for the 25 and 75% blocks, and 160
trials for the 50% blocks). In half of the PD cases and healthy controls the
order of blocks was 10, 25, 50, 75, and 90%, and in the other half it was 90,
75, 50, 25, and 10%.

All testing was performed in the on-medication state. DBS patients
were tested first with the system switched on. The system was then
switched off and after 30 min the patients were retested with the system
remaining off for the duration of testing.

Statistical analysis. To assess statistically if the RTs of control partici-
pants depended on the target probability, the median RTs were subjected
to an ANOVA, with one factor of probability. To analyze statistically RTs
of patients, their median RTs were subjected to a two-factor ANOVA,
with factors of probability and DBS setting. The key aspect of this analysis
is the test for the interaction between effects of probability and DBS
setting, because such interaction indicates that the RTs depend on prob-
ability in a different way when DBS is on and when it is off, as predicted
by the model.

Review of the computational model. The model we used in simulations
of our task is an extension of a previously published model (Bogacz and
Larsen, 2011). This model assumes that during action selection, the cor-
tico— basal– ganglia circuit computes for each available action, Ai, the

probability that this action is appropriate in the current context. These
probabilities are constantly updated on the basis of sensory information,
S, until for any action its probability exceeds a threshold of confidence.
The way that the probabilities of actions should be updated on the basis
of sensory input is described by Bayes’ theorem shown in the top equa-
tion in Figure 1A. It simply says that to compute the updated or posterior
probability of action P(Ai�S), one needs to multiply the previous or prior
probability P(Ai) by the probability of the sensory input S appearing on
trials on which action Ai is rewarded, denoted P(S�Ai), which could have
been learned from experience. Additionally, to ensure that the posterior
probabilities add up to 1, this product is divided by a normalization term
P( S) equal to the sum of corresponding products across all N actions
(Fig. 1A, middle equation). Bayes theorem includes multiplication and
division, which are not natural operations for neurons, but this problem
can be solved by taking the logarithm of both sides of the equation, giving
the bottom equation in Figure 1A. Thus, if the neurons have firing rates
proportional to the logarithms of probabilities then the update according
to Bayes’ theorem can be performed just using addition and subtraction.

Figure 1B illustrates how the logarithmic form of Bayes’ equation is
mapped in the model on the subset of the cortico– basal— ganglia–tha-
lamic circuit. According to the mapping, frontoparietal cortical neurons
add the logarithms of prior probability provided by a feedback from the
thalamus to the logarithms of the likelihood of sensory information,
which under certain assumptions can be provided in the firing rate of
sensory cortical neurons (Jazayeri and Movshon, 2006; Zhang and Bo-
gacz, 2010). The STN and external segment of the globus pallidus (GPe)
compute the logarithm of the normalization term (by summation and
nonlinear transformations of their input from cortex). The output nuclei
receive excitation from the STN and inhibition from the cortex via the
striatum so, according to the bottom equation in Figure 1A, their activity
in the model is proportional to the negative of the logarithms of posterior
probability. The thalamus receives inhibition from the output nuclei so
its activity is proportional to the logarithms of the posterior probability,
and these values are sent to the cortical neurons, as they become the basis
of the computation for the next time step.

The equations describing the model (labeled by the part of the circuit
they describe) are as follows:

Table 1. Details of patients tested

Patient
number Age Sex

Year of
diagnosis Medications

UPDRS Part
III–DBS ON

UPDRS Part
III–DBS OFF

1 56 M 1996 Stalevo, amantadine 22 34
2 47 M 2005 Sinemet Plus, entacapone 13 76
3 65 M 2000 Stalevo, ropinorole, pergoline, rasagiline 6 33
4 68 M 2006 Sinemet Plus, amantadine 19 41
5 65 M 2002 Rasagiline, Sinemet Plus, apomorphine 10 43
6 70 M 2000 Madopar, entacapone 3 16

Unified Parkinson’s Disease Rating Scale (UPDRS) scores are with DBS ON and OFF (patients were on their medication in both cases). Sinemet Plus contains a combination of levodopa and carbidopa; Stalevo contains levodopa, carbidopa, and
entacapone; and Madopar contains levodopa and benserazide.

Table 2. Stimulation parameters

Patient
number Side

Lead tip coordinates (mm with
respect to mid AC–PC line)

Contacts used Volts
Pulse width
(all at 130 Hz)AP Lateral Vertical

1 L �6.6 �11.2 �6.2 1� 2.6 60
R �6.9 11.2 �7.0 9� 2.5 60

2 L �5.3 �10.5 �4.1 0� 3.2 90
R �6.6 11.4 �6.7 10� 3.3 90

3 L �4.9 �9.5 �8.5 0� 2.5 60
R �5.8 9.5 �6.5 9�, 10� 2.5 90

4 L �3.7 �12.0 �3.4 0� 2.8 90
R �3.7 12.5 �3.4 10� 2.9 60

5 L �6.5 �13.4 �4.4 0�, 1� 3.7 60
R �6.2 13.5 �3.6 8�, 9�, 10� 3.4 60

6 L �4.7 �10.5 �6.4 1�, 2� 2.0 60
R �3.1 11.7 �6.2 9�, 10� 2.7 90

AC–PC, anterior–posterior commissure; L, left; R, right.
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Cortical integrators : INTi�0� � log 1/N � c (1)

INTi�t� � THi�t � 1� � gxi�t�, for t � 0 (2)

Input from STN and GPe : SG�t� � log�
i�1

N

exp INTi�t� (3)

Output nuclei : OUTi�t� � � INTi�t� � SG�t� (4)

Thalamus : THi�t� � c � OUTi�t�. (5)

In the above equations, N denotes the number of available alternatives,
and since the task involved a choice between the two targets, N � 2. The
activity of cortical integrators is initialized to a value proportional to the
logarithm of prior probability of actions P(Ai). At the start of a simulated
trial, the activity of cortical integrator neurons is initialized just on the
basis of the available number of alternatives (Eq. 1)—the process of
setting the initial values of the integrators before the target onset will be
described later. Thus assuming that there are N available alternatives and
all of them are equally likely, P(Ai) � 1/N. Note that since 1/N is lower
than 1, log 1/N is negative. Thus a positive constant c is added in Equation
1 to ensure that cortical firing rates are non-negative (but as we show
below its value does not affect the activity in the output nuclei and hence
decision times; in the simulations we set c � 3). In the subsequent time
steps t the activity of integrators selective for alternative i reflects the
feedback from the thalamus increased by sensory input xi(t), weighted by
a gain parameter g (Eq. 2). In our simulations of the DBS switched-off
condition, the gain parameter was set to g � 1. Equation 3 states the
function of cortical input computed by the STN and GPe, and it has been
shown that the neurons in these areas have precisely the connectivity and
the nonlinear response properties required to perform this computation
(Bogacz and Gurney, 2007; more detailed explanation in Bogacz, 2009).
The output nuclei compute the differences between the inputs from the
STN and cortical integrators (via the striatum). Finally, the output nuclei
inhibit the thalamus. The choice is made in the model when the activity of
one of the populations in the output nuclei decreases below Threshold,
which is consistent with experimental data suggesting that movements
are initiated when the inhibitory neurons in the output nuclei have their
activity reduced, thereby disinhibiting their targets (Deniau and Cheva-
lier, 1985). Since the output nuclei have activity proportional to the
negative logarithm of the probability of action (Fig. 1B), the choice is
made in the model when the probability for one of the actions increases
above the threshold.

In the absence of input the activity in the model does not change, while
when sensory input is present, the model updates represented probabil-
ities of actions as described in Figure 1, and at each time step the output
nuclei have activity proportional to the negative of the current estimates
of probabilities of actions being appropriate (see Fig. 1B). According to
Equations 1 and 3, the feedback provided by the STN at time t � 0 is equal
to the following:

SG�0� � log�
i�1

N

exp�c � log 1/N� � log�exp c�
i�1

N

1/N� � c. (6)

The activity of the thalamus in the model is (according Eqs. 4 – 6):

THi�0� � c � �� INTi�0� � SG�0�� � c � log 1/N � c � c

� log P�Ai� � c. (7)

Note that the feedback provided by the thalamus is exactly the same as the
initial activity of cortical integrators; thus in the absence of sensory input
the activities do not change in this model. If in a next time step when the
sensory input is gxi(t) � log P(S�Ai) � k (where k is a constant added to
ensure the input is non-negative), the feedback provided by the STN
becomes:

SG�t� � log�
i�1

N

exp�c � log P�Ai� � log P�S�Ai� � k� � log P�S� � c

� k. (8)

The activity of the output nuclei becomes (according to Eq. 4 and Bayes’
theorem):

OUTi�t� � � �c � log P�Ai� � log P�S�Ai� � k� � log P�S� � c � k

� � log P�Ai�S�. (9)

The logarithm of the posterior probability computed above is then fed
back to the cortical integrators, as it becomes a priori for the next time
step.

Although the framework of accumulation of sensory information is
most naturally applicable to tasks in which the information forming the
basis for decisions is spread in time (Gold and Shadlen, 2007; Yang and
Shadlen, 2007), work in mathematical neurophysiology has established
that even in simple reaction tasks, like the one in our study, the distribu-
tions and patterns of RTs are best explained by models assuming accu-
mulation of sensory information (Carpenter and Williams, 1995).
Consequently, below we present how the model described above can be
used to simulate choices in our task.

Setting the initial activities of integrators. When simulating a trial in a
block with target 1 being more likely with probability P1, we provide
input at the first time step x1(1) such that the neurons in the output
nuclei selective for target 1 represent the correct probability, i.e., such
that the activity of the output nuclei is OUT1(1) � �log P1. Substituting
Equations 1 and 3 into 4 we see that the activity of the output nuclei at the
first time step is as follows:

OUT1�1� � � � log
1

2
� x1�1�� � log�exp�log

1

2
� x1�1��

� exp�log
1

2��. (10)

Substituting OUT1(1) � �log P1 in the above equation and solving for
x1(1), we obtain the value of input required to set the initial activity of the
integrators:

x1�1� � log
P1

1 � P1
. (11)

Thus in the first step of the simulation the input given by Equation 11 is
provided. While simulating trials in blocks with target 2 being more
likely, an analogous input is also provided.

Simulating a trial. The simulation of a trial was divided into time steps
with length dt � 5 ms. After simulated stimulus onset one of the sensory
inputs was set to xi(t) � Adt, where A is a parameter describing the
amount of sensory input. For simplicity no input was provided by the
sensory neurons selective for the other target, and no noise was added.
The RT was taken as the number of time steps required for one of the
output populations to decrease below Threshold, multiplied by dt, and
increased by a nondecision time T0.

Simulating DBS. While simulating the effects of DBS in the model of
Figure 1B, we followed an approach similar to a previous study
(Coulthard et al., 2012) and set the input from the STN to a constant
value, i.e., SG(t) � c. Recall from Equation 6 that c is equal to the feedback
provided by the STN in the model in the absence of sensory input, and
this particular level of STN activity allows the network to maintain its
activity levels in the absence of sensory input (Eq. 7). Although the firing
rate of STN neurons is likely to be higher with DBS on than with DBS off,
computational models suggest that the downstream structures (e.g., thal-
amus) may adapt to increased STN activity due to DBS to be able to transmit
information on motor command (Rubin et al., 2012) and produce similar
levels of activity as in a healthy state. Such adaptation is captured in our
model by setting the effective input from STN to SG(t) � c.

Moreover, the lack of additional inhibition provided normally by the
STN when the sensory input is present resulted in the model becoming
highly reactive to sensory inputs. Thus we assumed that the network
naturally adapts to be less reactive, and sets the gain parameter to a lower
value gDBS (the value of this parameter was found for which the model
best reproduced the experimental data; see the section below).
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Finding model parameters. Values for the free parameters of the model,
A, Threshold, T0, gDBS, were found for which the model produced a
similar behavior to the patients. A single set of model parameters has
been used to fit the data off and on DBS, and the simulations of different
DBS settings used the same values of parameters A, Threshold, T0, and
only differed in the value of parameter g, and the function computed by
the STN (see previous section). We found the parameter values that
minimized the squared differences between the average RTs of the pa-
tients and RTs in the model, summed over all 10 conditions (2 DBS
conditions 	 5 Prior probability conditions). We fitted the model to the
data pooled across patients, as all patients produced very similar patterns
of RTs. The search was performed using the simplex algorithm (Nedler
and Mead, 1965). The lowest value of the summed squared error was
found for the following parameter values: A � 19.57, Threshold � 0.0385,
T0 � 152 ms, gDBS � 0.222, and Figure 3C shows the RTs for these values.
Nevertheless, during the optimization we noticed that there were many
different sets of parameters giving a close match between the model and
the data. This is not surprising, given that many parameters have similar
effects on RTs produced by the model, in particular RTs can be increased
by increasing Threshold or T0, or by decreasing A or g. Furthermore, the
difference between the RTs to unlikely and likely responses can be in-
creased by increasing Threshold, or decreasing A or g. The fitting proce-
dure was not performed to reliably estimate the parameters of the
underlying choice process, but instead to show that a set of parameters
exists for which the model can reproduce the data.

Results
Effects of DBS on RTs
Figure 3A shows that the probability of the target appearing in a
particular location affects the RT for a saccade to be made toward
that target for control participants (F(4,25) � 1120, p 
 0.001).
Compared with the RT in the unbiased situation (50% of targets
to each side), the RT for targets with higher probabilities was
shorter and the RT for targets with lower probabilities was longer.
Similar dependence of RT on probability was present for PD

patients off stimulation (Fig. 3B). In contrast, for patients on
stimulation, the RT was decreased when the probability increased
�50%, but the RT did not increase as the probability reduced
below 50%, exactly as predicted above (effect of probability:
F(4,50) � 3001, p 
 0.001; stimulation: F(1,50) � 2075, p 
 0.001,
and their interaction: F(4,50) � 303, p 
 0.001). This pattern of
RTs was consistently observed for all six patients tested.

Computational model
The lack of symmetry in the effects of high and low probability on
RTs that was observed on DBS is predicted by our model assum-
ing that disruption of information processing in the STN disrupts
normalization of the neural representation of probabilities.

The computational model (Bogacz and Larsen, 2011) assumes
that the prior probabilities of actions are encoded in the activities
before stimulus onset of the neurons selective for the actions, but
the model did not previously describe how these initial neural
activities are set up. Here we extend the model to describe setting
initial activities and show how it can replicate the data in Figure
3B. Recordings of neural activity suggest that the RT is, to a large
extent, determined by the time it takes for neural activity to in-
crease from an initial level before stimulus onset to a response
threshold (Schall and Hanes, 1993). The RT depends on the
probability of action, because the activity of neurons selective for
a particular action before stimulus onset depends on the proba-
bility of this action being required (Basso and Wurtz, 1998, 2002;
Platt and Glimcher, 1999). Thus the larger the probability of an
action, the closer is the initial firing of the neurons selective for
this action to the response threshold and hence the faster the RT
(Fig. 4, compare A, B).

It has been suggested (Bogacz et al., 2006) that the increase in
the initial firing rate of neurons representing the likely action

A B C

D

Figure 3. Average median reaction time as a function of target probability. A, Control participants. B, DBS patients. C, Simulations of the computational model. In A and B the error bars indicate
SD of the median RT across the participants. D, Data from DBS patients plotted individually.
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(Fig. 4A,B, black curves) may arise from inputs to these neurons
before stimulus onset, and imaging studies have reported in-
creased activity in several cortical areas and in the striatum after a
cue indicating that one action might be more likely (Forstmann et
al., 2010; Mulder et al., 2012). Consequently, in the computa-
tional model we assume that neurons selective for the likely ac-
tion receive input that increases their activity. After such an
increase in the activity of one neural population, the activities are
normalized in the model such that the represented probabilities
of all alternative actions add up to 1. In particular, such normal-
ization results in a decrease of the activity of neurons representing
the unlikely alternative (Fig. 4A,B, gray curves) below the level
for unbiased choices. The model predicts that this normalization
is critically dependent on the STN, and without the correct STN
feedback the initial activity of neurons representing the unlikely
alternative does not change before stimulus onset (Figs 4C,D,
gray curves). Thus during the simulations of trials with DBS
switched on, the RTs to the unlikely target (Fig. 4D) are not
longer than on trials where both target locations are equally
likely.

A detailed description of the model is provided in Materials
and Methods. The model produces a pattern of RTs in simula-
tions (Fig. 3C) very similar to that observed in the experiment
(Fig. 3B).

Discussion
The different effects of DBS on the RT to low- and high-
probability targets (Fig. 3B) suggests different neural mecha-
nisms for the speedup of responses to likely stimuli, and the
slowdown of response to unlikely stimuli seen in healthy humans
(Fig. 3A). In particular, the contrast between the large effect of
DBS on RTs for unlikely stimuli (that flattens the left part of the
dashed curve in Fig. 3B) and the small effect on RTs for likely

stimuli (that just shifts the right part of the
dashed curve with respect to the solid
curve) indicates that the DBS interferes to
a much larger extent with the mechanism
responsible for the slowdown than with
the mechanism responsible for the
speedup. We demonstrated in simula-
tions that the observed results can be ac-
counted for by a model in which the
slowdown of responses to unlikely stimuli
depends on feedback from the STN,
which before stimulus onset lowers the ac-
tivity of neurons representing the unlikely
response, to normalize the represented
probabilities of actions.

Alternative explanations for the data
Below we discuss three alternative expla-
nations that can be formulated for our
data and how these explanations relate to
other published results. We start by con-
sidering if our data can be explained by a
theory postulating that the STN post-
pones action execution when conflicting
inputs are present (Frank, 2006, 2007b).
Within this framework the selective effect
of DBS on RTs to unlikely targets could be
explained by suggesting that the STN is
predominantly involved in trials with un-
likely targets, because in these trials there
is a conflict between prior belief and in-

coming information. Such an explanation is plausible when our
data are considered on their own, but the preferential involve-
ment of the STN during the response to unlikely targets would
have to increase the RTs in these trials by means of one of two
possible mechanisms. First, by increasing the threshold of activity
the cortical neurons need to reach for the response to be initiated
(Cavanagh et al., 2011). However, neurophysiological data show
no increase in the response threshold of the cortical neurons due
to changes in prior probability (Hanks et al., 2011). Second, RTs
may be increased by inhibiting cortical neurons (via feedback
from the thalamus), and effectively reducing the rate of rise in the
activity of neurons selective for the chosen response. But an anal-
ysis of RTs from a task similar to our experiment indicates that
prior probability does not change the rise rate of the decision
variable (Carpenter and Williams, 1995). Instead, the neurophys-
iological data suggest that in simple saccadic tasks the prior prob-
ability changes the initial levels of activity of neurons selective for
likely and unlikely responses before stimulus onset (Platt and
Glimcher, 1999). Given these results, our data suggest that the
STN is involved not only during action, as proposed by other
theories (Mink, 1996; Frank, 2006), but it already plays a critical
role before stimulus onset, when there was no conflict in sensory
evidence in our task.

The selective effect of DBS on RTs to unlikely stimuli could
also be explained by assuming that the prior probabilities for
likely responses are given by striatal neurons with D1 receptors,
which facilitate these actions via the direct (or “go”) pathway
(Fig. 5A,B), while the prior probabilities of unlikely responses are
given by striatal neurons with D2 receptors, which inhibit the
actions via the indirect (or “no go”) pathway (Fig. 5C). Thus just
before the stimulus onset the increased activity of striatal D1
neurons selective for the likely response results in lower inhibi-
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Figure 4. Schematic illustration of changes in firing rate of cortical neurons selective for eye movements to the likely (black
curve) and the unlikely (gray curve) targets, as a function of time within a trial in the model. Below each graph the schematics
indicate target movement to the left (likely in this example) or right (unlikely). Vertical red lines indicate target onset. Dashed black
lines indicate response threshold, and arrows above them indicate the response times (which include a brief period of sensory
processing, time required for activity to rise from an initial value to the threshold, and a brief period of motor command execution).
A and C correspond to trials when the likely target appears, while B and D correspond to trials when the unlikely target appears. A
and B correspond to DBS switched off, while C and D correspond to DBS switched on.
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tion from neurons in output nuclei selective for this action (Fig.
5B), and faster RTs, while the increased activity of striatal D2
neurons selective for unlikely response increases inhibition of
this response by output nuclei (Fig. 5C) and RT for this response.
Since the STN is part of the indirect pathway but not the direct
pathway, disrupting its information processing could selectively
affect the slowing down for unlikely responses (Fig. 5D–F). How-
ever, the indirect pathway also includes a route that does not
involve the STN (from striatum to GPe and then to output nu-
clei), thus under the above hypothesis one might still expect some
slowdown for the unlikely stimuli even when the STN is dis-
rupted (Fig. 5F), while the data suggest that DBS completely
abolishes slowing down for unlikely stimuli.

Alternatively, the reported data could be explained by a model
in which the STN mediates the inhibition between neurons selec-
tive for the two actions as illustrated in Figure 4, but in which the
STN neurons are linear and do not necessarily represent the
Bayesian normalization term. However, the STN neurons have
nonlinear response properties (Hallworth et al., 2003; Wilson et
al., 2004) that precisely match those required to compute the
normalization (Bogacz and Gurney, 2007).

Relationship of the model to other theories
In the computational model of Bogacz and Gurney (2007), the
STN fulfills the functions assigned to it by previous theories. In
particular, the STN is involved in the inhibition of nonselected
actions (as proposed by Mink (1996)), because when the proba-
bility of one action increases the STN ensures that the represented
probabilities of other actions decrease. Also, the STN is involved

in postponing action execution in the face of conflicting infor-
mation (as proposed by Frank (2006)), because when two actions
receive equally high input after normalization their probabilities
will each be 50% and neither will exceed a sufficiently high
threshold of confidence, until the conflict is resolved. However,
the model extends the description of STN function by postulating
that it ensures that represented probabilities add up to one
throughout the decision process.

In the model presented in this paper, we made a very simpli-
fied assumption that DBS results in a constant level of STN activ-
ity independent of its inputs. This is similar to the functional
lesion used in previous computational models of the effects of
DBS on decision making (Frank et al., 2007b; Coulthard et al.,
2012; Green et al., 2013). Nevertheless, the effect of DBS is much
more complex (Antoniades et al., 2012) and not fully understood.
Refining the effects of DBS in the model would be a very interest-
ing direction for future work.

In addition to its modulatory function during action selec-
tion, the STN has been proposed to be involved in other functions
such as interruption of the current motor plan (Aron and Pol-
drack, 2006; Aron et al., 2007), switching from automatic to
controlled behavior (Isoda and Hikosaka, 2008), or setting the
speed-accuracy trade-off (Frank et al., 2007a). The model does
not preclude the STN being involved in these other functions,
and is complementary to these theories rather than competitive.

Relationship to other experimental data
The critical role of the basal ganglia in producing the dependence
of RT on prior probabilities of movements is suggested by a study

A B C

D E F

Figure 5. An alternative way of accounting for the experimental data assuming that the probabilities of actions being likely or unlikely are learned separately by striatal neurons in direct and
indirect pathways, respectively. In each part, circles denote neural populations selective for one of the actions, located in different parts of the basal ganglia as indicated by the labels. The darkness
of the circles indicates the activity level of the populations before stimulus onset. Arrows denote excitatory connections, while lines ended with circles denote inhibitory connections. The three
columns correspond to blocks where the considered action has 50% probability of being required (A and D), is more likely (B and E), or is less likely (C and F ). The two rows correspond to DBS being
turned OFF and ON. Since the STN is disrupted with DBS turned ON, the input from STN is not shown in D–F. It is also assumed that the output nuclei adapt to changed input from the STN when DBS
is ON, and thus the output nuclei in A and D have same level of activity.
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of a patient who had their STN and one of the output nuclei
removed unilaterally (Obeso et al., 2009). The RTs of that patient
were affected by prior probabilities only for the hand ipsilateral to
the lesion but not for the contralateral hand (i.e., the hand nor-
mally controlled by the lesioned basal ganglia).

Our data show that STN DBS patients are impaired in inhib-
iting a response, which is unlikely to be correct. This may shed
some light on why patients with STN DBS engage in gambling,
despite a low probability of winning (Smeding et al., 2007).

It will be interesting to see whether the STN is involved in
other forms of normalization of neural activity. For example, no
form of reward was used in the study we describe here, and the
effect of providing rewards for accurate saccades would be wor-
thy of investigation. It is known that if in a task similar to ours the
rewards for making the two directions of saccades differ, then the
available rewards modulate the RTs and the neural activity before
stimulus onset in a similar way to the probabilities (Platt and
Glimcher, 1999). Thus, it would be logical to ask whether DBS
could selectively disrupt the increase in RT for less well rewarded
saccades. Such an effect of DBS might be also expected from the
observation that injecting a D2 antagonist into the caudate,
which presumably increases the activity in the STN, selectively
increases RT for less well rewarded actions (Hikosaka, 2007). One
could also examine whether the results presented in this paper
generalize to more complex tasks. It has been shown in the anti-
saccade task that the error rate is higher when the stimulus is
presented on the side of high saccade direction probability, and
lower when it is presented on the side of low saccade direction
probability (Koval et al., 2004). This pattern of results is naturally
explained by the stimulus location probabilities modulating the
initial activity of neurons selective for the corresponding direc-
tions. Based on our results one might predict that STN DBS
would, by interfering with this modulation, increase the error
rate to stimuli presented on the side of low saccade direction
probability. Furthermore it would be interesting to see whether
this would be accentuated by mixing prosaccades and antisac-
cades, a situation which has been shown to increase antisaccade
error rate in PD. (Rivaud-Péchoux et al., 2007).

Conclusion
Our data suggest involvement of different neural mechanisms in
speeding up responses to likely stimuli and slowing down re-
sponses to unlikely stimuli. The observed pattern of results was
predicted by a model in which the STN normalizes the neural
representation of prior probabilities. Although alternative expla-
nations for the data can be considered, our results together with
previously published data impose significant constraints on
models of action selection in the basal ganglia. Establishing if, as
the model suggests, the STN provides feedback proportional to
the logarithm of the normalization term in Bayes’ theorem will
require direct recordings of neural activity in the STN during
probabilistic choice tasks.
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