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Abstract

The most common risk factor for developing hepatocellular carcinoma (HCC) is chronic infection

with hepatitis B virus (HBV). To better understand the evolutionary forces driving HCC we

performed a near saturating transposon mutagenesis screen in a mouse HBV model of HCC. This

screen identified 21 candidate early stage drivers, and a bewildering number (2860) of candidate

later stage drivers, that were enriched for genes mutated, deregulated, or that function in signaling

pathways important for human HCC, with a striking 1199 genes linked to cellular metabolic

processes. Our study provides a comprehensive overview of the genetic landscape of HCC.

INTRODUCTION

Nearly 500,000 people are diagnosed with HCC each year and their overall 5-year survival

rate is below 12%. The highest incidence of HCC is in regions where infection with HBV is

endemic, and men are 2 to 4 times more likely to develop HCC than women. HCC related to

infection with hepatitis B virus (HBV) has also become the fastest-rising cause of cancer-

related death in the United States during the past two decades. While the use of emerging

sequencing and genomics technologies has identified many mutated and/or differentially

expressed genes in HCC, they have also uncovered a surprising amount of intra- and inter-

tumor heterogeneity1-5. For these reasons, and because important DNA mutations can be

concealed among the large number of passenger mutations present in these tumors, it has

proven difficult to identify the complete complement of driver genes for HCC. Epigenetic

silencing of tumor suppressor genes also frequently occurs in tumors6,7. This, combined

with recent studies showing that there may be thousands of haploinsufficient tumor

suppressor (TS) genes8, makes the identification of all driver genes for HCC additionally

difficult. Published reports from the ENCODE project have also identified millions of

functional elements, many of which are transcription factor binding sites that regulate the

expression of genes often located hundreds of kilobases away9. Nearly 70% of disease-

associated single nucleotide polymorphisms (SNPs) identified in genome-wide association

studies (GWAS) map to these distal enhancers9, raising the possibility that non-coding

mutations in these distal elements might also significantly contribute to cancer, and

potentially explaining why some tumors have few or no mutated cancer genes10,11, even

after extensive genome characterization. Tumors with a paucity of mutated genes might also

have mutations in very infrequently mutated genes that we do not yet have the statistical

power to detect.

One method for identifying these missing cancer genes, as well as to validate the hundreds

of candidate cancer genes already described, is through comparative genomics involving

transposon-based insertional mutagenesis12. Recently, it has become possible to mobilize

the Sleeping Beauty (SB) transposon in basically any mouse tissue at high enough

frequencies to induce virtually any kind of cancer13-15. Mutagenic SB transposons carry a

strong promoter for activating proto-oncogenes and transcriptional stop cassettes for

inactivating TS genes, and the transposons therefore tag cancer genes in tumor cells. Human
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tumor genomes are complex with multiple mutagenic processes operative. By contrast,

transposons tag cancer genes directly, thus facilitating their identification.

Here, we sought to obtain a comprehensive list of genes functionally necessary to trigger

HCC by performing a large-scale SB transposon mutagenesis screen13,14. Since the major

etiology of human HCC is chronic infection with the HBV16 we mobilized SB in the

livers 17 of transgenic mice predisposed to develop HCC due to expression of the toxic HBV

surface antigen (HBsAg) in their livers 18. By using this mouse model we aimed to identify

genes that could cooperate with HBV-induced liver inflammation in the induction of HCC,

similar to that which occurs in most human HCC.

RESULTS

HBV-associated HCC mouse model for mutagenesis screening

Liver-SB/HBsAg transgenic mice develop chronic liver inflammation with associated

reactive hyperplasia (Figure 1a, Supplementary Figure 1), hepatocytomegaly, and ground

glass hepatocytes (Figure 1b) similar to the human chronic hepatitis B and to the previously

characterized HBsAg mice 18. Liver-SB/HBsAg modifications lead to the appearance of

preneoplastic foci, visible from 19.7 weeks of age, followed by hepatocellular adenoma

(HCA) and trabecular HCC (Supplementary Figure 2). SB induced a cooperative

tumorigenic effect with HBsAg as Liver-SB/HBsAg mice displayed reduced survival

(Figure 1c). We also noted a tendency to larger numbers of tumors (Supplementary Figure

2) and to more advanced stage disease compared to HBsAg mice alone (Figure 1d).

To identify the genes mutated by SB that cooperate with HBsAg-associated inflammation in

tumor induction, we PCR amplified and sequenced the transposon insertion sites from 250

tumors harvested from 34 mice19, which yielded 328,687 sequence reads and identified an

average of 1315 unique transposon insertion sites per tumor. By comparing the location of

the transposon insertions in all tumors we found a few tumors that were genetically related.

These tumors were removed leaving 228 genetically unrelated tumors, which were

subsequently used for downstream analysis (Supplementary Figures 3,4).

Large-scale screen identifies Common Insertion Sites (CISs)

We then screened for CISs, which are regions in the cancer genomes that contain a higher

density of transposon insertions than predicted by chance and therefore are likely to contain

a cancer gene (CISs on chromosome 1 could not be conclusively identified because of local

transposon hopping and CISs on this chromosome were therefore excluded). A gene-centric

CIS-calling method (gCIS) that looks for a higher density of transposon insertions within the

coding regions of all RefSeq genes than predicted by chance20 identified 2525 gCIS genes

(Supplementary Table 1a), while a non-gene-centric Gaussian Kernel Convolution (GKC)

method21 that looks for a higher density of insertions within fixed kernel widths of 15Kb to

240Kb22 identified 2041 CISs containing 2103 genes (Supplementary Table 1b). There was

a 83% overlap between the CISs identified by these two methods (p<2×10−16, Chi-square

with Yates correction) and together, they identified 2871 CIS loci containing 2881 genes

(Supplementary Table 1c, Supplementary Figure 5a). In vitro transposition cell culture
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assays have suggested that SB is a random insertional mutagen and the only requirement for

insertion is a TA dinucleotide12. Although the GKC method scans the entire cancer genome

for CISs, most CISs were located within or in close proximity to genes, providing additional

evidence that SB targets the coding regions of genes that confer a selective advantage for

tumor growth. gCISs not identified by GKC often contained very large (>300Kb) or small

genes (<10Kb) and were probably missed in part because of the use of fixed kernel widths

(Supplementary Figure 5b,c).

To estimate the genetic coverage of this screen we randomly selected subgroups of 10 to 220

tumors from the total of 228 tumors and then used GKC to identify the CISs for each

subgroup. The number of tumors in each subgroup was then plotted against the genomic

base pairs covered by all the CISs identified for each subgroup. The curve plateaued before

reaching 100 tumors, indicating that the screen was approaching saturation with as few as a

100 tumors (Figure 2a,b). Adding more tumors merely identified additional CISs of lower

frequency (Supplementary Figure 6,7). Consistent with this notion of saturation, this screen

identified most of the CIS genes found previously in much smaller-scale HCC transposon

screens performed in p53 mutant17 and Sav1-deficient mice (see below) (Supplementary

Figure 8). To our knowledge this is the first saturating transposon screen for cancer genes

reported for mice.

Nearly 68% of the CIS genes were mutated in <20% of the tumors and on average each

tumor contained 387 mutated CIS genes (Figure 2c,d). This is indicative of extensive

intratumor heterogeneity, likely resulting from branching tumor evolution, similar to that

reported for several human cancers23, combined with the large mutational load induced by

SB. In this HCC model, every liver cell contains ~350 copies of the transposon13, which

when induced to transpose, can transpose over and over again. In addition, because the

transposon insertion sites are PCR amplified before being deep-sequenced, insertional

mutations present in a small number of cells in the tumor can be identified. It is this ability

to sample the extensive intratumor heterogeneity at such a deep level that we believe made it

possible to approach saturation with only a 100 tumors.

General features of HCC CIS genes

The transposon13 contains a promoter used to deregulate oncogenes and stop cassettes in

both transcriptional orientations to inactivate TS genes. Transposon insertions at oncogenes

therefore tend to be located at the 5′ end of the gene in the same transcriptional orientation,

while insertions in TS genes are usually located throughout the gene in either orientation.

Insertion site patterns are thus often predictive of gene function. For the genes identified

here and in other transposon screens performed in solid tumors13-15,17,19,22,24, the majority

are predicted to function as TS genes. Most genes also have insertions only in one allele,

suggesting they may function as haploinsufficient TS genes, although it remains possible

that the other allele is silenced by an epigenetic or other mutational event. This is consistent

with recent studies performed in human cells and tumors that identified hundreds if not

thousands of haploinsufficient genes, which are able to drive cellular proliferation. These

genes are postulated to operate in cooperative networks to maximize proliferative fitness25,
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and support other studies indicating that even partial inactivation of TS genes can contribute

to tumorigenesis8.

Branching tumor evolution complicates efforts to implement personalized medicine and

suggests that targeted therapies might be directed to genes mutated at the trunk of the

evolutionary tree. Transposons provide powerful tools for identifying trunk genes since

insertions in trunk genes are more likely to be associated with a higher number of

sequencing reads. Despite the splinkerette PCR method preventing a perfect indication of

read quantitation, previous studies show that CIS genes with high read depth are more likely

to be highly penetrant, as seen with APC22. To identify potential trunk genes for HCC we

again screened for CISs but this time using only the 25,197 SB insertions that were

represented by at least four sequencing reads each. Among the 524 CISs identified

(Supplementary Table 1d) were 21 outlier CISs that showed the highest sequencing read

counts and frequency of occurrence (Figure 2e, Supplementary Figure 9a). Six genes

including Arid1a10,11, Gsk3b26, Iqgap227, Magi128, Pten29 and Sav130,31 have known tumor

suppressive roles in HCC, while Snd1 is described as an oncogene promoting HCC

angiogenesis32,33. Two genes including Zbtb2034,35 and Ankrd1736,37 are involved in

hepatocyte differentiation and maturation, while Zbtb20 is a transcription factor that

represses the expression of α-fetoprotein, a widely used biomarker used for HCC

surveillance. The Setd2 TS gene38 and the putative TS genes Adk39, Dpyd40,41, Mll542 and

Nfia43,44 were also identified as potential driver genes for HCC, although there is no

published evidence they are involved in HCC. Six driver genes also regulate hepatic

metabolism with Pten45, Gsk3b46, Adk47,48, Zbtb2049 and Ghr50,51 regulating lipid and

glucose metabolism, and Dpyd controling pyrimidine catabolism in hepatocytes. Seven

driver genes including Mll5, Setd2, Wac, Arid1a, Nfia, Snd1 and Zbtb20 are transcription

factors, cofactors or chromatin remodelers, highlighting the importance of the modulation of

transcriptional programs in HCC. One driver CIS we named Rtl1 Chr12 locus (Figure 2e) is

the merger of several CISs at the same imprinted locus52 (Rian, Rtl1, 6430526N21Rik genes

and a microRNA cluster) and was targeted in 38.4% of the tumors. The majority (92%) of

the transposon insertions at this CIS are located on the negative strand (Supplementary

Figure 9b), indicating a potential oncogenic loss of imprinting and transcriptional activation

of the Rtl1 gene, or one or more of the microRNAs located downstream. Interestingly, these

microRNAs are among the most strongly up-regulated microRNAs in murine and human

HCC53.

Comparisons of CIS genes with human data and other indications

We next asked whether the 2881 HCC CIS genes are specific for HCC by comparing them

to the genes identified in transposon screens for colorectal cancer (CRC)22 and pancreatic

adenocarcinoma (PDAC)19,24. These comparisons showed that >60% of the HCC CIS genes

are also mutated in CRC and PDAC (p<2.10−16) (Supplementary Figure 10). This is not

surprising since many cancer genes are known to function in more than one cancer cell type.

HCC CIS genes are also significantly mutated in human HCC as shown by the very

significant overlap with the genes somatically mutated in human HCC identified in two

whole-genome HCC sequencing studies10,11, and in a genome-wide analysis of HBV

integrations54 (Table 1). In addition, we found a significant enrichment among the genes
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listed in the Catalogue of Somatic Mutations in Cancer (COSMIC) database, which reports

all of the somatic mutations identified in human HCC, and the genes listed in the Cancer

Gene Census database, which aims to catalogue all of the driver genes in human cancers

(Table 1). HCC CIS genes thus play important roles in human HCC and provide additional

validation for the genes identified in human HCC.

The expression of HCC CIS genes is also specifically deregulated in human HCC. Among

2189 HCC CIS genes contained in a large microarray dataset obtained from 223 HBV-

positive HCC patients4 (Supplementary Figure 11a), 45% were significantly deregulated in

human HCC (absolute fold change >1.5 and adjusted p-value <0.00001) (Supplementary

Figure 11b; Supplementary Table 2), compared to 29% misregulated genes on the array that

are not CIS genes (p <2.10−16). Differentially expressed HCC CIS genes also displayed

significantly lower p-values and more of them were up-regulated than down-regulated,

although this difference was not large (Supplementary Figure 11c-d). Comparison of the

HCC microarray data with other CIS gene lists from PDAC19,24 and CRC22 screens showed

the highest enrichment for HCC CIS genes (Supplementary Figure 11e), indicating better

specificity when the data were from the same tumor type. Overall, 42.5% of the HCC CIS

genes are mutated or mis-expressed in human HCC (Figure 3, Supplementary Table 3). The

deregulation of 30 HCC CIS genes was subsequently confirmed by real time PCR using a

microfluidic dynamic array containing 18 HBV-positive human tumors and 9 Liver-SB/

HBsAg tumors (Supplementary Figure 11f; Supplementary Table 4). The direction of the

expression change (up- or down-regulated) was positively correlated between human and

mouse tumors (Supplementary Figure 11g).

Transposon drive HCC via conserved pathways

HCC CIS genes are also enriched in the major cancer signaling pathways known to be

important for human HCC such as the Ras/Erk, p53, Akt, Wnt, and Tgfβ/Bmp pathways,

together with the recently identified hepato-tumor suppressor Hippo pathway30 (Figure 4a,

Supplementary Table 5, Supplementary Figure 12). Another known HCC signaling pathway,

IL6/Stat3, was less enriched, possibly because the tumor microenvironement locally secretes

IL6, thus activating this pathway in hepatocytes. A similar analysis for PDAC19,24 and

CRC22 CIS genes showed that many of these signaling pathways are also enriched for

mutations in these genes. Interestingly, the Hippo pathway was more highly mutated in

HCC, whereas the Wnt pathway, which is critical for CRC22, was more highly mutated in

CRC (Supplementary Figure 12a). Transposons also prominently targeted the Hippo

pathway in tumors generated in a Sav1-deficient background (Methods and Supplementary

Table 1e). Sav1 activates MST1, which results in the downstream activation of Hippo

signalling55. Together, these results suggest that transposon-induced mutations in Hippo

pathway genes cooperate with Sav1-deficiency to further deregulate Hippo signaling, and

are consistent with the results from a transposon screen performed in Apc mutant mice,

which identified a large number of CRC CIS genes that targeted the Wnt pathway22. Liver-

SB/Sav1-deficient mice also developed multiple large liver tumors nearly two months earlier

than Liver-SB/HBsAg mice, providing additional evidence for an oncogenic role for

deregulated Hippo signaling in HCC.
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HCC CIS genes target metabolic events

When we classified the HCC CIS genes according to their gene ontology we noticed a

striking over-representation of genes linked to cellular metabolic processes (p=1.4 × 10−60,

1199 genes) (Figure 4b, Supplementary Table 6). A less striking enrichment for metabolic

processes was detected for CRC and PDAC CIS genes (Supplementary Figure 13), while

most other ontologies such as transcription or cell cycle displayed similar enrichments

among all three tumor types. When we focused the gene classification on metabolic

processes, we found 47 metabolic categories that were targeted by the transposon during

HCC tumor development, against only 9 and 10 metabolic categories for CRC and PDAC

CIS genes, respectively (Supplementary Figure 14). When we looked for enrichment for

disease genes annotated in Ingenuity Pathway Analysis, we also found a highly significant

enrichment for HCC CIS genes in metabolic diseases (265 genes, p = 4 × 10−6); genetic

association to cancer was also highly evident (431 genes, p = 6 × 10−10). Overall, genes

associated with protein, carbohydrate, lipid and nucleic acid metabolism were highly

mutated by SB. Several other processes were also targeted including oxidoreduction and

metabolism of ATP, organophosphate, hormones, isoprenoid and vitamins (Supplementary

Table 6).

To determine whether similar genetic changes occur in human HCC we measured metabolic

gene expression levels in 18 HBV-positive human HCC and 9 Liver-SB/HBsAg tumors

using RT-qPCR. The deregulation of key metabolic genes was positively correlated in these

two species, and similar gene expression signatures were found for most genes

(Supplementary Figure 15). The classification of HCC CIS genes has thus highlighted the

importance and specificity of targeting metabolic genes in HCC. The fact that normal

hepatocytes display important general metabolic functions that most likely need to be

reorganized during malignant transformation may explain the reprogramming by SB of

many aspects of hepatocyte metabolism.

Metabolic profiling and mapping of mouse HCC tumors

To better understand how genetic changes in metabolic genes affect hepatic tumor

metabolism we performed non-targeted metabolic profiling on eight food-restricted Liver-

SB/HBsAg animals. Chemical derivatisation and gas chromatography coupled to time-of-

flight mass spectrometry (GC/TOFMS) were utilized to identify the differences in

metabotypes between malignant (tumor masses > 3mm) and adjacent normal liver tissue.

The quality of acquired metabolomics data was verified by principal component analysis

(PCA) and partial least squares discriminant analysis (PLS-DA) (Supplementary Figure 16).

Even with eight matched samples, statistical analyses using the t-test and Welch-test were

able to identify 56 annotated metabolites significantly changed in tumors compared to

normal adjacent tissues (Supplementary Figure 17). Consistent with the transposon data we

noticed significant alterations corresponding to specific metabolic pathways. For instance,

carbohydrate metabolism was affected through increased levels of glucose and fructose and

reduced ribitol, ribonic acid and allonic acid. Levels of several amino acids including

isoleucine, valine, aspargine, tyrosine, methionine, serine, leucine, phenylalanine, threonine

and alanine were also significantly downregulated in tumors, consistent with data from

human tumors56. Moreover, components of nucleic acid including ribose, pyridine, uracil
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and uridine were found at higher levels in tumors. We then integrated the genetic

(Supplementary Table 1c), expression4, and metabolic results (Supplementary Table 7) in

order to identify potential correlations. We noticed a marked consistency between genetic

alterations, mRNA levels and actual amounts of metabolites, revealing a probable control of

metabolic changes by genetic modifications at least to glycolysis, the tricarboxylic acid

(TCA) cycle, glutaminolysis, the pentose phosphate (PP) pathway (Figure 5) and redox

regulation (Supplementary Figure 18). Collectively, these metabolic alterations control

bioenergetics, biosynthesis and redox regulation, which are known to optimize tumor cell

metabolism for proliferation and survival.

We also tested our interpretation of the integrated data using biochemical assays and in vivo

live metabolic imaging 57. We found that intrahepatic lactate dehydrogenase (Ldh), alanine

transaminase (Alt) and glutaminase (Gls) enzymatic activities were consistently more

strongly activated in large hepatic tumors (Supplementary Figure 19), supporting the

enhanced conversion of pyruvate to alanine and lactate, and the inclusion of glutamine

possibly as an anaplerotic carbon source to supplement the increased metabolic fuel

requirement in larger tumors58. Metabolic imaging with hyperpolarized pyruvate57 also

showed a major conversion of pyruvate into alanine and lactate (Figure 6), while its

conversion into bicarbonate and other TCA intermediates are unchanged, indicating a shift

towards aerobic glycolysis and anabolic processes, relative to oxidative phosphorylation. It

is to be noted however that pyruvate is only one of the fuel sources in HCC, and other

processes generating ATP such as lipid catabolism have indeed been found to be

significantly increased in HCC as well 56,59. Overall, these experimental findings were

consistent with our predictions based on the integration of multiple datasets.

DISCUSSION

Here we report the first saturating transposon screen for any type of cancer. In total, we

identified 2881 genes that were positively selected during HCC development, and 42.5% of

these genes were also mutated or transcriptionally altered in human HCC. The human HCC

genome contains a large spectrum of mutations including DNA amplifications, deletions,

rearrangements, point mutations and loss of heterozygosity, in addition to epigenetic

changes that together lead to tumor development. This has made it difficult to discriminate

between the true driver and passenger mutations for HCC6. SB mutagenesis thus provides an

important comparative genomics tool for identifying and validating the driver genes for

HCC. We also found that many genes mutated by SB code for proteins that function in

cancer signaling pathways known to be important for human HCC. In addition, we found

that multiple genes from the same signaling pathway are often mutated in the same tumor.

This is consistent with recent reports describing the Darwinian evolutionary processes

operative in cancer cells60,61 and the recently recognized importance of convergent

evolution to tumor development, in which the same gene or signaling pathway is mutated

multiple times in different branches of the tumor evolutionary tree due to high selective

pressure62. These results support the suggestions of others that it might be better to

therapeutically target the signaling pathways themselves rather than the individually mutated

genes.

Bard-Chapeau et al. Page 8

Nat Genet. Author manuscript; available in PMC 2014 August 13.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



HCC is thought to arise from the hepatocyte, a highly differentiated cell that has programed

specialized functions. The transposon screen identified a surprisingly high enrichment for

genes implicated in metabolic processes. This high enrichment seemed specific for HCC as

it was not found in transposon screens for other types of cancer15,19,22,63. One of the major

functions of hepatocytes is the control of metabolic homeostasis, including protein synthesis,

transformation of carbohydrates, and synthesis of cholesterol, bile and phospholipids. Our

metabolomics study is also consistent with assays performed using human samples of serum,

urine64,65 or liver tissue56,59,66, demonstrating that these metabolic processes are indeed

altered in transformed human hepatocytes. Using an integrative approach involving

functional genomics and metabolomics, we further mapped the genetic, transcriptomic, and

metabolomic results to core metabolic processes commonly affected in cancer67. This

helped to uncover molecular mechanisms likely altered in HCC. This disrupted metabolism

included the increased uptake of glucose and glutamine, which is implied by SB’s targeting

of the membrane transporters Glut1/2 and Slc7a2 (Cat2), in addition to their up-regulated

expression in human tumors. As human HCC tissues also show elevation of glucose and

glutamine66,68 our data support that they may be genetically selected sources that fuel tumor

HCC cell metabolism. We also identified a shift towards aerobic glycolysis and anabolic

processes, relative to oxidative phosphorylation in liver tumors. Similar deregulation of

metabolic genes was observed in human HCC, suggesting anabolic pathways, in conjunction

with aerobic glycolysis (Warburg effect)69, contribute to the enhanced glucose metabolism

in HCC. Notably, recent in vitro studies showed that heterogeneous nuclear

ribonucleoproteins (hnRNP) could induce alternative splicing and thereby results in a high

PKM2/PKM1 expression ratio. This change could be important for the promotion of cell

proliferation and aerobic glycolysis in tumors70,71. In line with these studies we found that

SB not only targets Hnrnpa1, but mouse and human HCCs also significantly overexpress

this gene proportionally to PKM2 expression. This suggests that glucose is being shunted

via the PP pathway towards the biosynthesis of molecules including nucleotides70, and

supports the increased lactate production (aerobic glycolysis) that was observed in our in

vivo metabolic imaging. Tumor cell proliferation diverts citrate towards fatty acid synthesis

as the SB screen suggested. Since the TCA cycle is crucial for generating intermediate

metabolites to ensure cell viability, anaplerotic pathways must be activated. Indeed, our

results show glutaminolysis as such a possible carbon source with SB mutations in many

genes regulating the glutaminolytic pathway72,73.

Metabolic adaptations associated with glucose and glutamine pathways in cancerous

hepatocytes could also enhance the antioxidant defenses through NADPH-dependent

glutathione and thioredoxin systems in order to maintain cellular redox balance. In this way,

changes in glucose and glutamine pathways could support three basic needs for dividing

tumor cells, namely bioenergetics, biosynthesis and redox regulation. Inhibiting glycolysis

and/or glutaminolysis might therefore be efficacious in restricting liver tumor formation and

progression, as suggested for other cancer types74. Genes identified by our transposon

screen have thus provided a broader and deeper understanding of hepatocellular cancer

genomics and metabolism as well as offering potential molecular and targets for cancer

therapy for instance in signaling and metabolic pathways.
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ONLINE METHODS

Mice and histology

We utilized the following alleles to generate a mouse model of HBV-associated

hepatocellular carcinoma: HBsAg transgenic18, Alb-Cre75, T2/Onc2 (6113)13 or T2Onc3

(12740) and Rosa26-lsl-SB1114. The resulting cohorts were on a mixed B6.129 genetic

background. Alb-Cre/+; T2Onc2/+; Rosa26-lsl-SB11/+; HBsAg/+ mice were used for the

SB screen. Alb-Cre/+; T2Onc3/+; Rosa26-lsl-SB11/+; HBsAg/+ were used for metabolic

imaging. All animals were monitored on a biweekly basis in accordance with IACUC

guidelines. Full necropsies were performed. For DNA extraction, liver tumors were

measured and snap-frozen. For histology, livers were 10% formalin fixed and paraffin-

embedded. 5μm sections were processed for haematoxylin and eosin staining, or orcein

staining. All slides were reviewed by our veterinary pathologist, Dr. Jerrold M. Ward.

Histological classification of hepatic lesions and tumors were as previously reported18,76.

Identification of transposon insertions sites

Identification of transposon insertion sites was performed using splinkerette PCR to produce

barcoded PCR products that were pooled and sequenced on the 454 GS-Titanium (Roche)

platform. Reads from sequenced tumors were mapped to the mouse genome assembly NCBI

m37 and merged together to identify non-redundant Sleeping Beauty (SB) insertion sites.

Cloning and mapping of the transposon insertion sites were performed as previously

described19,22. 328,687 non-redundant insertion sites (Supplementary Dataset 1) were used

to identify CISs using a gene centric method20 and a Gaussian Kernel Convolution (GKC)

statistical framework method21.

Gaussian Kernel Convolution (GKC) method for common insertion site (CIS) identification

Any insertions sites on the transposon donor mouse chromosome 1 for tumors derived from

T2/Onc2 were excluded from common insertion site (CIS) analysis. The likelihood of ‘local

hopping’ of the transposon is increased where the transposon array is located77. This

phenomenon can significantly increase the background level of transposon insertion events,

thereby complicating CIS analysis. 328,687 non-redundant insertion sites were used to

identify CISs using a Gaussian kernel convolution (GKC) statistical framework21. The

previous GKC analysis approach22 was enhanced by utilizing multiple kernel scales (widths

of 15K, 30K, 50K, 75K, 120K and 240K nucleotides). CISs predicted across multiple scales

and overlapping in their genomic locations were clustered together, such that the CIS with

the smallest genomic “footprint” was reported as the representative CISs. For highly

significant CISs with narrow spatial distributions of insertion sites, the 15K kernel is

typically the scale on which CISs are identified. The P value for each CIS was adjusted by

chromosome and a cut-off of p<0.05 was used.

Pruning genetically similar tumors from the same animals

We initially sequenced 250 tumors from 34 mice and called CISs using the GKC method on

all tumors (with a non-stringent p-value significance threshold to capture many loci). Using

the boundaries of the CIS loci, we obtained genomic positions that defined 2110 bins on the
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genome. We scored every tumor for every bin as having an insertion in the bin or not. We

computed the Spearman correlation between all tumors and performed hierarchical

clustering (complete linkage). When tumors from the same animal clustered together as

pairs in the dendrogram, we retained only the tumor, which had the largest total number of

insertions. The aim of the pruning is to ensure that there is at least a single tumor from

another animal that is most similar to a tumor from a given animal. In theory, pairs of

clustered tumors from the same animal can remain after the pruning step if, for example,

three tumors originally clustered together and only one was removed. To resolve this

problem the pruning step can be repeated iteratively. After the pruning step, we tested

whether the median Spearman correlation between the 228 remaining same-animal-tumors

and the median Spearman correlation between the non-same-animal tumors was statistically

significant. If this was not the case, we terminated the pruning process. On our dataset a

single pruning round was sufficient. We used the remaining 228 tumor samples further to

call CISs with both GKC and gCIS methods.

Analysis of screen saturation

In order to determine whether the SB screen had reached saturation, and if so, what number

of samples was sufficient to reach saturation, the Gaussian Kernel Convolution (GKC) CIS

calls from all 228 samples were analyzed using the ACT software package78. ACT considers

genomic locations generated by multiple samples for specific biological phenomenon under

study (e.g.ChIP-seq peaks) to determine the saturation of a screen. The program considers

the various combinations in which samples can be added so that the increase in base pair

coverage is a range of values based on all the samples. The results can be depicted as a

series of boxplots showing the increase in base pair coverage, where the boxplot at each

position n on the x-axis shows the coverage values of all combinations of n samples.

Boxplots that approach a horizontal asymptote indicate that the coverage has reached

saturation.

For the GKC CISs generated by all 228 samples, the insertion sites that contributed to CISs

were extracted, resulting in a set of approximately 131,000 sites. The insertion sites were

then selected per sample and pseudo-kernels of 7.5k nucleotides either side of each insertion

were applied to mimic GKC kernels of 15k nucleotides. Overlapping kernels within each

sample were merged into continuous genomic regions. These 228 modified insertion files

were then analyzed using ACT. For each combination of samples the median values, and

25th and 75th percentiles were plotted using the ggplot2 visualization package for the R

statistical analysis platform. As a control, the 228 samples were reanalyzed where the same

number of insertion sites per sample was selected at random across the mouse genome

(excluding chromosome 1, the donor chromosome). The pseudo-15k nucleotide kernels

were applied. Figure 2a shows the saturation plot for all 228 samples, clearly indicating a

‘knee’ in the profile as the graph asymptotes with an increasing number of samples. Visual

inspection of the graph indicates that below 50 samples, the screen does not appear to have

reached saturation. From 100 samples upwards there appears to be sufficient coverage to

report saturation. Conversely, Supplementary Figure 4a for the randomized samples is

virtually a straight line, indicating no saturation. While the analysis does not produce a

clear-cut asymptote this is to be expected due to the type of data under consideration. ACT
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was designed to analyze such data as ChIP-seq arrays for predicting transcription factor

binding sites. In these scenarios ChIP-seq replicates should ideally report the same key

binding sites/genomic locations. Hence across multiple samples the same locations should

be reported. For SB screens however, while insertions in the same gene will be found from

different samples, the locations of the insertion sites will not overlap perfectly, even with the

addition of the 15k nucleotide pseudo kernels. Hence each sample will introduce novel

regions, such that the overall coverage will continue to increase even if the screen has truly

reached a ‘saturation’ point. Also, not all samples will contribute to all CISs. Different

combinations of samples will thereby result in varying coverage’s, causing the coverage

profile not to asymptote perfectly.

Cross-species oncogenomics analysis

Gene expression assays, conducted on 223 HBV-positive human patients diagnosed with

HCC, was used to compare tumors and paired non-tumor tissues. The microarray data are

publicly available and downloadable at the Gene Expression Omnibus database with

accession number GSE145204. Human hepatocellular carcinoma (HHC) expression profiles

were downloaded from the GEO database (GSE14520). Only the 223-paired samples

hybridized to the HG-U133A platform were selected. Then, CEL files were Robust Multi-

array Average (RMA) normalized and differential gene expression between normal and

tumor cells were computed using Affy and limma package, implemented in Bioconductor.

As a result, adjusted P-value (FDR-based p-value adjustment according to Benjamini and

Hochberg) and fold-change were obtained for each probset. Our mouse candidate cancer

genes were converted to human genes using three different databases of homologous genes

(MGI, HomoloGene and Ensembl)79-81. The obtained human genes were then mapped to the

list of Affymetrix platform probe sets. For genes detected with more than one probe set, the

probe set with best-adjusted p-value was considered as gene representative. The threshold of

significance used was the absolute value of fold change more than 1.5, and adjusted p value

less than 0.00001.

Smaller scale liver mutagenesis screen in the Sav1 deficient background

This study was performed in a Sav1 deficient background with Alb-Cre/+, T2Onc2/+,

Rosa26-lsl-SB11/+, Sav1fl/fl animals. The Sav1 conditional allele was previously

described30. A total of 136 large tumors from 31 animals were utilized for analysis. Most

animals were euthanized at 8 to 9 months of age, when they had multiple large tumors. The

protocol for genomic DNA extraction, barcoded amplification, and sequencing on Illumina

Hi-Seq2000 was previously described20. 6,251,915 reads were mapped to the mouse

genome (mm9) and filtered when they were represented by very few sequence reads20.

Finally, the gene-centric CIS identification method (gCIS) identified 73 common insertion

sites (Supplementary Table 1e).

Patient Samples

Resected tumor samples were obtained from patients undergoing curative resection for HCC

(n=172). Operations took place between 1991-2009 at the National Cancer Centre,

Singapore. All samples were collected in accordance with the requirements of the local

Singapore Ethical Committees and informed consent was obtained from all subjects. The
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patient demographics and clinical characteristics have already been described in a previous

study82. Total RNA was isolated using TRIzol (Invitrogen) following the manufacturer’s

instructions, and the RNA concentration was quantified by NanoDrop (Thermo Scientific).

RNA samples were reverse transcribed to cDNA using the SuperScript III cDNA Synthesis

Kit (Invitrogen) in 10 μl reactions containing 1 μg total RNA and oligo(dT) primers

according to manufacturer’s instructions.

Gene expression analysis from patient samples

Specific primers targeting genes of interest were designed using Primer Express software

version 3.0. Primer sequences used for specific target amplification (STA pre-amplification

reaction) as well as qRTPCR are listed in Supplementary Table 4. For the STA reaction,

each cDNA sample was pre-amplified with 200nM pooled STA primer mix and Tagman

PreAmp Master Mix (Applied Biosystems) in a 5ul reaction, which was run for 14 cycles

according to the manufacturer’s protocol. To remove unincorporated primers, each sample

was treated with Exonuclease I (Fermentas) following incubation at 37°C for 30 minutes.

For inactivation, the mix was in a second step, incubated at 80°C for 15 minutes. At the end

of the Exonuclease I treatment, the reactions were diluted 1:5 in TE buffer (pH 8.0) prior to

use for qRT-PCR. The Fluidigm BioMark™ real-time PCR system and 48.48 Microfluidic

Dynamic Arrays were employed for high-throughput qRT-PCR analysis83. As volume per

inlet is 5 μl, the 6 μl volume per inlet with overage was prepared. For the samples, 2.7 μl of

each STA and ExoI-treated sample were mixed with 20X DNA Binding Dye Sample

Loading Reagent (Fluidigm) and 2X SsoFast EvaGreen SuperMix with Low ROX (Bio-

Rad). For the gene expression assays, 0.3 μl of mix primer pairs (100 uM) was added with

2X Assay Loading Reagent (Fluidigm) following the addition of 1X TE buffer to 6 ul

volume. Prior to loading the samples and assays into the inlets, the chip was primed in the

NanoFlex 4-IFC Controller. The samples and assays were then loaded into the inlets of the

dynamic array. Following loading and mixing of the samples and assays into the chip by the

IFC Controller, PCR was run with the following reactions conditions: 50°C for 2 minutes,

95°C for 10 minutes, followed by 40 cycles of 95°C for 15 seconds and 60°C for 60

seconds. Global threshold and linear baseline correction were automatically calculated for

the entire chip. The melting curve analysis and cycle threshold (Ct) were provided by

Fluidigm Real-Time PCR Analysis software version 3. Fold change in expression of genes

of interest between liver tumor and adjacent non-tumor samples were determined using the

comparative Ct method following the formula: 2−ΔCt(tumor)/2−ΔCt(non-tumor) 84. GUSB and

Gusb were used as the internal control gene in human and mouse samples, respectively. The

-ΔCt data obtained from this calculation was then used to generate the heatmap as well as

supervised hierarchical clustering of tumor and adjacent non-tumor samples by dChip

software. In addition, statistical analysis was performed by a standard t-test to identify

significant differentially expressed genes (p ≤ 0.05) between two studied groups for each

species.

Pathway and gene ontology analyses

Gene-annotation enrichment analyses were completed with DAVID Bioinformatics v6.785.

The list of all human genes was used as default background. For gene ontology analyses

GOTERM and PANTHER were used. For pathway analyses, KEGG was selected. We
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obtained enrichment of genes that display a genetic association with cancer through DAVID

using GENETIC_ASSOCIATION_DB_DISEASE and OMIM.

Metabolomics experiments

Chemicals for metabolomics experiments—HPLC-grade chloroform and methanol

were purchased from Tedia Company Inc. (Fairfield, OH, USA). HPLC-grade toluene was

purchased from JT Baker (Center Valley, PA, USA). MSTFA (N-methyl-N-

(trimethylsilyl)trifluoroacetamide) with 1% TMCS (trimethylchlorosilane) and

methoxyamine hydrochloride in pyridine (MOX) were purchased from Pierce (Rockford, IL,

USA). Urease of Sigma type III, alkane standard mixture (C10 to C40), and sodium sulfate

(anhydrous) were obtained from Sigma Aldrich (St. Louis, MO). Milli Q water (Millipore,

Bedford, MA, USA). All other chemicals were of analytical grade.

Mouse Liver Tissue Sample Preparation—Each control and tumor liver tissue were

weighed accurately and transferred to labeled 15 mL glass centrifuge tubes. Monophasic

extraction solvent consisting of chloroform-methanol-water (2:5:2, v/v/v) was added to each

sample such that the liver tissue concentration of each sample was 20 mg/mL. The tissue-

solvent mixtures were homogenized by ultrasonicating at ambient temperature (24-28°C) for

90 min followed by mill-mixing using stainless steel beads for another 15-20 min. The

homogenates were centrifuged at 3000 rpm at ambient temperature for 3 min and 800 μL of

each supernatant was transferred to a clean 15 mL glass tube. Quality control (QC) samples

(n=3) were prepared by pooling equal amounts of supernatant from 4 control and 4 tumor

mouse liver tissues. These samples were dried under a gentle flow of nitrogen at 50°C for 60

min in the Turbovap LV (Caliper Life Sciences, Hopkinton, MA, USA). 100 μL of toluene

(kept anhydrous with sodium sulfate) was added to each of the tissue extracts, vortexed for 1

min and dried at 50°C for 45 min using Turbovap LV in order to eliminate any trace of

water which might interfere with the GC/MS analysis. The dried metabolic extract was

derivatized first with 40 μL of MOX (20 mg/mL) at ambient temperature for 16 h.

Subsequently, 60 μL of MSTFA with 1% TCMS was added to the mixture and incubated for

30 min at 70°C to form the trimethylsilyl (TMS) derivatives. The mixtures were cooled and

90 μL of each derivatized sample was transferred into a vial and subjected to GC/TOFMS

analysis.

GC/TOFMS Analysis—The gas chromatography time-of-flight mass spectrometry

analysis (GC/TOFMS) of the derivatized liver samples was performed using Pegasus 4D

GC×GC/TOFMS (LECO Corporation, St. Joseph, MI, USA. The chromatography

separation was conducted in one dimension (1D) GC mode where a 30 m DB-1 GC column

with internal diameter of 250 μm and film thickness of 0.25 μm (Agilent Technologies,

Santa Clara, CA) was used. Helium was used as the carrier gas at a flow rate of 1.5 mL/min.

An injection volume of 1 μL was used and the injector split ratio was set to 1:5. The injector,

transfer line and ion source temperatures were maintained at 220, 200, and 250 °C,

respectively, throughout each analysis. Oven temperature was programmed at 70 °C for 0.2

min, increased at 10°C/min to 270°C where it was held for 10 min and further increased at

40°C/min to 310°C where it was held for 9 min. The MS was operated in EI mode (70 eV)
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and the detector voltage was set at 1800 V. Data acquisition was performed in the full scan

mode from m/z 40 to 600 with an acquisition rate of 20 spectra/s.

Metabolic Data Preprocessing—Each chromatogram obtained from GC/TOFMS

analysis was processed for baseline correction, noise reduction, smoothing, peak

deconvolution, analyte alignment, preliminary analyte identification and area calculation

using a data processing method created using ChromaTOF software version 4.21 (LECO

Corporation). Only peaks with a signal-to-noise ratio (S/N) greater than 210 were utilized

for further analysis. The area of each peak was calculated using unique mass. Preliminary

metabolite identifications were performed for peaks with a similarity index of more than

60% and these were assigned putative metabolite identities based on the National Institute of

Standards and Technology (NIST) library, LECO/Feihn Metabolomics library (LECO

Corporation) and internally compiled spectral libraries. The resulting data table subsequent

to data preprocessing was then exported to an Excel spreadsheet. For certain samples,

missing values in their respective data tables were replaced by either integrating the baseline

at retention times where peaks were confirmed to be missing or manually integrating peaks

which were confirmed to have their retention times significantly shifted. The total area

normalization for each sample was performed by dividing the integrated area of each analyte

by the sum of all peak areas of analytes present in the sample. The normalization aided in

correcting variations due to the amount of liver collected, sample preparation and analysis.

Chemometric Data Analysis—Normalized data were exported to SIMCA-P+ (Version

12.0, Umetrics, Umeå, Sweden) to perform principal component analysis (PCA) to identify

clustering trends, as well as to detect and exclude outliers. Prior to PCA analysis, GC/

TOFMS data was mean-centered and unit variance scaled. A DModX plot was calculated to

check for any outliers. QC samples were also analyzed in the PCA analysis to ensure that the

data acquisition for GC/TOFMS metabolic profiling was reproducible for all samples. After

initial overview of the GC/TOFMS data using PCA analysis, the data were subjected to

supervised data analysis using partial least-squares discriminant analysis (PLS-DA) where a

model was built and utilized to identify marker metabolites that accounted for the

differentiation in the two groups consisting of liver tumor tissues and normal-matched liver

tissues. To validate and investigate overfitting of the data in the PLS-DA model,

permutation tests with 100 iterations were carried out using SIMCA-P+. This permutation

test compared the goodness of fit of the original model with the goodness of fit of several

models based on data where the order of the Y-observations were randomly permuted, while

the X-matrix was kept intact.

Marker Metabolite Screening—The criteria for the selection of marker metabolites were

namely, variable importance values (VIP) greater than 1.0 and t-test (Welch’s correction) p

value less than 0.05. The fold change of each marker metabolite detected within the control

and tumor groups was calculated. Fold change value of less than one indicated a higher level

of marker metabolite in the normal tissue. Hierarchical clustering was performed using

algorithms within dChip software according to established methods86. Pearson correlation

subtracted from unity was used as the distance metric, using the centroid linkage method,
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which provides bounded distances in the range (−2, 2). P value threshold for function

enrichment was < 0.01.

Ex vivo biochemical enzyme activity assays

For each enzyme activity assay, 100 mg of liver tissue was homogenized in 200 μL of ice-

cold 100 mM tris HCl buffer, then centrifuged for 10 min at 13,000 × g to remove insoluble

material. All assays were based on continuous spectrophotometric rate determination.

Hepatic ALT, AST and GLS enzyme activities were measured with commercially available

enzymatic assay kits (Biovision, catalog #752-100, #753-100; Sigma-Aldrich, EC 3.5.1.2).

Magnetic resonance spectroscopy (MRS) and metabolic imaging

This technology is partially described in a recent publication 57.

Pyruvate polarization and dissolution (metabolic imaging)—40 mg of

[1-13C]pyruvic acid (99% Carbon-13 labeled, Part # 677175, Sigma Aldrich), doped with 15

mM trityl-radical (OXO63, GE Healthcare) and 3 μl of gadoterate meglumine (10 mM,

Dotarem®, Guerbet), was hyperpolarized in a polarizer, with 45 min of microwave

irradiation. The sample was subsequently dissolved in a pressurized and heated alkaline

solution, containing 100 mg/liter ethylenediaminetetraacetic acid (EDTA) to yield a solution

of 80 mM hyperpolarized sodium [1-13C]pyruvate with a polarization of 45% and

physiological temperature and pH87.

Metabolic flux in the liver measured by hyperpolarized carbon-13 MRS—Mice

were positioned in a 9.4 T horizontal bore MR scanner interfaced to a DD2 console (Varian

Medical Systems), and inserted into a dual-tuned (1H/13C) mouse volume coil (diameter, 39

mm). Correct positioning was confirmed by the acquisition of an axial proton gradient-echo

image: echo time/repetition time (TE/TR), 8.0/100.0 ms; matrix size, 128 × 128; field-of-

view (FOV), 30 × 30 mm; slice thickness, 1.0 mm; excitation flip angle, 30°. A respiratory-

gated shim was used to reduce the proton linewidth to approximately 160 Hz. Immediately

before injection, a respiratory-gated 13C MR pulse-acquire spectroscopy sequence was

initiated. 250-350 μL (0.5 mmol/kg body weight) of hyperpolarized pyruvate was

intravenously injected over 3 s into the anesthetized mouse. To localize signal over the liver,

a 4 to 6 mm slice excitation was applied. Sixty individual liver spectra were acquired over 1

min after injection (TR, 1 s; excitation flip angle, 25°; sweep width, 4000 Hz; acquired

points, 2048; frequency centered on the pyruvate resonance).

MRS data analysis—Liver 13C MR spectra were analyzed using the AMARES algorithm

as implemented in the jMRUI software package. Spectra were baseline and direct-current

offset-corrected based on the last half of acquired points. Peaks corresponding to

[1-13C]pyruvate and its metabolic derivatives [1-13C]lactate, [1-13C]malate, [1-13C]pyruvate

hydrate, [1-13C]alanine, [4-13C]oxaloacetate, [1-13C]aspartate, [1-13C]bicarbonate were

fitted with prior knowledge assuming a Lorentzian line shape, peak frequencies, relative

phases, and linewidths. Quantified peak areas were plotted against time in Excel

(Microsoft). The rate of exchange of the 13C label from the hyperpolarized pyruvate to each

of its downstream metabolites was calculated with a kinetic model specifically designed to
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assess hyperpolarized pyruvate metabolism, using the fitted peak areas as input data. The

model accounts for many of the variables in the hyperpolarized experiment, including the

rate of injection, the initial polarization level of the hyperpolarized pyruvate, and the rate of

decay of each of the hyperpolarized compounds. Firstly the change in [1-13C]pyruvate

signal over the 60s acquisition time was fitted to the integrated [1-13C]pyruvate peak area

data using equation [1]:

[1]

In this equation, Mpyr(t) represents the [1-13C]pyruvate peak area as a function of time. This

equation fits the parameters kpyr, the rate constant for pyruvate signal decay (s−1), rateinj, the

pyruvate arrival rate (a.u. s−1), tarrival, the pyruvate arrival time (s) and tend, the time

correlating with the end of the injection (s). These parameters were then used in equation [2]

along with the dynamic [1-13C]malate and [1-13C]aspartate to calculate kpyr→X, the rate

constant for exchange of pyruvate to each of its metabolites (s−1) and kX, the rate constant

for signal decay of each metabolite (s−1) which was assumed to consist of metabolite T1

decay and signal loss from the low flip angle radiofrequency pulses. In equation [2], t’ = t –

tdelay, where tdelay represents the delay between pyruvate arrival and metabolite appearance

caused by the traversal of the pyruvate through the cardiopulmonary circulation before

arrival at the hepatic arteries.

[2]

Metabolic imaging—A 2D gradient-echo chemical shift imaging (CSI) pulse sequence

was implemented in a 9.4 T MRI (magnetic resonance imaging) scanner. Imaging begins

about 16 seconds after infusion of hyperpolarized pyruvate to ensure phase encoding starts

only when all metabolites began to form. They were then axially imaged over a time-course

of 2 mins with repetition time (TR) = 120 ms, echo-time (TE) = 0.6 ms, flip angle (FA) = 5°,

spectral width (SW) = 80 ppm, spectral points = 256, field-of-view (FOV) = 25.6 × 25.6

mm2, matrix size = 16×16, slice thickness = 5 mm. Post-processing with Matlab picked up

the peak of each metabolite in the spectra, filled up its k-space, zero-filled to 32 × 32,

followed by 2d fourier transform. A reference proton image was acquired with matrix size =

128 × 128, TR = 100 ms, TE = 1.28 ms and slice thickness = 1 mm.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. HBsAg/Liver-SB mice have chronic liver inflammation and accelerated formation of
HCC
a, Preneoplastic hepatocellular focus (large arrow) of hyperplastic hepatocytes, with

inflammatory cells (small arrows) in a 22.8 week-old Liver-SB/HBsAg male mouse. b,

Hepatocytes with endoplasmic reticulum inclusions, so called ground glass hepatocytes, as

seen in human HBV-induced hepatitis. Sample from a 20.4 week-old Liver-SB/HBsAg male

mouse. c, Kaplan-Meier survival curves for male and female mice of all four combinations

of genotypes. Liver-SB/HBsAg (SB/HBV), Liver-SB (SB), HBsAg transgene (HBV) and

littermate control mice carrying an inactive transposon (no transposase) and no HBsAg

transgene (control). Female median survival was 79.1 weeks for Liver-SB/HBsAg and 103.7

weeks for Liver-SB (Logrank test p<10−4). Male median survival was 70.4 weeks for Liver-

SB/HBsAg, 94.9 weeks for Liver-SB, and 88.4 for HBsAg mice (Logrank test p<10−4). d,

Summary of histopathology performed on livers of moribund male mice of various

phenotypes. We observe more of “HCC and HCA” in class “Liver-SB/HBsAg”, than in

classes “Liver-SB” and “HBsAg” combined. Although a trend is visible, it was not

significant (p=0.086, one–sided Fisher’s exact test on a contingency table). The overall

penetrance for hepatic tumorigenesis in Liver-SB/HBV was 77%. HCC : hepatocellular

carcinoma, HCA: hepatocellular adenoma.
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Figure 2. Identification of driver genes for HCC in the Liver-SB/HBV screen
a,b, CISs were called using the Gaussian Kernel Convolution (GKC) method from the

indicated numbers of randomly chosen Liver-SB/HBV tumors. The resulting CIS genomic

loci were overlapped with the CIS loci from the 228 tumors. The numbers of tumor samples

used were plotted against the genomic bases covered. For each combination of tumors the

median values and 25th and 75th percentiles were plotted. a, Near saturation of the screen is

seen with a theoretical asymptote ( in orange) at 248,023,943 bases with an increasing

number of samples. The percentage saturation obtained with 100 samples is 75.4%. b, This
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plot shows the data generated from randomized samples; the straightness of the line

indicates no saturation. c, Distribution of all 2871 CISs according to the percent of time they

are mutated in tumors. When a CIS gene was identified using both gCIS and GKC, the

average percent was used. Only 79 CISs were mutated in more than 50% of the tumors,

while 638 CISs were mutated in more than 25% of the tumors. d, Number of transposon

insertions found in CIS loci in each tumor (represented as dots). The mean is 387 ± 118

CISs targeted per tumor. e, Clustering in all 228 tumors of the 21 HCC driver genes with

highest sequencing read counts and frequency of occurrence in tumors. No statistically

significant genetic correlations were found among the 21 driver genes.
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Figure 3. Many Liver-SB/HBV CIS genes are deregulated or mutated in human cancer
Repartition of the 42.5% Liver-SB/HBV CIS genes found to be either mutated or

misexpressed in human HCC. A total of 1224 CISs from the Liver-SB/HBV screen were

associated with a gene mutated or misexpressed in human HCC.
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Figure 4. Liver-SB/HBV CIS genes drive tumorigenesis through conserved cancer signaling
pathways
a, HCC CIS genes are enriched for genes in major oncogenic canonical signalling pathways.

The percentages represent the fraction of tumors with a transposon insertion at the gene

locus. Most tumors displayed insertions in genes in these canonical pathways. b, Gene

ontology analysis performed with DAVID bioinformatics, biological processes. P values for

enrichment are represented on a –log scale. The percentages indicate the proportion of HCC

CIS genes found associated with a specific biological process.
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Figure 5. Mapping of genomic and metabonomic data to metabolic pathways disrupted in HCC
To understand the metabolic pathways disrupted in HCC at the genetic, mRNA, and

metabolite levels, we used data from the Liver-SB/HBV screen (Supplementary Table 1c),

human expression data4, and metabolomic results (Supplementary Table 7). Metabolites are

written with larger font size, and genes with smaller font size. Red or green fonts mean the

gene expression or metabolite amount is increased or decreased, respectively, in HCC tissue

versus adjacent non-tumor tissue. CIS genes listed in Supplementary Table 1c are labeled

with *. This map focuses on glycolysis, TCA cycle, glutaminolysis, and the pentose
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phosphate (PP) pathway. Despite the increased glucose uptake (Glut1/2) and consumption,

the tumor cells predominantly expressed the pyruvate kinase M2 isoform (Pkm2), which

converts phosphoenolpyruvate (PEP) to pyruvate less efficiently than Pkm1 70. This

promotes the accumulation and shuttling of glycolytic intermediates such as glucose-6-

phosphate (G6P), fructose-6-phosphate (F6P), and fructose-1,6-biphosphate 2 (FBP) to the

pentose phosphate (PP) pathway and macromolecular synthesis69. Thus, this termination of

the glycolysis metabolic pathway together with dysregulation of Pcx and Pdk1/2, would

prevent pyruvate from entering the TCA cycle. This would also lead to a truncated TCA

cycle and insufficient glucose-dependent citrate production. However, most of the TCA

cycle genes (Idh1/2, Sdha, Fh, Odgh) and corresponding intermediates are up-regulated in

tumor cells, except for the down-regulation of the aconitase gene family (Aco1/2),

suggesting the TCA cycle is at least partially activated. Our results imply an activation of

glutaminolysis (Cat2, Gls, Glud1/2) converting glutamine to α-ketoglutarate to replenish

TCA cycle intermediates. Effective maintenance of citrate synthesis is possible through

reductive carboxylation of glutamine-derived α-ketoglutarate by Idh1/273. These adaptations

around glycolysis and the TCA cycle could allow rapid generation of both ATP for

bioenergetics and important metabolites for biosynthesis. In addition, the breakdown of

citrate by Acly could constitute a primary source of acetyl-CoA for fatty acid and lipid

synthesis. Moreover, up-regulation of Ldha, could convert glutamine-derived pyruvate to

lactate that is excreted by Mct4 transporter outside the cells68.
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Figure 6. Quantitative changes in pyruvate metabolism can be detected by hyperpolarized
carbon-13 magnetic resonance spectroscopy
in vivo. a, T2-weighted MRI illustrates the development of HCC at different stages in Liver-

SB/HBsAg animals. The anatomy appears normal in the pre-tumor stage (NT), at 2-5

months of age. However, at approximately 8 months of age, tumors (white arrows) began to

appear within the normal liver (white arrow head). This is referred to as the developing

tumor (DT) stage. Massive tumors (MT) were detected by MRI approximately two months

later (black arrows). b, Live in vivo imaging provided the mapping of lactate and alanine

production in HCC after hyperpolarized pyruvate injection (blue -> green -> yellow -> red

represent amounts of molecules lowest to largest). c, Representation of the in vivo measured

hyperpolarized carbon-13 spectra in the liver. Metabolites that were detected include

[1-13C]lactate (183.0 ppm), [1-13C]malate (181.5 ppm), [1-13C]pyruvate hydrate (179.1

ppm), [4-13C]aspartate (177.8 ppm), [1-13C]alanine (176.4 ppm), [4-13C]oxaloacetate

(175.6 ppm), [1-13C]aspartate (175.0 ppm), [1-13C]pyruvate (170.8 ppm) and

[1-13C]bicarbonate (160.8 ppm). The pyruvate peak was truncated to better illustrate the
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downstream metabolite peaks. d, Representative time course depicting the simultaneous

production of downstream metabolites upon infusion of hyperpolarized [1-13C]pyruvate in a

mouse bearing a large liver tumor. e, Quantitative changes in pyruvate metabolism can be

detected by hyperpolarized carbon-13 magnetic resonance spectroscopy in live mice in vivo.

Rate of exchange of 13C label from [1-13C]pyruvate (pyr) to [[1-13C]lactate (lac),

[1-13C]malate (mal), [1-13C]alanine (ala), [1-13C]aspartate (asp), and [1-13C]bicarbonate

(bic) after [1-13C]pyruvate infusion into mice at different tumor development stages.

ANOVA tests were performed for each metabolic flux result. At the FDR-corrected

significance level of 0.05, no differences between group means were found. However,

explicitly testing for a trend by computing Spearman correlation showed that the metabolic

flux pyr->ala significantly increased with tumor size (rho = 0.51; FDR-corrected p=0.022).

Although a strong trend was also observed for the metabolic flux pyr->lac, this did not reach

statistical significance (rho = 0.43; FDR-corrected p = 0.052). The number of animals in

groups is indicated above each bar. Error bars represent the standard error of the mean

(SEM).
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Table 1
Enrichment of Liver-SB/HBV CIS genes in the genes mutated or misregulated in human
cancer.

The enrichment p values are calculated using a 2×2 contingency table, Chi-Square test with Yates’ correction.

Organism
Number of Genes
in dataset (mouse

chr1 excluded)

Number of
overlapping CIS

genes

% coverage of
Human dataset Enrichment p value

Human HCC somatic mutations (ref
11) Human 858 177 20.6% 9.53E-14

Human HCC somatic mutations (ref
10) Human 189 52 27.5% 4.31E-10

COSMIC database for somatic
mutations in human HCC Human 499 83 16.6% 0.00423

Human HBV insertions (ref 54) Human 103 23 22.3% 0.00340

CGC database (somatic mutations, all
cancers) Human 468 120 25.6% < 2.10−16

Genes mis-expressed in Human HCC
(ref 4) Human 3784 987 26.1% < 2.10−16
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