
Spatial Resolution Requirements for Traffic-Related Air Pollutant
Exposure Evaluations

Stuart Batterman1, Sarah Chambliss2, and Vlad Isakov3

Stuart Batterman: stuartb@umich.edu; Sarah Chambliss: 2sarah@theicct.org; Vlad Isakov: Isakov.Vlad@epa.gov
1Department of Environmental Health Sciences, School of Public Health, University of Michigan,
Room 6075 SPH2, 1420 Washington Heights, Ann Arbor, MI 48109-2029 USA, tel: 734 763 2417
fax: 734 763-8095

2The International Council on Clean Transportation, One Post Street, San Francisco CA 94104,
415 202-5745

3US Environmental Protection Agency, National Exposure Research Laboratory, 109 T.W.
Alexander Drive, Research Triangle Park, NC 27711, 919-541-2491

Abstract

Vehicle emissions represent one of the most important air pollution sources in most urban areas,

and elevated concentrations of pollutants found near major roads have been associated with many

adverse health impacts. To understand these impacts, exposure estimates should reflect the spatial

and temporal patterns observed for traffic-related air pollutants. This paper evaluates the spatial

resolution and zonal systems required to estimate accurately intraurban and near-road exposures of

traffic-related air pollutants. The analyses use the detailed information assembled for a large (800

km2) area centered on Detroit, Michigan, USA. Concentrations of nitrogen oxides (NOx) due to

vehicle emissions were estimated using hourly traffic volumes and speeds on 9,700 links

representing all but minor roads in the city, the MOVES2010 emission model, the RLINE

dispersion model, local meteorological data, a temporal resolution of 1 hr, and spatial resolution as

low as 10 m. Model estimates were joined with the corresponding shape files to estimate

residential exposures for 700,000 individuals at property parcel, census block, census tract, and

ZIP code levels. We evaluate joining methods, the spatial resolution needed to meet specific error

criteria, and the extent of exposure misclassification. To portray traffic-related air pollutant

exposure, raster or inverse distance-weighted interpolations are superior to nearest neighbor

approaches, and interpolations between receptors and points of interest should not exceed about 40

m near major roads, and 100 m at larger distances. For census tracts and ZIP codes, average

exposures are overestimated since few individuals live very near major roads, the range of

concentrations is compressed, most exposures are misclassified, and high concentrations near

roads are entirely omitted. While smaller zones improve performance considerably, even block-

level data can misclassify many individuals. To estimate exposures and impacts of traffic-related
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pollutants accurately, data should be geocoded or estimated at the most-resolved spatial level;

census tract and larger zones have little if any ability to represent intraurban variation in traffic-

related air pollutant concentrations. These results are based on one of the most comprehensive

intraurban modeling studies in the literature and results are robust. Recommendations address the

value of dispersion models to portray spatial and temporal variation of air pollutants in

epidemiology and other studies; techniques to improve accuracy and reduce the computational

burden in urban scale modeling; the necessary spatial resolution for health surveillance,

demographic, and pollution data; and the consequences of low resolution data in terms of exposure

misclassification.
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1 Introduction

The transport sector is the largest emitter of nitrogen oxides (NOx) and carbon monoxide

(CO), and mobile sources are major sources of other pollutants, including particulate matter

(PM2.5) and volatile organic compounds (VOCs). (European Environment Agency 2013,

U.S. Environmental Protection Agency 2013) Traffic-related air pollutants are emitted at or

near ground level and mostly in urban areas where they can cause locally-elevated

concentrations that have been associated with adverse health effects, e.g., exacerbation of

asthma, impaired lung function, cardiovascular morbidity and mortality, adverse birth

outcomes, and cognitive declines. (U.S. Environmental Protection Agency 2008, Health

Effects Institute 2010, Laumbach and Kipen 2012) Exposure to traffic-related pollutants is

widespread, occurring in numerous locations, e.g., residences, workplaces, schools, and

playgrounds located near high traffic roads. Health impacts can be significant at local to

global scales. (Huang and Batterman 2000, Wu and Batterman 2006) Low income and

minority individuals often live near high traffic roads, and these populations are particularly

vulnerable. (Tian, Xue et al. 2013) Recognizing the importance of these effects and the

many people potentially affected, the number of scientific and policy investigations on

traffic-related air pollutants has grown rapidly. Such investigations are conducted at project,

intraurban, multicity, national and international levels, and for purposes that include

exposure and risk estimation, epidemiology, health impact assessment, accountability and

regulatory compliance. (Molitor, Jerrett et al. 2007, Isakov, Touma et al. 2009, Health

Effects Institute 2010, Bell, Morgenstern et al. 2011, Hystad, Setton et al. 2011, Lobdell,

Isakov et al. 2011)

Exposure to traffic-related air pollutants occurs in “on-road,” ”near-field” and “far-field”

micro-environments. (Batterman 2013) On-road exposure applies to commuters, pedestrians,

cyclists and workers such as police and truck drivers, who travel and work on high traffic

roads, and to pedestrians, cyclists and runners. This applies to many individuals, e.g., in the

US, an estimated 119 million persons commute using cars, trucks and vans, 7 million use

public transportation, 4 million walk, and 0.75 million cycle, and the average one-way

commute lasts 25 min (McKenzie and Melanie 2011). The second and most widely analyzed
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microenvironment is the region lying within several hundred meters of major roads. Many

people live, work, go to school and recreate in this near-field microenvironment, e.g., 18%

of US homes are within 300 feet of a four-lane highway, railroad or airport; this increases to

22 and 25% for Hispanic and Black households, respectively. (U.S. Department of Housing

and Urban Development and U.S. Department of Commerce 2011) The far-field

environment applies to areas more distant from major roads and urban areas where traffic-

related emissions become part of the “urban plume.” At this scale, spatial and temporal

gradients are present but blurred.

Concentrations of traffic-related air pollutants show dramatic temporal and spatial variation

in on-road and near-field environments. For example, PM2.5, ultrafine PM (currently

unregulated), volatile organic compounds (VOCs), NO, and polycyclic aromatic

hydrocarbons (PAHs) demonstrate steep gradients in concentrations, attaining elevated

levels near and on roads, and a return to background levels at distances of roughly 150 to

200 (Barzyk, George et al. 2009, Hagler, Baldauf et al. 2009, Hu, Fruin et al. 2009, Karner,

Eisinger et al. 2010). This variation leads to significant uncertainty in quantifying

concentrations and exposures. (Health Effects Institute 2010) For example, due to their

limited number and siting criteria, (Wilson, Kingham et al. 2005, Hystad, Setton et al. 2011)

data from central ambient monitoring sites capture little of this variability. While additional

information will be provided by the new near-road monitoring network for certain pollutants

(e.g., NO2) measured within 50 m of high traffic roads in the US, this network is not

designed to provide spatial coverage or to estimate population exposures. (Batterman 2013)

It is important to reduce the spatial and temporal errors in concentration estimates used to

estimate exposures in epidemiology, health impact and environmental justice studies.

(Jerrett, Arain et al. 2005, Brauer 2010, Sheppard, Burnett et al. 2012) Such errors have

deleterious effects, e.g., exposure misclassification can diminish the effect sizes and bias

results towards the null (no-effect) in epidemiology studies, incorrectly predict risks in

health impact studies, and misidentify affected populations in justice studies.

The challenge of estimating exposures of traffic-related air pollutants has been tackled by a

variety of methods, e.g., simple proximity assessments, statistical land-use regression

models, source-oriented models incorporating mechanistic sub-models (for emissions,

dispersion, transformation, exposure), and hybrid approaches combining several approaches.

(Huang and Batterman 2000, Sharma and Khare 2001, Jerrett, Arain et al. 2005, Wilson,

Kingham et al. 2005, Hoek, Beelen et al. 2008, Lipfert and Wyzga 2008, Brauer 2010,

Health Effects Institute 2010) To estimate exposures and health impacts, exposure estimates

are being applied to census and other geocoded data. The use of such data with geographical

information systems (GIS) has become routine, and potentially can inform policies at local

to national scales. (English, Neutra et al. 1999, Lin and Lin 2002, Jin and Fu 2005) With a

few exceptions, e.g., certain air pollution epidemiology studies and a small number of

quantitative health impact studies, estimates of health impacts attributable to traffic-related

air pollutants have used simplified large-scale box-type models that do not represent spatial

gradients or short-term fluctuations in concentrations. (Apte, Bombrun et al. 2012, Chart-

asa, Sexton et al. 2013) Refined and validated methods are needed to estimate exposures and

better understand the burden of disease attributable to traffic-related air pollutants, and to

identify susceptible populations. Indeed, the modeling system described below was
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developed to support an epidemiological investigation of effects of diesel exhaust emissions

on the respiratory health of children. (Vette, Burke et al. 2013)

1.1 Objectives

This paper evaluates spatial resolution issues involved in estimating near-field exposures of

traffic-related air pollutants for epidemiological, health risk and policy applications. The

analysis uses a large-scale and detailed case study centered on Detroit, Michigan, USA, a

city that contains many neighborhoods bisected by major roads with heavy truck traffic, to

estimate hourly to annual average concentrations at spatial scales as fine as 10 m. Model

estimates are compared with standards and monitoring data. We evaluate several

interpolation (joining) approaches, determine the spatial resolution requirements, and

estimate exposure misclassification associated with common zonal units. Study limitations

are discussed, and recommendations are made regarding modeling and exposure assessment

practices for urban scale applications.

2 Methods

2.1 Emissions inventory and dispersion modeling

A detailed, link-based NOx emission inventory for roads in Detroit and surrounding Wayne

County was compiled for the year 2010. NOx was selected as an air pollutant representative

of emissions from traffic. (Health Effects Institute 2010, European Environment Agency

2013) The road network included the location, link type as described by its National

Functional Classification (NFC), the annual average daily traffic (AADT), and the average

vehicle speed for each of 9,701 road links (Figure 1). These links include all but local

neighborhood streets and alleys. AADT and speed were derived using road counts and travel

demand modeling (TDM) with link-specific inputs. Hourly traffic volume, fleet mix, and

speed were estimated for each link and allocated into 8 vehicle classes, representing

motorcycles, light-duty gasoline vehicles, light-duty diesel vehicles, light-duty gasoline

trucks with gross vehicle weight (GVW) less than 6001 pounds, light-duty gasoline trucks

with GWV>6001 pounds, light-duty diesel trucks, heavy-duty diesel trucks, heavy-duty gas

vehicles, and heavy-duty diesel vehicles. Hourly emissions were estimated using emission

factors from MOVES2010a (http://www.epa.gov/otaq/models/moves/) for primary exhaust

emissions adjusted for the 2010 Detroit vehicle age distribution, thus producing an hourly,

link-based emissions inventory that accounted for traffic activity.

Pollutant concentrations were predicted using RLINE (http://www.cmascenter.org/r-line/), a

research grade dispersion model for near-roadway assessments under development by US

EPA. This steady-state plume-dispersion model incorporates newly developed algorithms

for predicting concentrations from road sources, including at receptors near roads. (Snyder,

Venkatram et al. 2013, Venkatram, Snyder et al. 2013) Hourly meteorological data were

taken from Detroit City airport, which was determined to be representative of the study area,

and processed by AERMET. Modeling used several sets of receptors. The first used

extremely fine resolution to model a high impact area, the 175/194 intersection, and

consisted of 12,221 receptors over a 1.0 × 1.2 km grid on 10 m centers. The second set used

the same resolution to estimate concentrations at three area NOx monitoring sites (121
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receptors, 100 × 100 m area). The third modeled the entire Detroit area using 27,622

receptors over a 34.5 × 23.0 km grid on 150 m centers. In all cases, the modeled road

network extended well beyond the receptor network.

Estimating concentrations with high spatial resolution at the urban scale is computationally

intensive. The Supplemental Materials describe techniques used to speed up calculations,

and present additional details on the emissions inventory and dispersion modeling.

2.2 Concentration errors due to spatial resolution

Errors in estimating concentrations at different spatial resolutions were estimated as the

difference between “known” and estimated (or interpolated) concentrations. Unlike the

joining methods discussed later that compute area averages, this evaluation is concerned

with concentrations at discrete points. Model estimates were taken as the known

concentrations, calculated using a dense receptor grid (10 m spacing). At locations where

concentrations were assumed to be unavailable, NOx concentrations were interpolated using

modeled concentrations at locations 10, 20, 40, 80 or 160 m distant (Δx). Note that a

receptor grid with 20 m spacing allows any (arbitrary) location to be within ∼10 m from a

receptor where the concentration is known.

Concentrations were estimated using the “nearest neighbor” (NN) technique and the inverse-

distance-weighted (IDW) average. Errors for the two types of interpolations were

determined as both absolute and relative differences (RΔC, %) between known (predicted)

and interpolated concentrations between all pairs of receptors separated by distance Δx. The

RΔC is equivalent to the absolute fractional bias. At finer spatial resolutions, i.e., as Δx → 0,

both errors approach 0. (Interpolations and error calculations are detailed in the

Supplemental Materials.)

A comprehensive approach was taken to estimate errors: we examined the most important

averaging times, all time periods, all receptor pairs, and Δx = 10, 20, 40, 80, and 160 m. To

portray the variation of the results, the distribution of error metrics was computed. Two

criteria were established: keeping ΔC below 25 μg/m3 (25% of the annual NO2 National

Ambient Air Quality Standard (NAAQS) of 100 μg/m3), and keeping RΔC% below 25%.

These criteria balance practicality and precision. Because concentration gradients become

steep near major roads, errors were stratified by proximity to roads. These analyses used the

receptor grid for the I75/I94 junction and all pairs of receptors, thus sample sizes were large,

e.g., 11,781 receptor pairs for Δx=10 m and 6,141 pairs for Δx=160 m for IDW

interpolations, and twice that for NN estimates since both E-W and N-S directions were

considered.

2.3 GIS and population analysis

Concentrations from the third set of receptors (27,622 receptors on 150 m centers over

Detroit) were assigned to the four zonal systems commonly used at the intra-urban scale:

ZIP code, census tract, census block, and property parcel. Digital boundaries for the first

three zones were obtained from the TIGER-Line database; shape files for property parcels

were obtained from DataDrivenDetroit [http://datadrivendetroit.org/]. Each parcel's

population was estimated by assigning it to a single census block, using a point-in-polygon
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spatial join between parcel centroids and block polygons, and distributing the population of

each block evenly among its parcels. The study area included 386,068 parcels. To analyze

the geographic zones using the same area and population, the 12 ZIP codes on the boundary

of the study area that did not fully overlap the parcel data were excluded, which included the

cities of Hamtramck and Highland Park (embedded in central northern Detroit). The final

analysis considered 357,962 parcels, 12,238 blocks, 287 tracts and 25 ZIP codes,

representing a population of 0.67 million, and 93% of the Detroit population.

Both vector- and raster-based GIS methods were used to join values from model receptors to

the four zonal units. With the exception of the vector-based approach for parcels, these

methods approximate areal average concentrations, which provide satisfactory estimates of

pollution exposure assuming a uniform distribution of the population within the zone.

(Brindley, Wise et al. 2005) The vector-based approach retained the point and polygon

forms of receptors and zones, and overlaid the point map of concentration values (i.e.,

receptor data) with the geographic zones using the spatial join tool in ArcGIS 10.2. For the

three larger zones (block, tract, ZIP code), the point-in-polygon method (Okabe and

Sadahiro 1997) was used to assign concentration values to the zone (polygon) that contained

it completely, and the zone concentration was estimated as the average of all associated

points. For census blocks, the 150-m receptor spacing resulted in 8,774 (40%) blocks

without associated points; these were assigned the concentration of the nearest receptor.

Parcel-level data was handled by joining each parcel to the single receptor closest to the

boundary of the parcel.

The raster-based approach mapped both receptors and zones to rasters. Zone polygons were

converted to a high-resolution 3-m raster for which each cell's value was uniquely assigned

to a single zone (parcel, block, tract or ZIP code). Three concentration rasters were created:

(1) a simple up-scaling of a 150 m grid created from receptor points to 3 m resolution in

which each 3 m cell was assigned the same value as the 150 m cell containing it; (2) an IDW

average using the nearest 12 receptors, and (3) a regularized spline interpolation using 12

receptors and a 0.1 weighting. This gave three sets of concentration estimates, all calculated

using the zonal statistics tool in the spatial analyst extension of ArcGIS 10.2 (ESRI,

Redlands, CA, USA).

Exposure misclassification due to the zonal aggregations was calculated using several

approaches. First, concentrations were visualized using maps that showed concentrations,

roads and zone boundaries. Second, distributions and descriptive statistics compared

exposure (population-weighted) concentrations at five scales (ZIP code, block group, block,

track, receptor). Third, statistics were derived for the deviation (residual) of the exposure

estimate, defined as the difference between concentrations in the larger units (e.g., ZIP code)

and that for the corresponding parcel(s), weighted by population with the assumption that

concentrations at the parcel level, the smallest available with population data, were correct.

Fourth, correlations and scatter plots compared the various exposure measures. Finally,

concentrations for each zone were grouped into quintiles, and contingency tables were used

to evaluate misclassification.
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3 Results

3.1 Aggregate emissions and estimated NOx levels

The modeled road network for Detroit (Figure 1) included 9,701 links and a total road length

of 3,064 km. NOx emissions totaled 14,715 t/yr (product of the emission rate and link length

summed across all links and all hours of the year). Most emissions occur on principal

arterials (30.4%); other freeways (26.1%), interstates (19.9%), and minor arterials (15.2%).

Light duty gas vehicles, followed by heavy-duty diesel vehicles, emit the bulk of NOX

emissions.

Figure 2 depicts very high resolution (10 m grid) concentrations at the I75/I94 intersection

(inset square in Figure 1) for four scenarios: the monthly average, which is representative of

long-term levels; the highest 24-hr average at each receptor (which is not simultaneous in

time); the 98th percentile 1-hr average (also not simultaneous); and the 24-hr average for

Jan. 19, a day when winds arose from only the west quadrant. The averaging period and time

of interest depend on the application, e.g., the highest 1- and 24-hr maps show areas

(“hotspots”) affected by high but short-term concentrations, relevant for acute health effects,

e.g., asthma exacerbation and some cardiovascular effects; monthly and annual averages are

appropriate for chronic effects. Concentrations are dominated by emissions from the large

highways. For the 175/194 area, monthly average NOx concentrations range from 8 to 190

μg/m3 (median=24 μg/m3), and 98th percentile 1-hr concentrations from 34 to 780 μg/m3

(median=101 μg/m3). The spatial patterns shift considerably on daily and hourly levels,

showing either higher or lower levels and greater asymmetry with respect to roads.

Predicted concentrations are not directly comparable to the NO2 NAAQS (100 μg/m3 on an

annual average basis, 185 μg/m3 on a 1-hr 98th percentile basis, averaged over 3 years)

because NOx (not NO2) was estimated, only primary traffic-related emissions were

considered, and modeling guidelines for compliance determinations were not followed (e.g.,

a non-regulatory model was used). NO2/NOx ratios observed at area monitoring sites

(described below) ranged from 0.4 (near highway) to 0.8 (distant from highway). Using the

98th percentile 1-hr prediction (780 μg/m3) and the near-road ratio of 0.4, the estimated 1-hr

concentration is 312 μg/m3. This concentration occurs at an on-road location (intersection of

I75 and I94) where no monitoring data are available. Such calculations suggest the

significance of vehicle emissions; further analysis is needed to evaluate the possibility of

exceeding the NAAQS.

Model results are compared to ambient monitoring data collected in Detroit. As in most

cities, available monitoring sites provide little if any spatial resolution. Long term trends are

available at a single monitoring site (East Seven Mile, E7M) located in a residential

neighborhood, downwind from the urban core and 3.5 km from freeways. Recently, two

near-road monitoring sites were commissioned in Detroit, Eliza Howell 1 and 2 (EH1, EH2)

sites located 10 and 100 m north of I96 and just west of Detroit city limits, but within the

modeling domain. (Figure 1 shows site locations.) At this location, I96 has an AADT of

150,000 vehicles per day. These sites have good coverage for 2012 (86-96% completeness,

depending on site). Monitored annual average NOx concentrations are 30, 81 and 37 μg/m3

at E7M, EH1 and EH2 sites, respectively; 98th percentile 24-hr concentrations are 99, 200
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and 125 μg/m3; and 98th percentile 1-hr concentrations are 155, 261 and 158 μg/m3. Trends

at E7M show that annual averages decreased by 3% since 2010; 98th percentile 1-hr

concentrations increased by about 3%. Predicted NOx concentrations from roadway

emissions at receptors representing E7M, EH1 and EH2 locations are 3, 52 and 19 μg/m3 on

an annual basis, respectively; 6, 136 and 56 μg/m3 for 24-hr highest concentrations; and 9,

225 and 81 μg/m3 for 98th percentile 1-hr concentrations. As expected, estimated levels fall

below the monitoring data since contributions from area, point and background sources are

not included. However, the higher concentrations, estimated during periods when local

sources would dominate impacts, are consistent with observations, particularly at the near-

road sites. Spatial gradients around the monitoring sites, investigated using 10 m receptor

grids around each monitor, show EH1 predictions were sensitive to position, a result of its

proximity to the roadway, e.g., moving the receptor 10 m closer increased annual levels by

18%; moving it 10 m further from the road dropped levels by 14%. EH2 and especially E7M

monitoring sites showed much lower sensitivity. While the available data do not permit a

full model evaluation, this analysis suggests that the near-road estimates of traffic-related

NOx concentrations are reasonable.

3.2 Concentration errors and spatial resolution

The effect of spatial resolution on concentration estimates is first evaluated using the 10 m

grid centered around the I75/I94 junction and the maximum 24-hr NOx average (Figure 2B).

Concentration differences for NN and IDW interpolations increase substantially as

interpolation distance Δx increases. For example, the NN interpolations for Δx=10 m yield

median and 95th percentile errors of 2.1 and 26 μg/m3, respectively; comparable values for

Δx=160 m are 55 and 167 μg/m3 (Figure 3A). As expected, IDW interpolations perform

better, e.g., interpolations for Δx=10 m have median and 95th percentile errors of only 0.2

and 9.0 μg/m3, respectively, and 31 and 141 μg/m3 for Δx=160 m (Figure 3B). The

performance of IDW interpolations is particularly favorable for distances below 40 to 80 m,

and for all but the highest percentile errors, which occur very near major roads (discussed

below). While absolute errors depend on the averaging time, e.g., errors are smaller for

monthly averages since concentrations are lower, Figures 3A and B properly depict trends.

However, scaling issues motivate the relative measures (shown as Figures 3C and 3D for

NN and IDW joining methods). Considering the better-performing IDW method, relative

errors remain below 25% for 99.6% of estimates for Δx=10 m, 99% for Δx=20 m, 98% for

Δx=40 m, 78% for Δx=80 m, and 35% for Δx=160 m. Again, these results apply to the

specific scenario modeled (i.e., the highest 24-hr concentration). However, results for each

24-hr average in January (n=31) gave very similar performance, e.g., 98±1=1, 96±2, 88±3,

68±4 and 32±7% (average±standard deviation) of estimates met the 25% criterion for

Δx=10, 20, 40, 80 and 160 m, respectively. As another test, each daily 1 -hr maximum was

tested, with nearly identical results (only the standard deviation increased slightly due to

greater day-to-day variation.) These results are robust as they reflect a wide range of

meteorological conditions and concentration statistics, although the results pertain to the

specific area modeled. They also suggest that relative errors are broadly applicable and

insensitive to averaging time and concentration statistic.
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To display the effect of location, Figure 4A stratifies relative errors by the distance to larger

roads (AADT>30,000), and highlights larger (95th percentile) errors. For all interpolation

distances Δx, relative errors are highest near major roads where gradients are sharpest.

Figure 4B shows the fraction of receptors attaining a criterion of relative errors below 25%,

again stratified by the distance to large roads. For Δx=10 to 40 m, nearly all receptors meet

the criterion at any distance. For Δx=80 to 160 m, however, few receptors within 20 m of

roads meet the criterion, although few individuals likely live this close to centerlines of

interstate highways. At distances of exceeding 60 m, Δx=80 m interpolations perform well,

and as do 160 m interpolations at distances of 80 to 100 or more. (Again, the spatial

resolution needed is equivalent to about 2 Δx.) These results use IDW interpolations and all

24-hr averages in January (n=31), and thus are robust. (Supplemental Figures 1 and 2 show

additional analyses stratifying by distance.)

Three GIS methods (PostPoint, centroid and area-weighting) were contrasted in a somewhat

similar analysis of joining modeled air pollution concentrations to Enumeration Districts in

Sheffield, England. (Brindley, Wise et al. 2005) While not focusing on traffic-related air

pollutants, this study concluded that greater variation within the geographic zone increased

the likelihood of each method's failure, i.e., large errors. In Section 3.3, we quantify

exposure misclassification by applying area averages to the commonly used zonal schemes.

These results highlight several points relevant to estimating concentrations of traffic-related

air pollutants. First, performance metrics using absolute or relative concentration differences

have similar trends; the latter has the advantage of being scale invariant. Second, joining or

interpolation methods using area weighting, averaging or IDW interpolation perform better

than NN estimates. Third, spatial resolutions (e.g., receptor grid spacing) must be below

∼160 m to estimate concentrations within 25% of true values at sites as close as 60 to 100 m

of major roads; closer spacing is needed at closer sites. While more stringent criteria can be

used, e.g., agreement within 10% for 90% of receptors would require a spatial resolution of

∼40 m, potential gains may be diminished and possibly offset by other errors, e.g.,

geocoding errors. Moreover, such resolution imposes a substantial computational burden.

3.3 Mapping to census zones and exposure misclassification

To model the entire Detroit area, a receptor grid spacing of 150 m was selected as a balance

between accuracy and computation issues. As seen in Figure 4, this spacing (approximately

equivalent to Δx=80 m) with IDW interpolations provided excellent performance at

distances of 60 m or more from major roads. Conversely, errors with this spacing can reach

50% for 5% of locations very near (within 20 m of the centerline) of major roads. As noted,

few individuals will live at such distances.

The interpolation and point-join methods showed several differences for the four zones.

(Supplemental Figure 1 shows illustrative maps for parcel and block joins.) For parcels,

agreement between the five methods was high (0.92<R<0.98), especially among point-join

and the first raster-based (simple up-scaling) approaches since the latter generally assigned

the value of the closest receptor. For blocks, the three raster-based approaches gave very

similar results (0.98<R<0.99), but differed more from the point-join results (0.91<R<0.93).

Given the small size of blocks relative to the 150 m receptor grid, the point-in-polygon
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technique does not provide a robust method of estimating areal averages (Okabe and

Sadahiro 1997); up-scaling raster interpolations can help to compensate for small block

sizes. At tract and ZIP code levels, interpolation techniques showed very high agreement (R

> 0.97) since areal averages were computed using a large number of receptors, which muted

differences among interpolation techniques. Given the generally similar results produced by

the interpolation techniques, the following presents results using the vector-based (point-

join) approach.

The maximum 24-hr concentration across Detroit estimated using the 150 m receptor grid

(Supplemental Figure 2) was mapped to each zonal system (parcels, census blocks, census

tracts, ZIP codes) as shown in Figure 5. These maps and the quantitative analyses discussed

below show three key points. First, the spatial agreement or fidelity with modeled

concentrations diminishes with larger geographic zones, a result of averaging within zones

that have considerable variability in concentrations. Changes in spatial agreement can be

seen visually on the maps, by cross-level correlations between parcel-level and block-,

tract-, and ZIP code-level concentrations (which decreased from R=0.81 for blocks to

R=0.29 for ZIP codes), by the mean fractional bias (which increased to 15% at the ZIP code

level; Table 1), and by concentration deviations which exceed the median concentrations for

over 25% of the population at both tract- and ZIP code-levels (Supplemental Table 1,

Supplemental Figure 3). ZIP codes only crudely depict traffic-related air pollutants, e.g.,

concentrations are elevated in only the central business district (e.g., ZIP codes 48216 and

48201). While agreement improves for tracts and blocks, some anomalies remain, e.g., a

long and narrow block that touches a major road can significantly elevate concentrations in

that block.

Following from the spatial averaging within each zone, the second effect is a compression of

the range of concentrations for the larger zones. For example, the concentration range across

receptors and parcels in the study area (1 - 299 μg/m3) was maintained for blocks, but

significantly reduced for tracts (10 - 64 μg/m3) and ZIP codes (8 - 45 μg/m3) (Table 1). The

cumulative distribution of pollutant levels, weighted by population exposed, shows the

significance of these changes (Figure 6). While concentration distributions at receptor,

parcel, block, tract and ZIP code levels all varied from one another (Kolmogorov-Smirnov

tests, p <0.0001), the largest differences occurred between the three smaller zones and the

two larger zones: the larger zones significantly underpredicted the highest 10% of

concentrations and completely missed the “extreme” values occurring near major roads.

Again, these effects arise from sharp concentration gradients near major roads, as well as

land use patterns that avoid the placement of residential property on or very near roads.

A third and unanticipated effect was a systematic bias that increased concentrations for the

larger zones, seen as a rightward shift of the cumulative exposure distributions (Figure 6)

and an increase in median concentrations (e.g., from 13 μg/m3 for parcels to 21 μg/m3 for

ZIP codes; Table 1). Parcel-level data largely excluded the on-road microenvironment with

the highest concentrations since parcels rarely include roads, especially high traffic roads. In

contrast, because the larger zones (e.g., tracts and ZIP codes) comprise the entire zone, areal

averages included these high concentrations, and thus residential exposure is overestimated.

(Additional descriptions of errors, including an analysis of concentration deviations, are
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shown in Supplemental Table 1 and Supplemental Figures 4 and 5). As noted, on-road

exposure is important for commuters and others who work and travel on high traffic roads,

and thus its inclusion may have merit in certain studies. However, because on-road exposure

may be shorter in duration, affect a different (e.g., commuting) population, and involve other

differences (e.g., pollutant compositional differences, lower breathing rates), including the

on-road component in population studies using residence location as an exposure

determinant can misclassify exposure, as discussed next.

Exposure misclassification rates associated with the use of census blocks, tracts and ZIP

codes are shown as off-diagonal values in contingency tables that compare quintiles of

population exposure for the highest 24-hr NOx concentration for each zonal system (Table

2). With perfect agreement (i.e., no misclassification), diagonal values (displayed in boxes)

would be 100% and off-diagonal values would be 0%. As suggested earlier, census blocks

attained the best performance. For example, the top left entry indicates that of the population

in the first (lowest) NOx quintile (∼133,000 people exposed to 1.4 to 8.1 μg/m3), blocks

correctly classified 79.5% (assuming that the parcel level classification is true). At the

block-level, most of the incorrectly classified people were grouped into the second and third

quantiles, but 2.4% were classified into the top two exposure quintiles. The overall

performance for a zonal system can be taken as the population (or fraction thereof) correctly

classified (the average across the diagonal), which is 68, 35, and 28% for blocks, tracts, and

ZIP codes, respectively. This analysis shows that performance at tract and ZIP code levels is

dismal, e.g., individuals classified into the middle exposure quintile for these zones are

nearly equally likely to have low, medium or high exposure; individuals classified into the

most-exposed quintile are more likely to have medium and occasionally low exposures. It

also shows limits to the simple correlation metrics used earlier, e.g., while correlations

appeared high (R = 0.81) between parcel- and block level data, only 68% of the population

was correctly classified into quintiles, i.e., nearly one-third of individuals were

misclassified.

Exposure misclassification using contingency analyses are more revealing than, or at least

complementary to, the correlation and distribution analyses shown earlier (as Table 1,

Figure 6) since both the number of persons and the degree of misclassification are displayed.

While results depend somewhat on the pollutant metric and classification approach, e.g.,

number of bins and cut-offs, this analysis strongly reinforces the need for highly spatially

resolved exposure data and small geographic units.

4 Recommendations and applications

Analyses in this paper lead to several recommendations regarding traffic-related air pollutant

exposure estimates. First, dispersion modeling analyses, which integrate effects of emission,

meteorological and locational factors, portray the dramatic temporal and spatial variation –

on hourly, daily and seasonal levels – observed for traffic-related air pollutants. This

information can be complemented and, to an extent, confirmed by air quality monitoring

data if near-road sites are available, although the few monitoring sites typically available

cannot show spatial patterns. The choice of averaging time and concentration metric

depends on the application. Both short- and long-term metrics might be used to identify
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“hotspots” and evaluate “critical” locations, e.g., schools, hospitals, parks, and athletic fields

where children and other susceptible individuals may be exposed. The present analysis in

large part was motivated by the desire for spatially- and temporally-resolved exposure

measures in cohort study of children with asthma.

Second, the emission inventory and dispersion modeling indicate that NOx concentrations

are dominated by emissions from the larger roads, despite the presence of numerous smaller

roads. Results are likely to be similar for other pollutants with several caveats, e.g.,

significant emissions of volatile organic compounds (VOCs) occur during vehicle start-up

and refueling, which is not captured by focusing on major roads. This suggests that focusing

on the largest roads may be sufficient to represent many impacts. This would be

advantageous as it reduces the data needs and the computational burden, which can be

considerable for high-resolution urban scale modeling. However, road alignment must be

accurately represented, e.g., short links may be needed to accurately represent curvilinear

alignments. Effective means to speed-up computations were presented in the Supplemental

Materials.

Third, high spatial resolution is needed to portray the steep concentration gradients found

near roads. In modeling applications, receptor grid spacing should be less than 160 m and

joining methods using IDW or other averaging techniques are needed to estimate

concentrations within 25% of true values at sites as close as 60 to 100 m of major roads;

closer spacing is recommended at sites very close to roads. Estimation approaches without

averaging, e.g., NN methods, may not perform well, particularly for distances within 40 to

80 m of major roads. The various joining techniques providing comparable area averages for

the larger zones, e.g., census tracts and ZIP codes, however, these zones have very limited

ability to represent traffic-related air pollutants (discussed further below). These results,

obtained for Detroit, emphasize the spatial resolution needed to accurately estimate

exposures of traffic-related air pollutants. In other cities and other applications, it may be

very difficult to achieve or defend such high resolution. We also show that performance

metrics using absolute or relative concentration differences yielded similar trends, although

the latter has the advantage of being scale invariant, and that contingency table approach

was particularly good at revealing and quantifying exposure misclassification.

Fourth, the zonal systems available and often used in exposure, epidemiology and

environmental justice analyses, e.g., data at county, ZIP code, census tract and even census

block levels, are poorly suited for investigating traffic-related air pollutants due to the spatial

mismatch of concentration gradients and zone sizes. Higher resolution is needed to capture

spatial variation. Census block and particularly property parcel-level data are preferred,

although long or narrow zones near major roads can produce anomalies, and block-level

data produced considerable misclassification, e.g., 32% were misclassified based on the

quintile contingency analysis. Unfortunately, high resolution neighborhood-level health

indicators are rarely available. The use of larger zones involves several issues: increased

rates of misclassification; significantly diminished spatial agreement; compression of the

range of concentrations due to area averaging; and systematic overestimation of residential

exposure since on- and near-road microenvironments are included. While effects of such

errors are context-specific, our results emphasize the need for spatially resolved and
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preferably geocoded health surveillance and demographic data for evaluating impacts of

traffic-related air pollutants.

5 Limitations

The present work has several limitations. First, emission and dispersion modeling involves

many parameters, assumptions and input data, and uncertainties can be considerable,

particularly for very highly resolved spatial and temporal scales where emissions inventory,

meteorological and other model parameters are especially uncertain. While we used the best

available information, actual concentrations – and population exposures – will differ from

predictions. While absolute levels of predictions involve uncertainties, i.e., factor of roughly

two errors are not uncommon due to especially uncertainties in emissions inventories,

estimated spatial patterns are likely to be accurate. Thus, dispersion modeling results are

sufficient for demonstrating the spatial resolution needed for exposure estimation purposes.

Given the extensive input data and computational requirements, examples using such

detailed modeling may remain uncommon, unfortunately. Second, concentrations resulting

from only primary traffic emissions were considered; secondary pollutants and contributions

from other local sources (e.g., power plants, boilers) and from distant sources were omitted.

Generally, these other sources are not as important as traffic emissions for NOx, although

they may dominate other pollutants, e.g., PM2.5. Third, while the available monitoring data

suggests that dispersion modeling results are reasonable, no attempt was made to validate or

calibrate models. Fourth, we evaluated a single year. Due to changes in emissions, traffic

and meteorology, results may be less relevant for other periods. Fifth, our results are based

on a single metropolitan area. While Detroit may be representative of large and

predominantly suburban cities, results may differ for areas that are much more or much less

densely populated, or those with very different meteorology, terrain and building effects,

e.g., street canyons. Sixth, exposure to traffic-related air pollutants most commonly occurs

in buildings or in vehicle cabins, and no attempt was made to account for factors influencing

indoor-outdoor relationships. Finally, we assumed that parcel-level estimates best reflected

exposure, but sub-parcel level variation in activity patterns and other factors may be

significant, and it is possible that aggregations at higher spatial scale might provide more

accurate exposure estimates.

6 Conclusions

This study has used dispersion modeling to estimate concentrations of traffic-related air

pollutants with the aim of improving estimates of population exposure. The modeling

portrayed intraurban concentration gradients at a high level of temporal and spatial

resolution for a major urban area, and appears to represent the largest and most

comprehensive assessment of population exposure in the literature. It shows the need to

estimate pollutant levels using essentially the finest-grained zones available for population

studies, e.g., property parcel and census block, and the misclassification, biases and reduced

variability resulting from larger geographic zones, e.g., tracts, ZIP codes, and counties. A

number of recommendations addressing spatial and temporal resolution, as well as

computational considerations, are made to help develop accurate exposure estimates. This

information is needed for a broad range of studies, e.g., project-level studies designed to
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characterize hotspots and environmental justice impacts associated with expansion of a

freeway, urban- and regional-scale epidemiology studies, and policy-oriented studies, e.g.,

quantification of energy and pollution trade-offs involved in transit-oriented development. In

addition, this information can be used to help evaluate pollution mitigation strategies, e.g.,

traffic control measures or buffers around highways.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Modeled road network for Detroit. Blue shaded areas shows city of Detroit and population

density. Orange rectangle is region for high (10 m) resolution analysis. Locations of the

three NOx monitoring sites are indicated.
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Figure 2.
NOx concentrations in μg/m3 around the I75/I94 junction for four scenarios: (a) monthly

average; (b) maximum 24-hr average; (c) 98th percentile 1-hr average, and (d) 24-hr average

for Jan. 19, 2010. I75 runs roughly N-S; I94 runs SW-NE. Concentration scale shown in

inset. Receptor grid uses 10 m spacing over a 1.0 ×1.2 km area.
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Figure 3.
Distribution of error measures for highest 24-hr average and estimates from 10 to 160 m

from known values. Absolute concentration differences (ΔC) for (A) nearest-neighbor and

(B) inverse-distance-weighted estimates. Relative concentration differences (RΔC) for (C)

nearest-neighbor and (D) inverse distance-weighted estimates.
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Figure 4.
Distance stratified analysis of relative errors (concentration differences or RΔC) for inverse-

distance weighted estimates and estimates from 10 to 160 m from known values. A. 95th

percentile errors. B. Percentage of receptors meeting 25% relative error criterion at given

distance.
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Figure 5. Maximum 24-hr NOx concentrations in Detroit for four geographic units: A: parcel; B:
blocks; C: tracts; D: ZIP code
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Figure 6.
Cumulative distribution of population exposed to maximum 24-hour NOx concentrations

estimated at parcel, block, census tract and ZIP code levels.
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Table 2

Contingency table showing agreement and misclassification between population estimates for exposure

quintile, showing percentage of population in each quintile. Concentration range shown in parentheses. Boxed

percentages would be 100% (and other values 0%) with no exposure misclassification.
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