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Image registration of biological data is challenging as complex deformation problems are common. Possible
deformation effects can be caused in individual data preparation processes, involving morphological
deformations, stain variations, stain artifacts, rotation, translation, and missing tissues. The combining
deformation effects tend to make existing automatic registration methods perform poor. In our experiments
on serial histopathological images, the six state of the art image registration techniques, including TrakEM2,
SURF 1 affine transformation, UnwarpJ, bUnwarpJ, CLAHE 1 bUnwarpJ and BrainAligner, achieve no
greater than 70% averaged accuracies, while the proposed method achieves 91.49% averaged accuracy. The
proposed method has also been demonstrated to be significantly better in alignment of laser scanning
microscope brain images and serial ssTEM images than the benchmark automatic approaches (p , 0.001).
The contribution of this study is to introduce a fully automatic, robust and fast image registration method
for 2D image registration.

I
mage registration is the process of transforming different sets of data into one coordinate system, and elastic
image registration is potentially an enabling technology for the effective and efficient use of many image-
guided diagnostic and treatment procedures, which rely on multimodality image fusion or serial image

comparison. The use of elastic image registration covers a wide variety of medical applications, from building
anatomical atlases, to longitudinal studies of tumor growth or other disease processes, through surgical planning
and guidance1–4. Consequently, it is a creative field of research; techniques are numerous and inspired from a wide
range of theories or techniques, such as statistics, information theory, theory of continuum mechanics, theory of
thermodynamics, optical flow, splines, wavelets and block matching, and there are a number of reviews of
biomedical image registration techniques and applications5–7.

The histopathological study of tissue is an important tool in the medical field for the prognosis of disease.
Conventionally, histological slides are examined under an optical microscopy to reveal two dimensional images.
However, this method is insufficient to analyze complex three dimensional histology of lesion or tumor. By
registering consecutive slices of biological images, 3D histology reconstruction can be generated8. In 2010, Peng
et al.9 introduced a Vaa3D system for real-time visualization of a three-dimensional digital atlas of neurite tracts
in the fruitfly brain. Another useful application is multimodal molecular mapping, requiring the joint analysis of
two-dimensional gene and protein expression maps (obtained from in situ hybridization and immunohisto-
chemistry, respectively) and/or their local comparison against cellular morphology maps (from histology)10. 3D
reconstruction and visualization of microscopic images makes it possible to provide medical doctors and biol-
ogists a rapid and precise data set about the patients or animals regarding the micro-environment and topology in
the tissue or organ potentially involved in certain diseases or biological functions.

Serial slides can be manually aligned by setting up a number of pairs of corresponding control points to the
same (x, y) location for consecutive images zi and zi11, and the pairs of images and paired-sets of control points
are then given to semi-automatic software11 for image alignment. Fully automatic registration of biological images
is possible as demonstrated by software TrakEM212–15 and in various studies8,10,16–18. However, 3D reconstruction
of histopathological data is challenging. Cardona et al.12 pointed out that ‘‘TrakEM2 acknowledges that any
automatic procedure (such as image registration and image segmentation) will eventually fail partially or fully and
will require manual correction by a human operator’’. In comparison to the CT scans or confocal images as used
in the studies9,18 where the serial image data maintains the property of geometrical continuity in 3d space, there
are complex deformation problems for serial histopathological slides, including physical destructions caused by
cutting and fixation, staining artifacts and uneven stain variations due to potential discrepancy in thickness of
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individual tissue sections. These complex distortion effects makes
image registration of histological data a difficult task (see Figure 1).
In previous studies8,10,14–17,19, the raw data tends to be carefully pre-
pared, showing little morphological distortions or stain variation, to
simplify the registration task. In addition, they tend to work with low
resolution images without dealing with high precision tissue or cell
level registration. Figure 2 illustrates possible deformation problems
caused in individual data preparation processes, involving morpho-
logical deformations, stain variations, stain artifacts, rotation, trans-
lation, and missing tissues. The combining deformation effects tend
to make existing automatic registration methods perform poor.

The main contribution of this study is to introduce a fully auto-
matic and robust image registration method that is able to deal with
complex deformation problems commonly found in biological
imagery. For evaluation, three types of data are utilized, including
47 pairs of serial histopathological images, 30 laser scanning micro-

scope images18 and 30 serial ssTEM images14. The 47 pairs of serial
histopathological images were collected under routine sample pre-
paration procedures in hospitals, showing the above-mentioned
deformations. The proposed method is compared with six existing
image registration techniques, including an elastic b-spline model for
biological images (UnwarpJ)20, an improved bi-directional b-spline
model for histopathological section alignment (bUnwarpJ)21, a popu-
larly adopted image registration approach (SURF 1 affine trans-
formation)22,23, a serial section registration approach14 using the
software package (TrakEM2)12–15, BrainAligner18 and a combination
of a local contrast correction method (CLAHE)24 and bUnwarpJ. The
results show that the existing image registration techniques perform
poorly on the serial histopathological data with deformations and
achieve less than the accuracy 70% on average while the proposed
method achieves the averaged accuracy 91.49%. In alignment of laser
scanning microscope brain images18, the results show that the pro-
posed method is significantly better than the automatic Brain-
Aligner18 (p , 0.001). In registration of serial ssTEM images14, the
proposed method is also significantly better than TrakEM214 (p ,

0.001).
This work combines and extends our previous efforts published in

Wang and Chen25, which integrates the strengths of area-based and
feature-based approaches and uses sparse approximation for coarse
and fast global registration to greatly improve the performance of
image registration. As we observed that data normalization and fea-
ture enhancement are vital for the following global feature-based
registration and local area-based registration, we further improve
the registration method by modifying the data normalization and
feature enhancement parts. The proposed method is able to not only
reduce global and local variations among slides but also effectively
identify corresponding features, and with accurately identified land-
mark features and normalized data, the method produces valid regis-
tration outputs robust to various deformation problems commonly
occurred in biological data, such as morphological distortions, stain-
ing variations, staining artifacts and loss of tissue.

Results
Serial histopathological image registration. 47 pairs of consecutive
slides were collected under routine sample preparation procedures in
hospitals using C57 mice with IgAN (Immunoglobulin A (IgA)
nephropathy), which is the most common glomerular disorder

Figure 1 | Image registration of histopathological images is difficult.
Image registration is the process of transforming different sets of data into

one coordinate system, but for registering histopathological images, there

are challenging morphological deformation problems (as displayed in the

left pair) in combination with staining variation and staining artifacts (as

illustrated in the right pair).

Figure 2 | Challenges of registration of histopathological images. The challenges of registration of histopathological images include complex geometrical

deformation and stain variations induced from individual data preparation steps.
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across the world26. IgAN was induced by daily injection of purified
IgA anti-phosphorylcholine and pneumococcal C-polysaccharide
(PnC)27, and all animal experiments were performed with the
approval (permit number IACUC-11-063) by the institutional

animal care and use Committee of the national defense medical
center, Taiwan. The tissues were fixed in 10% buffered formalin
and embedded in paraffin, and serial sections (4 mm) were cut
using Leica RM2155 and stained with hematoxylin and eosin

Table 1 | Quantitative evaluation on Histopathological Images

Score 95% C.I. for Mean

Method N Mean Std. Deviation Std. Error Lower Bound Upper Bound

UnwarpJ20 47 58.72 44.99 6.56 45.51 71.93
bUnwarpJ21 47 59.15 44.32 6.47 46.14 72.16
SURF22 47 14.89 22.25 3.25 8.36 21.43
TrakEM212–15 47 51.06 43.9 6.4 38.17 63.95
CLAHE24 1 bUnwarpJ21 47 69.36 43.51 6.35 56.59 82.14
Wang25 47 89.36 28.55 4.16 80.98 97.74
Proposed Method 47 91.49 23.12 3.37 84.7 98.28

Table 2 | LSD Multiple Comparison-Histopathological Images

LSD 95% C.I.

(I)Method (J)Method Mean Difference (I-J) Std. Error Sig. Lower Bound Upper Bound

Proposed UnwarpJ 32.77* 7.92 ,0.001 17.18 48.35
Method bUnwarpJ 32.34* 7.92 ,0.001 16.75 47.93
(cw-R) SURF 76.6* 7.92 ,0.001 61.01 92.18

TrakEM2 40.43* 7.92 ,0.001 24.84 56.01
CLAHE 1 bUnwarpJ 22.13* 7.92 0.006 6.54 37.71

Wang 2.13 7.92 0.774 212.48 16.73

*The proposed method is significantly better than the benchmark techniques using the LSD test (p , 0.01).

Figure 3 | A box plot of quantitative evaluation results of histopathological image registration. The presented method works constantly well overall and

outperforms the benchmark approaches (see Table 1). Outliers . 1.5 3 interquartile range are marked with a dot, and outliers . 3 3 interquartile range

are marked with an asterisk.
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(H&E). Images were then captured from glass slides with standard
brightfield light microscopy (Olympus, Japan) at the magnification
of 4003.

Regarding the evaluation method, as pointed out in a recent
study25 that conventional evaluation methods based on sum of
squared differences (SSD) of image intensities between the target
and the transformed source (see Equation 1) to represent the regis-
tration accuracy level can be misleading for tissue image applications
not only because that the intensity value of the pixel in the target and
the one of the wrongly registered pixel in the transformed source may
appear similar due to similarity of local tissue image features but also
because that the intensity of the pixel in the target and the one of the
accurately registered pixel in the transformed source may appear
different due to stain variation. Hence, the quantitative evaluation
approach of the previous work25 is adopted; five corresponding land-
marks between target images and associated transformed source
images by each registration method were firstly manually marked
by experienced pathologists, and an automatic matching system is
built to compare the coordinates of the corresponding landmarks.
The registration accuracy for each image pair is computed by the
matching successful rate over the corresponding landmarks (within a
five pixel distance), and the performance of each registration method
is evaluated by the averaged accuracies over all image pairs.

Table 1 presents the quantitative evaluation results on registration
accuracies. The benchmark approaches13–15,20–22 all perform poor,
achieving less than 70% accuracy on average, and hence manual
intervention are frequently required for accurate alignment. In com-
parison, the proposed method obtains registration accuracy
(91.49%), greatly outperforming the benchmark methods and show-
ing slight improvements than the author’s previous work25. Using
SPSS software28, the statistical analysis results in Table 2 show that
the proposed method is significantly better than the benchmark
techniques13–15,20–22 (p , 0.01) based on the Fisher’s Least Square
Difference test (LSD). Figure 3 presents the box plot of the quant-
itative scores, showing that the presented method frequently achieves
higher scores than the benchmark methods. Figure 4 illustrates the
quantitative evaluation results of alignment of the left image pair in
Figure 1, showing that the proposed method (Fig. 4(h)) aligns the
images well, achieving 100% matching score while the benchmark
methods perform poor due to complex deformation problems, stain-
ing variations and confusing local image features of biological data.
Figure 5 shows another image registration example by the proposed
method and the benchmark techniques. For the benchmark meth-
ods, the parameters adopted in the experiments are the same para-
meters used in the reference works14,20,21, and the parameter values
are listed in the method section.

Figure 4 | Quantitative evaluation of image registration for the left image pair in Figure 1. The blue rectangles represent the locations of the selected

landmarks defined by experienced pathologists in the target image(a); the red boxes represent mismatches of corresponding landmarks in the

transformed source image; the green boxes represent matches of corresponding landmarks in the transformed source image. There is no match for the

transformed source images by (c)UnwarpJ, (d) bUnwarpJ, and (e)SURF, and only one match for (f)TrakEM2. In comparison, the proposed method(g)

aligns the images well, achieving 100% target and transformed source matching successful rate.
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Laser scanning microscope images of neurons from different
brains. BrainAligner18 is an automatic computer program that
registers pairs of 3D image stacks using landmark matching. In
registration of the histopathological images, BrainAligner fails to
produce valid alignment outputs. We further compare the
performance of the proposed method and BrainAligner based on
the data used in the BrainAligner study18. The test data are 30 laser
scanning microscope images of the Drosophila and downloaded
from http://penglab.janelia.org/proj/brainaligner/BrainAligner/
Download.html. Regarding the parameters used in BrainAligner,
all parameters are based on the system default settings. For fully
automatic registration (without inputs of the manually marked
corresponding landmarks), both global and local registration types
are tested in the experiments.

Unlike histopathological images, local image features of laser scan-
ning brain images appear less confusing to one another, and there-
fore a general registration performance measurement method, i.e.
the percentage of pixels with similar intensity levels, is adopted to
measure the registration accuracy, and an automatic evaluation tool
is built to conduct quantitative evaluation automatically. The regis-
tration accuracy, r, is formulated as follows.

r~
# x : I2 xð Þ{U I1 xð Þð Þvtkf g

#V
ð1Þ

where I1, I2, U(I1) represents the source, target and transformed
source images; V~ x [ V1\Z2 : d xð Þ [ V2\Z2� �

defines a mask

common to the source and target images, and #V is the size of the
mask in pixels; t 5 30 in our experiments.

In our experiments, it is observed that with manually marked
corresponding landmarks between the source and target images,
semi-automatic BrainAligner performs well. However, without
manually predefined landmarks, fully-automatic BrainAligner does
not produce good registration outputs. In comparison, the proposed
fully automatic method without manual inputs performs well. The
registration accuracy scores are summarized in Table 3, and the
statistical analysis of LSD test is displayed in Table 4, showing that
the presented fully-automatic method is significantly better than the
fully-automatic BrainAligner (p , 0.001). The notable advantage of
the presented method is to save costs of manual efforts and time in
labelling landmarks. Figure 6 presents the box plot of the registration
accuracy scores, showing that the presented method frequently
achieves high scores in comparison to the benchmark approaches.
Figure 7 displays the registration outputs of six image pairs by the
proposed fully-automatic method, the fully-automatic BrainAligner
and the semi-automatic BrainAligner (with manually predefined
landmarks).

A comparison on computational speed among the proposed
method, the semi-automatic BrainAligner and the fully-automatic
BrainAligner is shown in Figure 8. The processing time for the semi-
automatic BrainAligner does not include the time for the manual
marking of corresponding landmarks as this information is
unknown in this study. Since the manual marking time is often

Figure 5 | Performance comparison on registration methods. Existing image registration methods perform poor on the histopathological image pair

with complex distortion problems while the proposed method is able to produce a valid transformation output. (a) the transformed source image of an

elastic b-spline method20 designed for biological images, (b) the output of a bi-directional b-spline approach21, (c) the transformed source image by

CLAHE24 1 bUnwarpJ, (d)the registration output of a popularly adopted registration method, i.e. SURF22, (e) the output of TrakEM212–15, (f) the

transformed source image of the proposed technique.

Table 3 | Quantitative evaluation on brain images: Proposed method versus BrainAligner

Score

Method N Mean Std. Deviation Std. Error

BrainAligner18 without predefined landmarks 30 53.04 8.84 1.61
BrainAligner18 with predefined landmarks 30 78.41 3.41 0.62
Proposed Method (cw-R) 30 78.15 3.55 0.64

www.nature.com/scientificreports
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lengthy, therefore the processing time by the semi-auto BrainAligner
might be greatly underestimated. Comparing the automatic
approaches, on average the proposed method takes 3.79 second per
registration while the automatic BrainAligner with the local registra-
tion mode costs 22.93 second per registration on average, and the
automatic BrainAligner with the global registration mode costs 52.32
second per registration on average. In statistical analysis, the pre-
sented method is significantly faster than the automatic BrainAligner
approach (p , 0.001 based on Tukey HSD and LSD tests).

Serial section transmission electron microscopy (ssTEM) of dro-
sophila neural tissue. We have also compared the performance of
the proposed method and TrakEM2 based on the data used in the
TrakEM2 study14. The test images are 30 serial ssTEM sections of the
Drosophila first instar larva ventral nerve cord (VNC) and
downloaded from http://www.ini.uzh.ch/,acardona/data.html. In

evaluation, the general registration performance measurement
method, i.e. the percentage of pixels with similar intensity levels, is
adopted to measure the registration accuracy (see Equation 1).

Figure 9 displays registration results of six pairs of ssTEM images
by the proposed method and TrakEM2; row (a) and (b) show target
images and source images, respectively, and row (c) and (d) present
registered source images by the proposed method and TrakEM2,
respectively. It is observed that in this data set, there is no distinctive
morphological deformation between the target images(a) and the
source images(b), but illumination variations between the source
and the target can be large, which tends to make the overall registra-
tion scores lower in comparison to the BrainAligner data set. In the
second column of Figure 9, it shows that TrakEM2 generates poorer
alignment output(d) than the proposed method(c). Figure 10 dis-
plays the box plot of the registration accuracy scores by the proposed
method and TrakEM2, showing that the proposed method tends to

Table 4 | LSD Test: Proposed method versus BrainAligner

LSD

(I)Method (J)Method Mean Difference (I-J) Std. Error Sig.

Proposed BrainAligner without
predefined landmarks

25.11* 1.50 ,0.001

Method BrainAligner with predefined
landmarks

2.25 1.50 0.86

*The proposed method is significantly better than the benchmark techniques using the LSD test (p , 0.01).

Figure 6 | A box plot of registration accuracy scores on laser scanning brain images from BrainAligner study18. 100 indicates that the method accurately

align the target and source images, and 0 indicates poor registration.
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obtain higher scores than TrakEM2. Moreover, using ANOVA ana-
lysis, the proposed method is significantly better than TrakEM2 in
image registration of serial ssTEM images (p , 0.001).

Discussion
We present a fully automatic elastic registration method for aligning
2D tissue images robust to morphological distortions, staining var-
iations and staining artifacts. In addition, the presented method for
detection of corresponding landmarks works reliably without man-
ual intervention, and the presented image registration algorithm is
not only limited to histopathological slides but can also be applied to
other anatomically or histologically defined biological images such as
laser scanning microscope brain images and serial ssTEM images.
Moreover, as complex deformations are unavoidable in real life data,
the presented technique will prove to be a substantial advantage for
any application that requires image registration. We have integrated
our method into a public Java-based image processing system,
ImageJ29, and the software is made publicly available (http://www-
o.ntust.edu.tw/,cweiwang/ImageRegistration/), allowing the sci-

entific community to download and use the robust image registration
system (Cw-R).

Methods
This paper presents a fully automatic, robust and fast registration method that inte-
grates the strengths of both area-based approaches and feature-based methods for
biological data, containing three main parts: (1) improved data normalization and
feature extraction, (2) sparse approximation of images for coarse and fast global
registration, (3) Optimize and refine local registration by area-based direct matching
approach. This work combines and extends our previous efforts published in Wang
and Chen25, and the improvement is made on the first part, which is improved data
normalization and enhanced feature extraction. In this section, descriptions are
focused on the modified part, and other parts can be found in the previous
publication25.

Improvements on data normalization and image feature extraction can not only
help identify more effective corresponding feature pairs for global registration but
also boost up the performance of area-based local registration. Figure 11 shows the
results of detection of corresponding feature pairs by SURF, SIFT, the author’s pre-
vious work25 and the proposed method, showing that (a)SURF produces poor
matching, (b)SIFT generates some incorrect matches, and (d)the proposed method
find more accurately-matched corresponding feature pairs for fast and higher level
coarse registration than (c)the author’s previous work25.

Figure 7 | Registration of brain images by brainAligner and proposed method. The brainAligner performs well with predefined landmarks but poor

without predefined landmarks. In comparison, the proposed method without predefined landmarks produces accurate alignment outputs. (a) the target

brain images, (b) the source brain images, (c) the registered source images by the proposed method (cw-R), (d) the registered source images by

brainAligner without predefined landmarks (under the local registration mode), (e) the registered source images by brainAligner without landmarks

(under the global registration mode), (f) the registered source images by brainAligner with predefined landmarks.

www.nature.com/scientificreports
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Improved data normalization and feature extraction. An improved data
normalization process is proposed to reduce variations on image features and
enhance tissue patterns. This greatly benefits global feature matching and local area-
based directing matching processes. It automatically optimizes the brightness and
contrast of individual color channels based on the analysis of the image histogram
distribution. Furthermore, as common contrast stretching algorithms are sensitive to
spike, ridges or long tails problems at the tails of the histogram distribution and
unable to detect the dynamic range of the main cluster, a modified method is
presented here to effectively identify the dynamic range of the main cluster and deal
with spike, ridges or long tails problems. Figure 12 presents (a) a raw tissue image with
long tail problem, (b) the image generated by a commonly adopted auto contrast
adjustment method (using Adobe Photoshop) and (c) the image by the presented data
normalization method. Figure 12 shows that tissue image features such as nuclear
patterns are greatly enhanced by the presented method.

In conventional histopathological staining (H&E), Hematoxylin induces the
blue staining of nuclei, and Eosin induces the red/pink staining of cytoplasm.
Based on our previous study30 showing that applying histogram equalization in
RGB color space performed better in separating the nuclei from the cytoplasm
than in HSL color space, both to enlarge the difference between the nuclear and
cytoplasmic expression in color space and to further produce more distinctive
tissue image features, the normalization is applied to the Red, Green, and Blue
components of each image.

In color images, the value of each pixel is represented by a vector �X with
elements the pixel values of each color component. Assuming
I i,jð Þ~�X~ xc1 ,xc2 ,xc3½ � a random vector, which models the pixel value for each
color component c1, c2, c3 in a color image. Firstly, the lower and the upper bound
intensity levels of the histogram of each channel, xlow and xhigh, are computed by
the equations below. Given a histogram distribution H, where H(x) is the number
of pixels with intensity level x, the lower and the upper bound values for trans-
formation are formulated as follows.

x
cj

low~arg min
x

X
k

H kð Þcj � bvH xð Þcj
v

X
k

H kð Þcj�a
 !

ð2Þ

x
cj

high~arg max
x

X
k

H kð Þcj � bvH xð Þcj
v

X
k

H kð Þcj�a
 !

ð3Þ

where cj: {c1, c2, c3}, a 5 0.1 and b 5 0.002.
Next, it maps the original pixel value xcj in the range from x

cj

low to x
cj

high to new value

x
cj
� in the valid intensity scale from x

cj

min to x
cj
max .

x
cj
�~

x
cj

min , xcj ƒx
cj
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x
cj

minz xcj {x
cj
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� � x
cj
max{x

cj
min

x
cj
high{x

cj
low

, x
cj

lowvxcj ƒx
cj

high

x
cj
max , xcj wx

cj
max

8>>><>>>: ð4Þ

The data normalization greatly reduces stain variation and enhances tissue patterns,
assisting the following feature extraction model to identify valid corresponding
landmarks and improving image registration outcomes. An illustration is given in
Figure 13; (a) the source image, (b) the target image, (c) and (d) are the images applied
with the presented data normalization method with automatically identified corres-
ponding landmarks, (e) and (f) are images with deformation grid, (g) is the
deformation field, and (h) is the transformed source image that is well aligned to the
target image. The tissue patterns of the images applied with the presented data
normalization method are greatly enhanced, assisting the following feature extraction
model to identify valid corresponding landmarks and improving image registration
outcomes.

For biological images, although the dyes used are visualized as having different
colors, the resulting stains actually have complex overlapping absorption spectra. In
the previous studies, color deconvolution was used to achieve color separation in
forensic image processing31 and to achieve stain separation32,33 in biological image
processing. Our goal is to extract the eosinophilic structures, which are generally
composed of intracellular or extracellular protein, as image features for image
registration, and the color decomposition technique is utilized to extract independent
haematoxylin and eosin stain contributions from individual histopathological images
using orthonormal transformation of RGB.

Figure 8 | A box plot of the image registration processing speed on the brain images. The processing time (in seconds) on brain image registration by the

proposed method, the semi-automatic brainAligner and the automatic brainAligner. The processing time for the semi-automatic brainAligner does not

include the time for manually marking corresponding landmarks as this information is unknown in this study. Since the manual marking time is often

lengthy, therefore the processing time by the semi-automatic brainAligner is greatly underestimated. Comparing the automatic approaches, the proposed

method is significantly faster than the brainAligner approach (p , 0.001 based on Tukey HSD and LSD tests) and costs 3.79 second per registration.
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Figure 9 | Registration of ssTEM images by TrakEM2 and the proposed method. (a) the target images, (b) the source images, (c) the transformed source

images by the proposed method (cw-R), (d) the transformed source images by TrakEM2.

Figure 10 | A box plot of registration accuracy scores on ssTEM images from TrakEM2 study14. 100 indicates that the method accurately align the target

and source images, and 0 indicates poor registration.
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In the RGB color-space, every color is defined as~c: c1,c2,c3ð Þ: r,g,bð Þwhere r, g, b
represent the red, green and blue components, and we can see additive color mixing as
the vector addition of RGB components. To model the colors in an image as the vector
addition of a desired (D) and undesired (U) components to a background color (P),
new unit vectors can be defined as follows.

~u:PU
�! ð5Þ

~d:PD
�! ð6Þ

~n:~u|~d ð7Þ

where~n is perpendicular to~u and~d;~n,~u,~d span the 3D space; PU
�!

and PD
�!

are
alternative unit vectors based on the undesired and desired colors.

Then, color~c can be transformed to the new unit vectors.

~c~r:~rzg:~gzb:~b~u:~uzd:~dzn:~nz~p ð8Þ

where~p:OP
�!

; O is the origin in the RGB 3D space; OP
�!

is a vector.
By setting u 5 0, we remove the undesired component and obtain the new color

c’
!

~d:~dzn:~nz~p. In the case of three channels, the color system can be described as a
matrix of the form with every row representing a specific stain and every column
representing the optical density (OD) as detected by the red, green and blue channel
for each stain.

M~

c11 c12 c13

c21 c22 c23

c31 c32 c33

0B@
1CA ð9Þ

For normalization, each OD vector is divided by its total length, such that

Figure 11 | Detection of corresponding features by SURF, SIFT, the author’s previous work25 and the proposed method. (a)SURF produces poor

matching, (b)SIFT generates some incorrect matches, and (d)the proposed method find more accurately-matched corresponding feature pairs for fast

and higher level coarse registration than (c)the author’s previous work.

Figure 12 | Comparison of data normalization methods. The proposed data normalization method is able to deal with spike, ridges or long tails

problems at the tails of the histogram distribution and effectively enhance tissue patterns. (a) a raw tissue image with long tail problem, (b) image by a

commonly adopted auto contrast adjustment method (Adobe Photoshop is used here), (c) image by the presented data normalization method where

tissue image features such as nuclear patterns are enhanced.
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(cc11~c11
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11zc2
12zc2

13

q
, cc21~c21

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

21zc2
22zc2

23

q
and

cc31~c31

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

31zc2
32zc2

33

q
). In this study, the normalized optical density (OD)

matrix, M̂, to describe the color system for orthonormal transformation is defined as
follows:

bM~

R G B

0:6442 0:7166 0:2668 Haematoxylin

0:0928 0:9541 0:2831 Eosin

0 0 0

0BBB@
1CCCA ð10Þ

When C is the 3 3 1 vector for amounts of the stains at a particular pixel, the vector of
OD levels detected at that pixel is equal to L~C bM. Therefore, multiplication of the
OD image with the inverse of OD matrix results in orthogonal representation of the
stains forming the image (C~ bM{1L). Then, the image features of the red channel are
extracted as eosinophilic structures for both high level feature-based coarse regis-
tration and local area-based direct matching registration.

Parameter values used in the experiments. For the benchmark methods, the
parameters used in the experiments are the default parameters in the
implementations of the reference works14,20,21, and they are the same parameters as
used in the previous studies14,20,21. The values of the parameters for the benchmark
methods and the proposed method are listed below.

UnwarpJ parameter values. Initial deformation 5 Very Coarse, Final deformation 5

Fine, Divergence weight 5 0.0, Curl Weight 5 0.0, Landmark Weight 5 0.0, Image
Weight 5 1.0, Stop Threshold 5 0.01.

bUnwarpJ parameter values. Registration Mode 5 Accurate, Initial deformation 5

Very Coarse, Final deformation 5 Fine, Divergence weight 5 0.0, Curl Weight 5 0.0,
Landmark Weight 5 0.0, Image Weight 5 1.0, Stop Threshold 5 0.01.

TrakEM2 parameter values. mode 5 least squares (linear feature correspondences).
For Scale Invariant Interest Point Detector, initial gaussian blur 5 1.60px, Steps per
scale octave 5 3, minimum image size 5 64px, maximum image size 5 600px. For
Feature Descriptor, feature descriptor size 5 8, feature descriptor orientation bins 5

8, closest/next closest ratio 5 0.92. Maximal alignment error 5 100px, minimal inlier

Figure 13 | Illustration of the proposed data normalization method. The proposed data normalization method enhances tissue patterns, reduces stain

variation, and assists the following identification of corresponding landmarks and image registration. (a) the source image, (b) the target image, (c) and

(d) are the images applied with the presented data normalization method with automatically identified corresponding landmarks, (e) and (f) are images

with deformation grid, (g) is the deformation field, and (h) is the transformed source image that is well aligned to the target image.
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ratio 5 0.2, minimal number of inliers 5 7, expected transformation 5 rigid,
tolerance 5 0.5px. Desired transformation 5 Rigid, correspondence weight 5 1.00.
In optimization, maximal iterations 5 2000, maximal plateauwidth 5 200, mean
factor 5 3.00.

SIFT parameter values used in the proposed method. initial gaussian blur 5 1.05px,
Steps per scale octave 5 3, minimum image size 5 64px, maximum image size 5

1024px, feature descriptor size 5 4, feature descriptor orientation bins 5 8, closest/
next closest ratio 5 0.92, maximal alignment error 5 30px, minimal inlier ratio 5

0.05, minimal number of inliers 5 7, expected transformation 5 rigid.

Software and test images. The developed software is platform independent and thus
can be executed in different operation systems such as Windows, Linux or Mac. The
software with some test images can be downloaded from the author’s website (http://
www-o.ntust.edu.tw/,cweiwang/ImageRegistration/).
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