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Abstract
Adipose-derived stem cells (ASCs) are mesenchymal 
stem cells (MSCs) that are obtained from abundant 
adipose tissue, adherent on plastic culture flasks, can 
be expanded in vitro , and have the capacity to differ-
entiate into multiple cell lineages. Unlike bone marrow-
derived MSCs, ASCs can be obtained from abundant 
adipose tissue by a minimally invasive procedure, which 
results in a high number of cells. Therefore, ASCs are 
promising for regenerating tissues and organs dam-
aged by injury and diseases. This article reviews the 
implications of ASCs in tissue regeneration. 
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Core tip: This review article provides an overview on 
adipose-derived stem cells (ASCs) for implications in 

tissue regeneration. ASCs are obtained in high yields 
from abundant adipose tissue in the body and have 
multi-lineage differentiation ability. This article focuses 
on ASC characterization, growth factor secretion from 
ASCs, differentiation ability in vitro  and in vivo , and the 
potential clinical applications.
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INTRODUCTION
Mesenchymal stem cells (MSCs) are adult stem cells that 
were originally identified in bone marrow as multi-potent 
cells[1,2]. Stem cells are characterized by their self-renewal 
ability and multi-potency. Bone marrow-derived stem 
cells are most broadly studied for therapeutic potentials 
since their discovery in the 1960s[1]. After the discovery 
of  bone marrow-derived MSCs, MSCs have been isolated 
from nearly every tissue in the body[3], for example, adi-
pose tissue[4], umbilical cord blood[5], peripheral blood[6], 
dental pulp[7], dermis[8], and amniotic fluid[9], and even in 
tumors[10]. Adipose-derived stem cells (ASCs) were first 
identified as MSCs in adipose tissue in 2001[11], and since 
then adipose tissue has been studied as a cell source for 
tissue engineering and regenerative medicine. There are 
multiple terms for stem cells derived from adipose tissue, 
for example, preadipocytes, adipose-derived stromal cells, 
processed lipoaspirated cells, adipose-derived mesenchy-
mal stem cells, adipose-derived adult stem cells. In 2004, 
the consensus was reached the term as ASCs.

There are several types of  adipose tissue, with sub-
cutaneous as the most clinically relevant source. ASCs 
can be isolated from subcutaneous adipose tissue of  the 
abdomen, thigh, and arm. Because adipose tissue is typi-
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cally abundant in the human body, ASCs can potentially 
be isolated in high numbers. The multi-lineage capac-
ity of  ASCs offers the potential to repair, maintain or 
enhance various tissues. This review article will focus 
on source, isolation, and characterization of  ASCs, se-
cretion of  growth factors from ASCs, in vitro and in vivo 
differentiation ability of  ASCs, and the potential clinical 
application. 

SOURCE, ISOLATION, AND 
CHARACTERIZATION OF ASCS
There are mainly two types of  adipose tissue: white adi-
pose tissue and brown adipose tissue. They are morpho-
logically and functionally different. Brown adipose tissue 
much less abundant than white adipose tissue, but can be 
found in the neck, mediastinum, and interscapular areas 
in neonates. However, brown adipose tissue undergoes 
a morphologic transformation with aging. The appear-
ance of  brown adipose tissue is literally brown. Brown 
adipocytes are multilocular and retain small lipid vacuoles 
compared to white adipocytes. Vascularization is obvi-
ous because brown adipose tissue requires much more 
oxygen consumption compared to other tissues. Brown 
adipocytes have no known correlation with insulin re-
sistance. The main function of  brown adipose tissue is 
thermogenesis[12,13]. Brown adipose tissue contains a large 
number of  mitochondria and expresses uncoupling pro-
tein 1 (UCP1). UCP1 is a brown adipose tissue-specific 
marker, not expressed within white adipose tissue. UCP1 
is expressed in the inner membrane of  mitochondria, 
mainly regulated by adrenergic signaling through sympa-
thetic innervations, and this signaling is responsible for 
thermogenesis[12,13]. Brown adipose tissue is activated by 
thyroid hormone, cold temperatures, thiazolidinediones, 
and activated brown adipose tissue is inversely correlated 
with body mass index, adipose tissue mass and insulin 
resistance.

White adipose tissue is found throughout the body, 
representatively in subcutaneous and visceral adipose tis-
sue. The appearance of  white adipose tissue is yellow or 
ivory. White adipocytes are unilocular and contain large 
lipid vacuoles. White adipose tissue function is to store 
excess energy in the form of  triglycerides, and its hyper-
plasia causes obesity and dysfunction of  metabolic path-
ways as insulin resistance. UCP1 is not expressed in white 
adipocytes but the isoform UCP2 is expressed in parts of  
white adipocytes.

Recently, beige adipocytes have been discovered with-
in white adipose tissue, especially inguinal white adipose 
tissue[14]. Beige adipocytes have the characteristics of  both 
brown and white adipocytes. Beige adipocytes contain 
both unilocular large and multiple small lipid vacuoles. Its 
function is adaptive thermogenesis. In response to cold 
temperature exposure, beige cells transform into cells 
which have brown adipose tissue-like characteristics, such 
as UCP1 expression and small lipid vacuoles[15]. It is still 
controversial whether the beige adipocytes arise through 

the transdifferentiation of  white adipocytes or by de novo 
adipogenesis from a subgroup of  precursor cells[16,17].

ASCs isolated from white adipose tissue have dif-
ferent characteristics from those isolated from brown 
adipose tissue, just as ASCs from different anatomical 
areas have different characteristics. Subcutaneous tissues 
are easily obtained via lipoaspiration and usually discarded 
after the surgery. The lipoaspiration technique does not 
affect function of  ASCs, but the vacuum process does 
damage mature adipocytes[18].

Zuk et al[4] developed a widely used method for iso-
lating ASCs from white adipose tissue in 2001. Adipose 
tissues are minced and then undergo enzymatic digestion 
with collagenase type Ⅱ. After centrifugation, the result-
ing pellet is called the stroma vascular fraction (SVF). Ap-
proximately 2 to 6 million cells in SVF can be obtained 
from one milliliter of  lipoaspirate[19]. SVF contains ASCs, 
endothelial cells, endothelial progenitor cells, pericytes, 
smooth muscle cells, leukocytes, and erythrocytes[20]. 
ASCs are obtained as the plastic-adherent population af-
ter overnight culturing. 

Stem cell yield is higher from adipose tissue than 
bone marrow-both for aspirated and excised adipose 
tissues. One gram of  aspirated adipose tissue yields ap-
proximately 3.5 × 105 to 1 × 106 ASCs. This is compared 
to 5 hundred to 5 × 104 of  bone marrow-derived MSCs 
(BM-MSCs) isolated from one gram of  bone marrow 
aspirate[21]. However, ASC yield from lipoaspirated adi-
pose tissue has been reported to be approximately one 
half  that isolated from whole, excised adipose tissue[22]. 
ASCs are isolated from the SVF after plating, as ASCs 
adhere fairly quickly to the surface of  tissue culture-
treated flasks. ASCs are easily cultured and expanded 
in vitro; average doubling time of  cultured ASC varies 
between 2 to 5 d, depending on passage number and 
culture medium[23,24]. ASCs can be easily cryopreserved in 
a media containing serum and dimethylsulfoxide. Prolif-
eration and differentiation of  ASCs are not affected by 
cryopreservation[25]. The morphology of  ASCs is spindle-
shaped, very similar to BM-MSCs.

One notable characteristic of  ASCs is that they are 
not homogenous population[11,26]. Many studies have at-
tempted to characterize ASCs using cell surface markers 
via flow cytometry analysis, but a unique single marker 
has yet to be identified. ASCs have a positive expression 
of  CD34 at the first passage of  culture, but CD34 ex-
pression decreases after passaging[20,23]. ASCs express typi-
cal mesenchymal markers such as CD13, CD29, CD44, 
CD63, CD73, CD90, and CD105, and ASCs are negative 
for hematopoietic antigens such as CD14, CD31, CD45, 
and CD144[4,23,27]. After culturing and passaging, ASC’s 
surface markers can change with passaging. The expres-
sion of  hematopoietic markers such as CD11, CD14, 
CD34, and CD45 dissipates or are lost[28]. On the other 
hand, the expression level of  CD29, CD73, CD90, and 
CD166 increase from the SVF to passage 2[23]. Passaging 
is considered to select cell population with more homog-
enous cell surface markers compared to SVF.

Further characterization of  the heterogeneous ASC 
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population has been recently reported. Li et al[26] catego-
rized four ASC subpopulations: pericytes as CD146+/
CD31-/CD34-, mature endothelial cells as CD31+/CD34-, 
premature endothelial cells as CD31+CD34+, and preadi-
pocytes as CD31-/CD34+. The highest subpopulation 
was preadipocytes with 67.6%, premature endothelial cell 
was the second highest subpopulation with 5.2%, and the 
percentage of  pericytes and mature endothelial cells were 
less than 1%. The cells with CD31-/CD34+ expression 
demonstrated the greatest proliferation and highest ad-
ipogenic differentiation. The localization of  ASCs within 
adipose tissue is not totally clarified yet, but the niche of  
ASCs is suggested to be in the vasculature of  adipose 
tissue[29]. Histological analysis also suggested that ASCs 
reside within adipose tissue in a perivascular location[30,31]. 
Traktuev et al[31] concluded that the location of  the ASCs 
in the vessel is at interface between endothelium and 
adipocytes, and ASCs have the ability to both support 
vascular structure and generate adipocytes.

ASC GROWTH FACTOR SECRETION
ASCs are considered to be a mediator of  tissue regenera-
tion through the secretion of  specific soluble factors. 
ASCs secrete multiple growth factors, including basic 
fibroblast growth factor (bFGF), vascular endothelial 
growth factor (VEGF), insulin-like growth factor 1, 
hepatocyte growth factors (HGF), and transforming 
growth factor (TGF)-β1[32]. The expression of  cytokines 
renders ASCs promising therapies for transplantation and 
ischemia patients. Transplanted tissues and organs are ex-
posed to hypoxia soon after transplantation due to a lack 
of  initial vasculature and tend to undergo apoptosis[33]. 
The levels of  VEGF, bFGF, and HGF secreted by ASCs 
are reported to be upregulated by hypoxia. VEGF was se-
creted at the concentrations of  70.17 and 200.17 pg/mL 
under normoxia and hypoxia, respectively. Basic FGF was 
secreted at the concentrations of  10.62 and 24.75 pg/mL 
under normoxia and hypoxia, respectively[34]. Similarly, 
Rehman et al[35] reported that ASCs secreted significant 
levels of  VEGF and HGF under hypoxia, which induced 
the healing mice hindlimb ischemia. ASCs are considered 
to be a cell source that induces angiogenesis, which is ac-
tually used for human ischemia treatment[36].

In addition to growth factor secretion, ASCs are 
responsive to growth factors, including enhancing pro-
liferation by bFGF, and platelet-derived growth factor 
(PDGF). Basic FGF is released from an injured extracel-
lular matrix[37]. PDGF is released from activated platelets 
on bleeding[38]. When ASCs are exposed growth factors, 
tissues can be regenerated more effectively. Kaewsuwan et 
al[39] studied effect of  six growth factors on the prolifera-
tion of  ASCs, and found that PDGF-BB had the highest 
stimulatory effect at the concentration of  10 ng/mL. 
PDGF receptors α and β are expressed in ASCs, and 
PDGF-BB and PDGF receptor β signaling is involved 
in the stimulation of  ASCs[39]. Besides PDGF receptors 
α and β, ASCs express VEGF, HGF, epidermal growth 
factor (EGF), and bFGF receptors[40,41]. VEGF increases 

migration and promotes chondrogenic differentiation[41], 
and HGF promotes hepatogenic differentiation of  ASCs 
in vitro[42]. EGF inhibits ASC adipogenic differentiation, 
and bFGF increase ASC proliferation, promotes adipo-
genic and chondrogenic differentiation, and inhibit osteo-
genic differentiation in vitro[43-47].

ASCs possess unique paracrine characteristics. ASCs 
secrete growth factors that stimulate recovery of  dam-
aged tissue. Furthermore, ASCs express several kinds of  
growth factor receptors and are sensitive to growth fac-
tors. Therefore, ASCs mediate tissue regeneration. 

IN VITRO DIFFERENTIATION ABILITY OF 
ASCS
ASCs can be differentiated into multiple lineages under 
culturing with specific conditions[11], which results in the 
potential of  ASCs for multiple clinical applications. The 
induction of  ASC differentiation in vitro is achieved by 
culture with media containing selective lineage-specific 
induction factors. ASCs have been shown to be dif-
ferentiated into cells of  ectodermal, endodermal and 
mesodermal origin[4,48,49]. Less controversial is the dif-
ferentiation of  ASCs into adipogenic, chondrogenic, and 
osteogenic cells, because ASCs are of  mesodermal origin. 
With a combination of  morphological observation, im-
munofluorescence, and polymerase chain reaction (PCR) 
analysis in vitro, adipogenic, osteogenic, and chondrogenic 
potentials of  ASCs has been reported[4,11]. As mentioned 
above, MSCs from different anatomical sources demon-
strate some differences. ASCs have prominent adipogenic 
differentiation ability compared to BM-MSCs in vitro[50,51]. 
BM-MSCs have been shown to have higher osteogeneic 
differentiation ability compared to ASCs[51-53].

ASCs can be differentiated into adipocytes when 
cultured in adipogenic differentiation media, which typi-
cally contains isobuthyl-methylxanthine, insulin, and 
indomethacin[54]. ASCs develop multiple lipid droplets 
about 7 d following exposure to the induction media, and 
the number of  lipid droplets gradually increases. By 2 to 
3 wk, the lipid droplets begin to form a unilocular lipid. 
During differentiation into mature adipocytes, ASCs 
express several types of  extracellular matrix (ECM) pro-
teins, including fibronectin, laminin, and various types 
of  collagen. During adipogenesis, a fibronectin network 
develops first, and a type-Ⅰ collagen network is formed 
last[55]. These ECMs allow ASCs to differentiate into ma-
ture adipocytes. ASCs show promise for soft-tissue ap-
plications. Lipid droplets contain triglycerides, and can be 
easily confirmed histologically using Oil red O and Sudan 
Ⅲ staining. Gene expression that is specific to mature 
adipocutes includes peroxisome proliferator activated 
receptor (PPAR)-γ2, leptin, aP2, and glucose transporter 
type 4[56]. The real-time PCR study showed that the ex-
pression levels of  PPAR-γ2 in ASCs isolated from female 
mice were higher than in those from male mice, suggest-
ing that adipogenic differentiation of  ASCs is closely 
related to gender[57].
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notypes has been reported, the in vivo translation can be 
challenging. While ASCs have many advantages as a cell 
source, (e.g., easily harvested, abundant, and easy to cul-
ture), there remains the challenge of  cell survival in vivo. 
Poor cell survival after in vivo injection or implantation 
is common. This is in part due to the hypoxic environ-
ment, particularly if  cells are transplanted into ischemic 
tissues. ASCs have been shown to survive in ischemic 
tissues, whereas mature adipocytes die easily under isch-
emic conditions[67], ASCs also secrete angiogenic factors 
under hypoxic conditions[34,35]. For certain clinical appli-
cations, ASC implantation may require suitable biomate-
rial scaffolds that support cell attachment, proliferation, 
and differentiation. The scaffold should be selected 
based numerous characteristics, such as porosity, bio-
activity, mechanical integrity, biodegradability, and low 
immunogenicity. Ideal scaffolds can provide cells with 
an environment suitable for cell survival[68]. The environ-
ment immediately following implantation can be severe 
for the cells to survive because oxygen and nutrients 
are insufficient. Implanted cells need to survive until ef-
fective angiogenesis occurs. As described above, ASCs 
secrete significant levels of  angiogenic factors under 
hypoxia. ASCs can survive in an ischemic environment, 
and provide a reservoir of  growth factors that are neces-
sary for angiogenesis. 

ASCs have immense potential in wound healing appli-
cations. Altman et al[69] grafted an acellular dermal matrix 
construct seeded with human ASCs into a murine injury 
model, and found that ASCs enhanced the wound heal-
ing at day 7. Most of  the ASCs were viable 2 wk after the 
engraftment. An appropriate scaffold contributed to ASC 
homing and surviving. ASCs grafted in the wound can 
result in the augmentation of  the local blood supply and 
in an improvement of  regeneration capacity.

As ASC differentiation into adipocytes is well estab-
lished, adipose tissue regeneration using ASCs in vivo has 
been investigated. Clinical applications include soft tissue 
augmentation after injury, surgical resection, and con-
genital malformations. Among the strategies to generate 
adipose tissue are the combination of  ASCs and scaf-
folds, the use of  acellular scaffolds, and the addition of  
drugs or growth factors to the scaffolds that have been 
examined include type Ⅰ collagen, fibrin, silk fibroin, 
alginate, hyaluronic acid, and matrigel[70-72]. Injectable 
scaffolds are an attractive option, as minimally invasive 
therapies would be widely adapted by surgeons. Methods 
of  drug delivery include using polymeric microspheres 
to control the release of  factors such as bFGF, insulin, 
and dexamethasone[73-75]. 

Regarding osteogenic potential, ASCs show promise 
for bone tissue regeneration after injection or congeni-
tal malformations. Since ASCs were discovered to have 
osteogenic potential, many in vivo studies have combined 
ASCs with biodegradable scaffold materials to promote 
bone growth. Immuno-deficient animal models for 
nonweight-bearing bone formation have become a com-
mon model to assess human ASC osteogenic potential in 
vivo. Because bone is composed of  hydroxyapatite (HA) 

When ASCs are cultured in osteogenic differentiation 
media, which may contain 1,25-dihydroxyvitamin D3, 
ascorbate-2-phosphate, and bone morphogenetic pro-
tein-2 (BMP)-2, for 2 to 4 wk, the cells differentiate into 
osteoblast-like cells in vitro[58]. After differentiation, the 
osteoblast-like cells start to produce calcium phosphate 
within the ECM which can be assessed with Alizarin 
Red or von Kossa staining to reveal osteocytes. Alkaline 
phosphatase, type Ⅰ collagen, osteoponin, osteocalcin, 
bone sialoprotein, Runx-1, BMP-2, BMP-4, parathyroid 
hormone receptor, BMP receptor 1 and 2 are common 
genes that are up-regulated during osteogenesis[56]. Fur-
thermore, male ASCs differentiate into bone more rap-
idly and more effectively than female ASCs[59].

For chondrogenic differentiation, cells typically re-
quire a 3D environment, such as an “aggregate culture” 
or “micromass pellet culture”. The micromass pellet 
culture model mimics precartilage condensation during 
embryonic development, which increases the cell-to-cell 
interaction and leads to the production of  a cartilage-like 
matrix[60]. Chondrogenic differentiation requires the use 
of  a defined media supplemented with TGF-β1, insulin, 
dexamethasone, ascorbate-2-phosphate, and BMP-6. 
Basic FGF can be used to expand ASCs, and at the same 
time, down-regulate chondrogenic markers during cell 
expansion[61]. Differentiated chondrocytes express type 
Ⅱ collagen, type Ⅳ collagen, aggrecan, prolyl endopep-
tidase-like, and sulfate-proteoglycan[62]. Alcian blue and 
collagen type Ⅱ staining indicate chondrocytes. 

Although somewhat controversial, ASCs may pos-
sess ectodermal differentiation capacity, e.g., neurogenesis. 
Many studies have been reported[48,63,64]. Under culture 
conditions with media containing butylated acid, valproic 
acid, and insulin, ASCs become morphologically similar to 
neurons, and express markers of  both neuronal (neuron-
specific enolase, nestin, and NeuN) and glial lineages [S100, 
p75, nerve growth factor (NGF), receptorm, and NG2][48]. 
The differentiation of  ASCs into Schwann cells that 
are capable of  myelinating peripheral neurons has been 
reported[48]. Human ASCs form nestin-positive neuro-
spheres and express Schwann cell markers including S100, 
glial fibrillary acidic protein, and the p75 NGF receptor 
after dissociation. 

In addition to mesodermal and ectodermal capacity, 
the endodermal differentiation of  ASCs has been report-
ed. Numerous studies reported differentiation of  ASCs 
into hepatocytes and beta islet cells[42,65,66]. In an environ-
ment with the differentiation factors activin-A, exendin-4, 
HGF, and pentagastrin, ASCs were demonstrated to 
differentiate into insulin-producing cells in vitro[66]. Mean-
while, adding HGF, oncostatin M, and dimethyl sulfoxide 
in the culture media resulted in the ability of  ASCs to 
gain hepatocytic functions in vitro, including albumin and 
alpha-fetoprotein expression and urea production[42]. 

IN VIVO DIFFERENTIATION ABILITY OF 
ASCS
While in vitro differentiation of  ASCs into multiple phe-
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crystals, bioceramics such as HA and beta-tricalcium 
phosphate are used for bone regeneration. The ceramic 
biomaterials used in these applications should mimic the 
natural bone architecture to ensure ASC attachment and 
migration within porous materials. In addition, ceramic 
biomaterials should be absorbed overtime or integrated 
with the surrounding tissue and eventually replaced by 
new or existing host tissue. As collagen is the other main 
component of  bone tissue, it has been widely studied as 
a natural biomaterial scaffold for bone regeneration. In 
contrast, synthetic polymers such as poly (L-lactic acid-
co-glycolic acid), and poly-e-caprolactone (PCL), can also 
be utilized for bone engineering. The advantage of  these 
polymers is that they are readily reproducible, and have 
flexible mechanical, chemical, and biological properties 
that allow them to be tailored to suit specific functions[76]. 

There has been much interest in examining ASCs 
for the cartilage tissue engineering required to remedy 
osteoarthritis (OA), which affects millions of  patients all 
over the world. A cure for OA remains elusive, because, 
in part, while the cartilage ECM is maintained by a sparse 
population of  chondrocytes, it exhibits little capacity for 
self-repair owing to the lack of  a tissue blood supply. Re-
searchers have investigated a variety of  scaffold materials 
including alginate, agarose, fibrin, gelatin, and chondroitin 
sulfate to evaluate their ability to support chondrogenic 
differentiation of  ASCs in vivo[77-79]. Several studies have 
demonstrated that ASCs were able to differentiate into 
chondrocytes in vivo when seeded within any of  these 
scaffolds, but different construct materials can signifi-
cantly influence the differentiation of  ASCs and func-
tional properties of  the tissue-engineered construct[77,78]. 

Finally, ASCs also have potential in neural applica-
tions. Peripheral nerves can be regenerated if  injuries are 
small, and bioengineering strategies are focused on alter-
natives to the nerve autograft[80]. Properties of  the ideal 
nerve conduit should include biodegradability, controlled 
release of  growth factors, incorporation of  support cells, 
electrical activity, intraluminal channels, and oriented 
nerve substratum. Santiago et al[81] was among the first 
to report that implanted ASCs into the lumen of  PCL-
based nerve conduits in a rat sciatic nerve defect model 
was shown to promote the formation of  a more robust 
nerve. However, both the endodermal and ectodermal 
transdifferentiation of  ASCs remains to be validated.

CLINICAL APPLICATIONS
A number of  clinical applications using ASCs can be 
found through searches and on clinical trial websites. 
ASCs are mainly used for cell-based therapy, and the com-
bination of  ASCs with biomaterials or drugs is still to be 
studied. Most studies use adipose tissue as the scaffold. 
Garcia-Olmo et al[82-86] performed phase Ⅰ-Ⅲ clinical 
trials to investigate the efficacy and safety of  expanded 
ASCs in the treatment of  complex perianal fistulae includ-
ing Crohn’s disease. Autologous ASCs were mixed with fi-
brin glue then injected into the fistulous tract. As a result, 

patients who received ASCs demonstrated a better rate of  
healing compared to the patients who received fibrin glue 
without ASCs. ASCs with fibrin glue therapy were deter-
mined to be a safe and effective for treating complex peri-
anal fistulae. Two mechanisms of  ASCs to treat fistulae 
are speculated: one was that ASCs induced immunosup-
pressive activity, and the other was that ASCs might help 
healing through the expression of  matrix proteins[83].

One of  the first clinical reports using stem cells de-
rived from adipose tissue in a patient was reported in 
2004. Lendeckel et al[87] reported a case of  a 7-year-old girl 
suffering from widespread calvarial defects after severe 
head injury with multifragment calvarial fractures. This is 
among the first reports of  bone tissue engineering using 
autologous stromal vascular fraction and fibrin glue, al-
though it was a case study. Fibrin glue was manufactured 
from the patient’s plasma 2 d prior to the surgery. SVF 
was kept in place using autologous fibrin glue, and com-
puted tomography scans showed new bone formation 3 
mo after the reconstruction. It was noted that ASCs have 
a great advantage in the point of  cell yield compared to 
BM-MSCs especially for pediatric patients. Indeed, 295 × 
106 mononuclear cells were extracted from 42.3 g adipose 
tissue, and about 2%-3% of  these cells are expected to be 
stem cells[87].

The disadvantages associated with the implantation 
of  synthetic materials or autologous fat grafts could be 
overcome by engineered adipose tissue. Stillaert et al[88] at-
tempted adipose tissue engineering in 12 volunteers. Hy-
aluronic acid-based scaffolds were implanted in the sub-
umbilical area with and without ASCs. Unlike successful 
results with nude mice[89], the hyaluronic acid-based scaf-
folds didn’t support ASC survival and were not inductive 
towards adipose tissue formation in humans. Meanwhile, 
ASC enriched lipotransfer has been studied for facial 
lipoatrophy and breast augmentation[90,91]. Yoshimura et 
al[92] enrolled 15 patients, transplanted SVF containing 
lipoaspirate after removing artificial breast implants, and 
followed for 12 mo. It was concluded that ASC-rich li-
potransfer is effective to enhance the volume of  injected 
adipose tissue[90-92]. The increased volume of  adipose tis-
sue may not be due to ASC differentiation but paracrine 
support of  the tissue through the secretion of  angiogenic 
and adipogenic factors. However, the interaction between 
ASCs and cancer cells are not fully elucidated. ASCs may 
promote cancer growth and metastasis through paracrine 
properties, epithelial-mesenchymal transition[93,94], and 
immunosuppressive mechanisms[95,96]. Higher risk of  lo-
cal recurrence was observed in early stage breast cancer 
patients following lipoinjection[97]. ASCs have not only 
bright side for regenerative medicine but dark side as can-
cer promotion.

In the field of  wound healing, Rigotti et al[98] showed 
ASCs are effective on severe symptoms such as atrophy, 
retraction, fibrosis, or ulcers induced by radiation therapy. 
Twenty patients were recruited and received lipoaspirate 
containing ASCs repeatedly, and followed-up to 31 mo. 
Patients demonstrated an improvement of  ultrastructual 
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tissue characteristics with neovessel formation as well as 
significant clinical improvements. The authors concluded 
that the treatment with ASC-containing lipoaspirates is 
potentially extended to other forms of  microangiopathies.

Regarding the potential of  ASCs to generate im-
mune tolerance for transplant patients, ASCs have been 
reported to have an immunomodulatory effect[99]. It 
has been shown that ASCs don’t possess human leuco-
cyte antigen class Ⅱ antigens, and ASCs can suppress 
inflammatory cytokines, stimulate anti-inflammatory 
cytokine interleukin-10, and induce antigen-specific 
regulatory T cells[100]. In a case study, the intravenous 
infusion of  allogenic ASCs in treating severe refractory 
acute graft-versus-host disease has proven to be effec-
tive[101]. Fang et al[102,103] treated patients with hematologic 
and immunologic disorders such as idiopathic thrombo-
cytopenic purpura and refractory pure red cell aplasia, 
with allogenic ASC infusions, and reported significant 
improvements with these patients. From these results, 
ASCs are suggested to have immunomodulatory.

CONCLUSION
ASCs have prominent implications in tissue regeneration 
due to their high cell yield in adipose tissue, the ability to 
differentiate into multiple lineages and secrete various cy-
tokines, and immunomodulatory effects. A large number 
of  clinical trials using ASCs have already performed and 
many of  them are ongoing. However, very few phase Ⅲ 
clinical studies have been published. ASCs are a promis-
ing cell source for regenerative medicine, and more re-
search is needed to warrant the safety of  ASCs and the 
efficacy of  tissue engineering using ASCs.
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