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Abstract

Modern research data, where a large number of functional predictors is collected on few subjects

are becoming increasingly common. In this paper we propose a variable selection technique, when

the predictors are functional and the response is scalar. Our approach is based on adopting a

generalized functional linear model framework and using a penalized likelihood method that

simultaneously controls the sparsity of the model and the smoothness of the corresponding

coefficient functions by adequate penalization. The methodology is characterized by high

predictive accuracy, and yields interpretable models, while retaining computational efficiency.

The proposed method is investigated numerically in finite samples, and applied to a diffusion

tensor imaging tractography data set and a chemometric data set.
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1. Introduction

Functional linear regression (Ramsay & Dalzell, 1991) is widely used to explore the

relationship between a scalar response and functional predictors. In particular, (generalized)

functional linear models are popular in areas including biomedical studies, chemometrics

and commerce. In such models, the effect of each functional predictor on the response is

modeled through the inner product of the functional covariate and an unknown smooth

coefficient function. In this article, we consider the situation where multiple functional

predictors are observed, but only a few of these predictors are actually useful in predicting

the response. We develop a variable selection procedure to select the important functional

predictors and estimate the corresponding coefficient functions simultaneously. Our

procedure controls both the sparseness of the regression model and the smoothness of the

coefficient functions. Furthermore, the methods can accommodate functional predictors that

are measured with error or are observed in a sparse set of points. We investigate the finite

sample performance of our procedure via a simulation study and illustrate our method by

applying it to a diffusion tensor imaging data set with 30 covariates and a chemometric data

set with seven covariates.
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Let Yi denote the scalar response for subject i, and Xi1, . . . , Xip denote the independent

realizations of the squared integrable random curves X1, . . . , Xp, respectively, where

, for i = 1, . . . , n. Without loss of generality, assume that the underlying

trajectories Xj's have mean function equal to zero. For simplicity of exposition, consider first

the case when Xij's are observed at a dense grid of time points {tj1, . . . , tjNj} and do not

contain measurement error; this limitation is relaxed in Section 3. In its generality, it is

assumed that, given Xi1, . . . , Xip, the distribution of the outcome Yi is in the exponential

family with linear predictor ηi and dispersion parameter ϕ, denoted here by EF(ηi, ϕ). The

linear predictor is set to have the following form

(1)

with E[Yi|Xi1, . . . , Xip] = μ = h− (ηi), where h(·) is a known link function. The coefficient

functions βj(t) are assumed as smooth, squared integrable, and represent the main object of

interest. Function βj(t) quantifies the effect of the functional predictor Xij(t) on the mean

response μi. For convenience, throughout the paper the domain of integration  in the

integral  if often suppressed. A special case of model (1) corresponds to

the identity link function h(μi) = μi. The resulting model is known as the functional linear

model, and can be written alternatively as

(2)

where Yi is the scalar response for observation i, i = 1, . . . , n, and εi are independent random

errors with mean 0 and variance σ2, typically assumed to be normally distributed. For

simplicity of exposition we present the main ideas for the continuous response case (2) first,

and discuss the modifications required by a generalized response thereafter.

Current literature in generalized functional linear models is focused primarily on the

estimation of the model components, the coefficient functions βj(·). For example, Goldsmith

et al. (2011a), James (2002), James et al. (2009), Marx & Eilers (1999), Müller &

Stadtmüller (2005) and Tutz & Gertheiss (2010) discuss estimation and/or inference of the

smooth effects functions βj(·), in the case of one or multiple functional predictors. More

recently, Kong et al. (2013) and Swihart et al. (2013), discuss hypothesis testing procedures

when the number of functional predictors is assumed small. These methods perform well

when the response variable is indeed related to most of the functional covariates. However,

there is limited literature on the situation where the number of functional predictors

available may be unnecessary large and many of them are unrelated to the response; see for

example the data illustrations in Section 5. In these cases, typical association models that

relate the response to all the measured predictors lead to unnecessary complex models that

do not accurately describe the data generating process, and have low predictive capabilities.

The focus of this paper is to develop procedures that perform variable selection when the

predictors are curves, as well as estimation of the corresponding smooth effects of the

selected functional variables.
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Variable selection, especially in multivariate statistics, has attracted considerable attention

over the recent years. In this context, penalized likelihood methods have emerged as highly

successful selection techniques in presence of high dimensional vector-valued predictors;

see for example LASSO (Tibshirani, 1996), SCAD (Fan & Li, 2001), the adaptive LASSO

(Zou, 2006) and OSCAR (Bondell & Reich, 2008). The general idea of the penalized

approaches is to impose various constraints on the coefficients, such as using L1 norm or

pairwise L∞ norm etc., which result in sets of coefficients becoming identically zero.

However, extension of these ideas to the setting of functional predictors is not

straightforward. Usually the complexity of variable selection problems in functional

regression is much greater than the usual multivariate variable selection problems. To fix the

ideas, let us consider the diffusion tensor imaging tractography data that we use as an

illustrative example in Section 5.1. In this data set, there are five tracts and six different

measurements recorded for each tract, resulting in 30 functional predictors. The complexity

arises because (i) each functional covariate is measured with error, (ii) some of the

covariates are measured on irregularly spaced grid points, and (iii) not all the covariates

have the same domain. Thus any variable selection procedure intended for this type of data

set needs to account for all the above mentioned issues.

A direct generalization of multivariate variable selection ideas to setting (2) would require

two steps. First, represent the integrals  using Riemann

integration techniques and reformulate the problem in the typical linear form. The second

step is to apply classical variable selection procedures with high dimensional “artificial”

predictors, {Xj,l = Xj(tl) : j, l}. The main diffculty is the expected high correlation among

predictors obtained from evaluating a single functional predictor, say Xj at different time

points tl, say {Xj,1, Xj,2, . . .} . The challenge can be bypassed in turn by using methods

developed for group variable selection, including group LARS and group LASSO (see, for

example, Yuan & Lin, 2006), which target highly-correlated scalar predictors. These

penalties, however, do not impose smoothness of the coefficients βj,l = βj(tl), viewed as

functions of t. Without the smoothing property, interpretation of the functional predictors’

influence on the response is meaningless.

In this article, we consider a penalized likelihood approach that combines selection of the

functional predictors and estimation of the smooth effects for the chosen subset of

predictors. Specifically, for a functional regression model (2), the estimates of the

coefficient functions βj(·) are the minimizers of

, where Pλ,φ is a penalty on the

coefficient function βj and λ and φ are global non-negative penalization parameters that

control both the sparseness and the smoothness of the solution, respectively. More generally,

when the response is generalized, the penalized criterion is similar to the above, with the

difference that the first term is replaced by minus twice the corresponding (log-)likelihood

function. We propose a penalty function that is inspired from the penalization proposed in

high-dimensional additive models (Meier et al., 2009). Thus the proposed approach

combines functional data analysis and variable selection techniques in high-dimensional

additive models. Recently Fan & James (2012) (unpublished manuscript) investigated
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variable selection in linear and non-linear functional regression for continuous scalar

response. They use a ‘basis approach’ modeling of the coefficient functions βj(·), where the

number of basis functions gives the smoothness of βj(·), and is a tuning parameter, and a

penalty term constructed on the norm of the entire effect, . In contrast, in

this article, we propose a ‘penalization approach’ by modeling the coefficient functions

using a rich function basis, and use a penalty term that explicitly controls the smoothness of

βj(t) and sparseness of the model. Plus, our procedure is also developed for generalized

functional linear models.

The remainder of the paper is organized as follows. Section 2 presents the methodology for

simultaneous variable selection and estimation of smooth effects, when the predictors are

functions observed without noise at a dense grid of points. Section 3 presents the extension

to functional predictors corrupted by noise, measured at dense or sparse grid of points. The

proposed methods are illustrated numerically in simulations experiments in Section 4 and on

two real data examples in Section 5: the sugar spectra and tractography data sets. Section 6

concludes with a brief discussion.

2. Methodology

2.1. Parameters Modeling

Our approach to estimating the coefficient functions βj is to use a pre-set basis functions

expansion, such as a B-spline basis or a truncated polynomial basis. Specifically, let bj(t) =

{bj1(t), . . . , bjq(t)} be such a finite basis, and consider the approximation as

, where γjr are the corresponding basis coefficients. The choice of the

basis functions is related to characteristics of the coefficient functions βj, such as

differentiability, while the number of basis functions is related to the coefficient's

smoothness. In particular a small number of basis functions lead to a very smooth solutions,

while a large number of basis functions results in very wiggly solutions. In this paper we

allow the number of basis functions to be large enough to capture the complexity of the

function, and we control the smoothness of the fit using an additional parameter that

penalizes the roughness of the fit, and is chosen data-adaptively.

When the functional predictors, Xij(·), are observed without measurement error and at an

equally spaced dense grid of points, {tj1, . . . , tjNj}, the integral in (1) or (2) can be

computed/approximated by the Riemann sum

where , , , and Δj = tjl
− tj,l−1 denotes the distance between two adjacent measurement points. Thus, model (2) can

be approximated by a typical linear regression model , where Zij are

known quantities, and α and γj's are unknown regression coefficients. Nevertheless, using a

classical penalty function on the model parameters γjr, in particular a sparseness inducing
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penalty, is not directly applicable to this setting because the parameters γjr have a preset

grouping structure. Group variable selection, on the other hand, is an attractive method to

impose sparseness. However, it implicitly assumes that the smoothness of the coefficient

functions βj is specifically controlled by the number of basis functions. For example, Matsui

& Konishi (2011) and Lian (2013) discussed a groupwise SCAD penalty, by employing

Gaussian basis functions, or the truncated eigenbasis of functional covariates, respectively,

and controlling the smoothness of the corresponding functional coefficient by using only a

small number of these basis functions; Zhu & Cox (2009) used a simple group lasso penalty

and a very small number of orthonormal basis functions. When using only a small number

of basis functions, however, the shape of the fitted functions is strongly influenced be the

concrete number, the type and the placing of the basis functions. Our paper relaxes this

limitation, and allows to approximate the coefficient functions using a large number of basis

functions. This makes the approach more flexible, but does not fully describe the functions’

inherent smoothness. Therefore a different type of penalty is required.

2.2. Penalized Estimation

We consider a so called sparsity-smoothness penalty technique, which results in

simultaneous estimation of the parameter functions and sparseness of the solution, when the

covariates are curves. The proposed penalty function was introduced by Meier et al. (2009)

for variable selection in high-dimensional additive modeling. Specifically, let

(3)

Where  is the L2 norm of βj and . Penalties such

as (3) ensure that estimates of the quantity appearing inside the square-root may be set to

zero (see, e.g., Yuan & Lin (2006), Meier et al. (2008)). As φ ≥ 0, this is equivalent to

setting βj(t) = 0 for all t, which implies that predictor Xj is excluded from model (1). If φ >

0, also the second order derivative of βj(t) is penalized, which ensures smoothing of non-

zero coefficient functions. Although βj(t) is assumed as a smooth function, fitted non-zero

curves may become rough if the penalty  on the second order derivative is not included

in (3). As rough coefficient functions are hard to interpret, φ > 0 is strongly recommended.

The actual extent of smoothing is controlled by the actual value of φ.

Using a rich pre-set basis function expansion for βj, the corresponding penalty can be

represented as

where Ψj is the q × q matrix with the (r, k) element equal

, and Ωj is the q × q matrix with the (r, k) element

equal to . Furthermore, the penalty can be re-written

in a more convenient way as , which is a general group lasso-
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type penalty (Yuan & Lin, 2006) on vector γj, where Kφ,j = Ψj + φΩj is a symmetric and

positive definite q × q matrix.

Consequently, when the functional linear model (2) is assumed, the estimates of the

intercept α and the coefficient functions β are obtained as  and , for

j = 1, ...,p, where  and  are the minimizers of

(4)

where λ is a sparseness/tuning parameter and φ is a smoothing/tuning parameter. If Kφ,j = Iq

for all j = 1, . . . , p, where Iq denotes the q × q identity matrix, then the estimation (4)

resembles the one for the ordinary group lasso for which built in software already exist.

More generally, by using appropriate re-parametrization one can still employ existing

software, as we show next; the ideas were also pointed out by Meier et al. (2009) in a related

context.

Let  be the Cholesky decomposition where Rφ,j is non-singular lower

triangular matrix and define  and . Then the penalized criterion (4)

reduces to , where  is the Euclidean norm in .

Thus, for a given value of the smoothness parameter φ, the minimizers of (4) can be

formulated as the parameter estimates in an appropriate linear model, via a penalized

likelihood criterion using the ordinary group lasso penalty (Meier et al., 2008; Meier, 2009).

As a result, for fixed φ and λ, the estimates  can be computed using any existing software

that can accommodate a group lasso penalty, for example, the R package grplasso. In

practice, of course, the appropriate sparseness and smoothing parameters λ and φ are

unknown and need to be estimated from the data; for example by cross-validation. This is

discussed in detail in Section 2.4.

When the response is generalized and a generalized functional linear model as in (1) is

assumed, the estimation procedure is similar to the one above with the exception that the

first quadratic term of (4) is replaced by the (log-)likelihood function corresponding to Yi as

specified by (1).

2.3. Adaptive Penalized Estimation

Next we discuss an alternative penalty function based on adaptive weights for the penalized

estimation criterion. We define the adaptive penalization scheme, similar to the adaptive

lasso (Zou, 2006), by introducing weights wj and vj in the penalty function (3). Specifically,

the adaptive penalization approach uses the penalty

(5)
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where the weights wj and vj are chosen in a data-adaptive way (Meier et al., 2009). The

choice of weights is meant to reflect some subjectivity about the true parameter functions

and to allow for different shrinkage and smoothness for the different covariates. One

possibility for choosing the weights is to use initial parameters estimates, based on

smoothing solely, but without using sparseness-assumptions. Consider a generalized

functional linear model with multiple functional covariates, and denote by , the

estimated coefficient functions βj's, for example, by using the approach described in

Goldsmith et al. (2011a) and implemented in the R package refund (Crainiceanu et al.,

2012). Then, the adaptive weights can be defined as  and . Adaptive

estimation has been shown to reduce the number of false positives considerably in penalty-

based variable selection; see Meier et al. (2009) or Gertheiss & Tutz (2012) to name a few.

As illustrated by the simulation studies in Section 4, adaptive estimation with the choice of

weights above typically leads to improved selection performance in the functional model,

too. Given the computation of the initial estimates  is not time-consuming, the

computational burden for the adaptive penalty (5) does not change very much compared

with the standard (non-adaptive) penalty (3).

2.4. Choosing the tuning parameters

So far, the sparseness parameter λ and the smoothness parameter φ involved in the penalties

(3) and (5) were assumed known. In practice, however, these parameters need to be selected.

We consider K-fold cross-validation to select λ and φ. Specifically, the original sample is

(randomly) divided into K roughly equal-sized subsamples. For each k = 1, . . . , K, the kth

subsample is retained as a validation data for evaluating the prediction error of the model,

and the remaining K − 1 subsamples are used a training data. The K estimates of prediction

error are averaged; the criterion selects the values of the tuning parameters that minimize the

overall prediction error. Although the optimal value of K is still an open problem, typical

values of K used in the literature are 5 and 10 (see also Hastie et al. (2009)).

As a measure of prediction accuracy, we use the predictive deviance

 denoting the individual log-likelihood (for observation i) at

the fitted mean value  and li(Yi) being the corresponding log-likelihood where μi is

replaced by the observed value Yi (i.e., the maximum likelihood achievable). For the

functional linear model (2) with normal i, the predictive deviance simplifies to the the sum

of squared errors 

3. Extension to Noisy and Sparse Functional Predictors

In this section we extend the variable selection methodology to more realistic functional data

models, where the observed functional predictors are in fact proxy realizations of the

underlying smooth trajectories Xij. If the observed predictors are denoted by Wij, then we

write Wij(t) = Xij(t) + eij(t), where eij is a white noise process. We assume that Xij have mean

zero and are squared integrable functions on . Our methodology is not directly applicable
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to the proxy covariates, and requires preliminary analysis to de-noise and re-construct the

underlying curves. The approach varies according to whether the sampling design at which

the functional covariates are observed, is dense or sparse.

First we focus on the setting when the functional predictors are observed on a dense grid of

time points, {tijl : l} in  for every i. When functional data are dense, then smoothing

techniques can be applied to each curve in turn, to reconstruct the de-noised trajectories,

. For example (global) spline smoothing is used in Ramsay & Silverman (2005), while

local polynomial Kernel smoothing is used in Zhang & Chen (2007). In particular, for local

polynomial smoothing Zhang & Chen (2007) show that, under mild conditions, the

underlying smooth curves are reconstructed with asymptotically negligible error. The main

challenge is the selection of the smoothing parameter, which could be either curve-specific,

or constant across all the curves. Zhang & Chen (2007) suggest a generalized cross

validation criteria (GCV) using a global smoothing parameter; another criterion is the

restricted maximum likelihood (REML).

Consider next the setting when the functional predictors are observed on a sparse grid of

time points, {tijl : l} , such that the set of all observation points {tijl : l, i} is dense in . In

this case, smoothing each curve is no longer an option as the number of observations per

curve is typically very small. Instead, we use the functional principal component analysis

(FPCA) technique, one of the main toolkit in functional data analysis. This technique is

based on three steps, see e.g., Yao et al. (2005), and as we briefly review it here. First the

data {Wij(tijl) : l}i are pooled together, to obtain smooth estimates of the mean function μj(t)

= E[Xij(t)] and of the covariance function Kj(t, t′ ) = cov {Xij(t), Xij(t′)} ; recall it is assumed

that μ ≡ 0. Second the spectral decomposition of the estimated covariance function yields a

finite number of pairs  of estimated eigenfunctions and corresponding

eigenvalues, with . Third, the underlying curves Xij(t) are estimated using

a finite eigenbasis function truncation,  where  are obtained

using conditional expectation; see Yao et al. (2005). There are multiple ways to select the

finite truncation available in literature, such as AIC, BIC etc.; from our empirical experience

the simple criterion based on percentage of explained variance (such as 90% or 95%) gives

satisfactory results. For carrying out FPCA, we use fpca.sc() (Di et al., 2009) from the R

package refund (Crainiceanu et al., 2012).

Once the underlying curves are estimated, and evaluated on a dense grid of points, then the

variable selection methodology proceeds as detailed in Section 2, by pretending that the

estimates are the true functional covariates.

4. Numerical Experiments

4.1. An Illustrative Toy Example

Consider an example in which two functional covariates are observed at a set of 300

equidistant points in (0, 300) for each sampling unit. Define (similar to Tutz & Gertheiss

(2010)) for i = 1, . . . , 300, and j = 1, 2,
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(6)

where , aijr ~ U(0, 5), mijr ~ U(0, 2π), with U(a, b) denoting the uniform

distribution on interval [a, b]. Here σ(t) is defined [integraltext] such that var{Xij(t)} = 0.01

for all t ∈ (0, 300). For the response, we assume a functional linear model

, where εi ~ N(0, 22), and β1(t) has a Gamma density-like

shape (see the gray curve in Figure 1). Thus, the response depends only on the first

functional covariate and not on the second. Figure 1 depicts the fitted coefficient functions

obtained by the proposed functional variable selection (3) for different values of the

sparseness parameter λ and the smoothing parameter φ. Following our intuition, as the

sparseness parameter λ increases, the estimated coefficient functions are shrunk and at some

value, set to zero (see in particular the solid curves in Figure 1, which refer to very large λ =

1010). The exact λ-value making the estimated coefficient function vanish, depends also on

the chosen φ. More importantly, φ influences the smoothness of the fitted functions. As the

smoothing parameter φ increases, the departure from linearity is penalized stronger and thus

the estimated curves become closer to a linear function. Smaller values for φ, are related to

low penalization of the departures from linearity, and thus result in very wiggly and diffcult

to interpret estimated coefficient functions. For optimal estimates (in terms of accuracy and

interpretability), an adequate (λ, φ) combination has to be chosen.

This provides evidence that when the covariate are functions, smoothing is absolutely

necessary. A simple group lasso-type penalty, or other similar group selection penalties

placed on sets of basis coefficients, without controlling for smoothness are not viable

solutions for functional variable selection.

4.2. Simulation Study

We conducted simulations in a variety of settings to illustrate the performance of the

proposed method in terms of sparseness accuracy and prediction performance. In this

section, we summarize the results based on data sets of the form

, where  is the set of points at which the

covariate Xij is observed and i = 1, . . . , 300. The functional predictors are defined as in (6).

A variety of settings are obtained by combining:

Scenario A Two sampling designs are considered for the functional covariates:

i. Dense sampling design, where  is taken to be the set of 300 equidistant points in

(0, 300).

ii. Moderately sparse and irregularly sampled design points, where the size  is

uniformly generated between 20 and 30, and the set of time points is uniformly

sampled from  – the set of 300 equidistant points in (0, 300).

Scenario B Two generating distributions are considered for the response:
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i.
Functional Linear Model, and in particular ,

where εi N(0, 10), and β1(t), β2(t), β3(t) have Gamma-density like shape with effect

sizes decreasing with increasing ~ j, and β4(t) and β5(t) have exponential like shape

with β5(t) being more linear (see Figure 2, top row).

ii. Generalized Functional Linear Model, and in particular Yi ~ Bernoulli[exp(ηi)/{1 +

exp(ηi) ] and . Regression coefficients from (i)

are scaled such that true success}probabilities are rather uniformly distributed on

[0, 1], with maximum probability mass around 0.1 and 0.9.

Note, only signals j = 1, . . . , 5 are assumed to be relevant (with true coefficient functions as

described in B(i)). The error variance σ2 = 10 for the linear model B(i) is chosen such that

the signal to noise ratio is comparable to the one found in the real data application in Section

5.2.

To assess the performance of the proposed method two alternative approaches are

considered. The first takes the ‘basis approach’ modeling for smooth effects (see also Fan &

James (2012)) using 30 basis functions and then employs our method with penalty (3) for φ

= 0, and uses the number of basis functions to implicitly control the smoothness of the

effects (Simple). The second is the penalized functional regression (PFR; Goldsmith et al.,

2011a), which imposes smoothing and selects the smoothing parameters by REML, but does

not do any selection of the variables; this method is implemented in the pfr() function of the

R package refund (Crainiceanu et al., 2012). Three versions of the proposed methodology

are examined: the standard functional group lasso (Standard), the adaptive version (5), with

both wj and vj chosen adaptively (Adapt1), and the semi-adaptive version with adaptively

chosen wj and fixed vj = 1 (Adapt2). The initial estimates for the adaptive methods (Adapt1

and Adapt2) are obtained using PFR.

Figure 2 presents boxplots of the squared errors (SE) observed in 50 independent simulation

runs, for the different methods, where  and  are the true and

estimated coefficient functions, respectively. The results show that, for both functional

linear and generalized functional linear model, and irrespective of the sampling design, the

proposed methods Standard and Adapt2 give the highest accuracy (depicted in Figure 2 by

red/blue colors). Adapt1 (green color) performs slightly worse, and this is due to the fact that

the initial estimates with PFR are over-smooth. The intuition is that in the case of over-

smoothness, the adaptive weights vj, which are defined as the reciprocal of the smoothness

measure, are very large, causing instability in the selection of the tuning parameters. When φ

= 0 (Simple) or vj = 1 (Adapt1, Standard) the criterion yields more reliable estimates for the

tuning parameter(s), which explains why these methods perform well. However, the Simple

method (turquoise color) yields under-smooth effects, hardly interpretable. As expected, the

PFR performs worst for all the models and designs.

To investigate the predictive capabilities of the proposed methods, we generated a test data

set with m = 5000 observations. Figure 3 (left), shows the resulting mean squared errors of
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prediction  for the five methods. Overall, Adapt2 (blue color) has the

best performance, and moreover all the variable selection methods have a superior

performance to the PFR. For the logistic model the prediction performance is defined using

the predictive log score , since the

log score is proportional to our deviance criterion; here  denotes the estimated probability

of Yi = 1. The results are consistent across the different sampling designs (dense/sparse)

reinforcing that reconstructing the functional covariates by FPCA performs very well.

We further investigate the methods in terms of how frequent they select the true model; only

the four variable selection methods are compared. Table 1 gives the proportion of simulation

runs (linear model, dense design) for which each functional predictors is selected,

corresponding to every method. It shows that the percentage of false positives (predictors 6–

10) is considerably reduced for the adaptive versions of our method. While estimation

accuracy was a little lower for the fully adaptive method (Adapt1), selection performance in

terms of false positive rates is slightly better than with adaptive wj only (Adapt2). The

relatively high false positive rates (around 40%), compared to very low false negatives,

could be due to the tendency of our criterion, inherited from cross-validation, to select

accurate estimates but a somewhat larger model.

5. Real Data Applications

5.1. Tractography Data

Our motivating application is a neurological study of the white matter tracts in the brains of

multiple sclerosis (MS) patients and healthy subjects using magnetic resonance imaging

(MRI) techniques; the study has been previously described in Greven et al. (2010), Staicu et

al. (2012), Goldsmith et al. (2012), and Gertheiss et al. (2013). MS is a neurological disease

that affects the central nervous system and in particular damages white matter tracts in the

brain through lesions, myelin loss and axonal damage. Modern MRI allows the extraction of

information on individual tracts and thus allows a better understanding of damages in

neuronal tracts. In particular diffusion tensor imaging (DTI) has been successfully used for

examining white matter tracts through modalities that measure water diffusivity along the

tracts; see, for example, Basser et al. (1994), Basser et al. (2000). Six MRI indices – T2

relaxation time (T2), magnetization transfer ratio (MTR), mean diffusivity (MD), fraction

anisotropy (FA), parallel diffusivity (L0) and radial/perpendicular diffusivity (LT) – are

obtained at many locations along the tract, for five well identified white matter tracts: right/

left corticospinal tract (CST), corpus callosum (CC) and right/left optic radiations tract

(OR). Due to the complexity of MS, it is not known which MRI indices are related to the

disease.

Previous literature focused mainly on using one or two MRI indices along a specified white

matter tract to predict the disease status. For example Goldsmith et al. (2011a) used L0

along the CC tract, McLean et al. (2013) used either FA or L0 along the CC, and Goldsmith

et al. (2012) uses MD along the CC tract and LT along the right CST in a longitudinal

analysis. However, as Reich et al. (2007) pointed out, ‘any single MRI index has a unique

pathological correlate’ and thus ‘the ability to examine multiple MRI indices simultaneously
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is an important step in acquiring a more complete description of the damage done to brain

tissue by neurological disease’. Goldsmith et al. (2011b) attempted to use all the MRI

indices along CC, CST and OR tracts for predicting the disease status; however, to bypass

the very large dimensionality of the predictors and the limited sample size, the authors have

combined, for each of CST and OR, the corresponding MRI indices along the left and right

tracts. However, the MRI indices along the same tract are correlated, and thus a full analysis,

may imply an unnecessarily complex model. In this paper, we consider all the MRI indices

along the five different tracts, and study simultaneously (1) which of the profiles are

important in predicting the disease status, and (2) what is their corresponding effect on the

risk of developing the disease.

The data contain tract profiles for 168 MS subjects and 43 healthy volunteers observed at

their baseline visit. The profiles of the various MRI indices have different ‘domains’

according to the tract along which they are measured. Many of the profiles include (varying

degrees of) missingness, and all profiles are measured with error. Thus at a preliminary step

we use the FPCA methodology as described in Section 3 to reconstruct the smooth profiles.

The tract profiles are then de-meaned and scaled appropriately to have zero mean and unit

variance at each location along the tract. We use a Bernoulli model with logistic link to

relate the binary disease outcome to the profile covariates. Then, we apply the proposed

functional variable selection technique, where the penalty parameters are chosen via cross-

validation.

Figure 5 shows the results: MRI indices profiles that are selected to be important for disease

prediction correspond to estimated smooth effects that are non-zero, while profiles deemed

to be not important correspond to estimated effects that are zero. A number of nine tract

profiles are chosen to be predictive of the disease status and their estimated effect is

illustrated in Figure 5. For example, L0 above population average along the left OR tract

indicates controls, as the corresponding coefficient function has negative values. High

values of LT along the CC, by contrast, yields higher probability for being an MS patient, as

this coefficient function has positive values. These findings make good sense, as L0

measures diffusivity along the main axis of the tract and LT measures diffusivity in

perpendicular direction, with the first indicating healthy tracts and the latter indicating

damage to the tract. Furthermore, we see that MD is completely excluded from the model, as

all corresponding coefficient functions (3rd column in Figure 5) are zero. One possible

explanation is due to the fact that MD is proportional to overall diffusivity (i.e., diffusivity

in any direction) and hence less useful for indicating damage to the tract of interest. As

different tracts/measures are of course dependent and lasso-type approaches typically select

just one predictor from a group of highly correlated covariates, there may be alternative sets

of functional predictors that are useful for classification of disease status. The proposed

approach, however, provided interesting tract/measure combinations, which may be further

investigated in subsequent analyses.

5.2. Sugar Spectra

Our second application comes from chemometrics, which is becoming a typical field for

functional data analysis. In chemometrics there are often function-like absorbance or

Gertheiss et al. Page 12

Stat. Author manuscript; available in PMC 2014 August 13.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



emission spectra given – in particular for food samples – that are used to determine the

content of certain ingredients. Using the spectra is typically much cheaper than alternative

chemical analysis. Traditionally, techniques like principal components regression (PCR) and

partial least squares (PLS) are used in chemometrics, but recently functional data analysis

tools have gained more and more attention.

We consider a data set described by Bro et al. (1998) and Bro (1999): 268 samples of sugar

were dissolved and the solution was measured spectrofluorometrically. For every sample the

emission spectra from 275–560 nm were measured in 0.5 nm intervals (i.e., at 571

wavelengths) at seven excitation wavelengths: 230, 240, 255, 290, 305, 325, and 340 nm. In

addition, there are laboratory determinations of the quality of the sugar given, such as ash

content (in percentage). Ash content measures the amount of inorganic impurities in the

refined sugar, cf. Bro (1999). The aim of the analysis is to study the association between the

ash content and the fluorescence spectra. As already pointed out above, using the emission

spectra is much easier and cheaper then chemical analysis in the lab, and the analysis would

become even easier, if not all seven excitation wavelength had to be used.

In contrast to the tractography data, the response (ash content) is continuous. We use the

functional linear model (2) with our approach to determine the most useful excitation

wavelength. As variability of the spectra is very different for different excitation

wavelengths, curves are standardized before applying our method. Figure 4 shows the

estimated coefficient functions when using the standard penalty (3) (dashed red) or the

adaptive version (5) with adaptive wj (solid black). Tuning parameters were chosen via five-

fold cross-validation. We see that the results are very similar for both methods. The major

difference is that using the adaptive penalty not only excitation wavelength 230 nm and 255

nm are excluded but also 305 nm. Predictions of ash content are very similar (and very

good) for the two models. The ratio of prediction error  and overall variation

 is 15.2% for the non-adaptive penalty and 14.9% for the adaptive one. As the

model obtained with the adaptive penalty is sparser while producing slightly better

predictions, we prefer the solid black coefficient curves in Figure 4 produced by the adaptive

version with adaptive wj's.

6. Summary and Discussion

We proposed a variable selection procedure for generalized functional linear regression

models where multiple functional predictors are present but only a few of these predictors

are actually useful in predicting the response. Typical estimation procedures for such models

do not consider the issue of selecting the useful predictors, and thus may suffer from overly

large models and reduced predictive capability. Our procedure simultaneously selects the

important functional variables, and estimates the corresponding effects. The smoothness of

the coefficient functions and sparseness of the model are simultaneously controlled using a

sparsity-smoothness penalty technique that controls roughness of the original coefficient

functions as well as their second derivatives. R-code implementing the procedure is

available as supplementary material.
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We also investigated two adaptive versions of this approach where the penalty term is

weighted using adaptively chosen weights. We found that our proposed methods perform

well in terms of prediction error as well as mean squared errors for the estimated coefficient

functions compared to fitting a model without any selection. In terms of selecting the correct

predictors and number of false positives, adaptive methods perform better than the non-

adaptive one while retaining reasonable estimation accuracy. Also, our method can be

applied even when the functional predictors are observed with measurement error and on a

sparse set of points.

As in any variable selection procedure, our method also requires estimation of the tuning

parameters. Specifically, we require to estimate two tuning parameters: one overall tuning

parameter and one smoothness parameter. This is done by K-fold cross-validation in this

paper. We recognize that there are other approaches to choose such parameters and cross-

validation may not be theoretically the best procedure. However, to the best of our

knowledge, this issue is an open problem, especially in the framework of functional

regression. While cross-validation performs well in our numerical studies, more research is

needed to investigate the optimality of such estimates of the tuning parameters.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Fitting results for the functional group lasso for λ ∈ {103, 102, 101, 100} (solid, dashed,

dotted, dashed/dotted, respectively) and φ ∈ {1010, 108, 106, 104, 102} on a simulated

dataset with two functional covariates but only the first one being relevant; the first row

corresponds to the first covariate (with the true coefficient function shaded in grey), the

second row to the actually irrelevant signals.
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Figure 2.
True coefficient functions (top row) and corresponding squared errors (SE) for the standard

functional group lasso (red), the adaptive version with both wj and vj chosen adaptively

(green), adaptive wj only (blue), the simple version without smoothing (turquoise), and the

pfr method without variable selection (purple); dense design/normal response (2nd row),

dense design/binary response (3nd row), sparse design/normal response (4th row), sparse

design/binary response (bottom row); for binary response a few outliers are not shown.
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Figure 3.
Mean squared errors of prediction/log scores on the test set for the standard functional group

lasso (red), the adaptive version with both wj and vj chosen adaptively (green), adaptive wj

only (blue), the simple version without smoothing (turquoise), and the pfr method without

variable selection (purple).
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Figure 4.
Estimated coefficient functions for the sugar data when using the standard functional group

lasso with penalty (3) (dashed red) or the adaptive version (5) with adaptive wj (solid black).
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Figure 5.
Estimated coefficient functions for the tractography data when using the standard functional

group lasso with penalty (3).
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