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Abstract

The distinct cell types of multicellular organisms arise due to constraints imposed by gene 

regulatory networks on the collective change of gene expression across the genome, creating self-

stabilizing expression states, or attractors. We compiled a resource of curated human expression 

data comprising 166 cell types and 2,602 transcription regulating genes and developed a data 

driven method built around the concept of expression reversal defined at the level of gene pairs, 

such as those participating in toggle switch circuits. This approach allows us to organize the cell 

types into their ontogenetic lineage-relationships and to reflect regulatory relationships among 

genes that explain their ability to function as determinants of cell fate. We show that this method 

identifies genes belonging to regulatory circuits that control neuronal fate, pluripotency and blood 

cell differentiation, thus offering a novel large-scale perspective on lineage specification.
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INTRODUCTION

Mammalian organisms contain at least 250 cell types1, each specified by a characteristic 

gene expression profile. Despite increasing availability of expression data, comprehensive 

characterization of cell type–specific expression profiles remains challenging due to 

inconsistencies in annotations and technical issues such as data normalization. Moreover, 

common differential expression analyses alone are insufficient to recover ontogenetic cell 

lineage relationships or to reflect regulatory relationships among transcription factors (TFs) 

that lead some to function as fate determinants.

We describe a data-driven method that addresses these problems in the context of the very 

mechanisms by which the gene regulatory networks govern lineage development. Our 

analysis is motivated by a two-gene circuit motif known to control binary developmental 

decisions2. This motif, first hypothesized to control developmental switches in 

Drosophila3,4, contains a pair of mutually-repressive TFs and effectively constitutes a toggle 

switch. These circuits allow a bipotent progenitor cell to simultaneously co-express two 

opposing TFs at low levels, the poised state {TF1 ≈ TF2},2 but force it to choose between 

either of two stable configurations in which one TF dominates the other, {TF1 ≫ TF2} or 

{TF2 ≫ TF1}.

Such pairs of antagonistic TFs can govern the development of “sister” lineages. In addition 

to cross-inhibiting each other, these TFs also act as lineage-specifying master regulators of 

target genes that are reciprocally expressed in the two sister lineages, thus establishing 

lineage-specific gene expression profiles2. The pair {SPI1, GATA1} is a well-studied 

example in the hematopoietic system5. SPI1 (PU.1) specifies the myeloid lineage 

characterized by SPI1 ≫ GATA1 whereas GATA1 specifies the erythroid lineage in which 

GATA1 ≫ SPI16. The lineage split manifests as the establishment of a mutual exclusion, 

resulting in reversed expression between the two TFs, which can be exploited to identify 

master regulators. We score genes for potential participation in such expression reversals. 

We expect gene pairs that function as lineage determinants to exhibit consistent relative 

expression across samples from the same cell type (and lineage) and consistent reversal of 

relative expression between cell types from sister lineages, a property that has been 

exploited in expression-based classifiers7–9.

By applying this method to curated gene expression data from 166 cell types and 2,602 

transcription regulating genes, we show that experimentally verified master regulators of 

cell type fate are indeed revealed through quantification of their participation in expression 

reversals. Focusing on hematopoiesis, our method reveals known and novel candidate fate-

specifying genes that exhibit the signature of participation in antagonistic circuits, results 

which were confirmed by genome-wide ChIP-seq data. Finally, we derived a cell type 

similarity measure from expression reversals with which we could recover known 

ontogenetic lineage-relationships reminiscent of the branching valleys of the epigenetic 

landscape envisioned by Waddington10.
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RESULTS

Gene expression reversal analysis

We curated a dataset comprising 2,919 microarrays and representing 166 normal human cell 

types (described in Supplementary Results, Supplementary Tables 1–3 and Supplementary 

Fig. 1) and selected genes with functional annotation related to transcription regulation 

(Supplementary Results, Supplementary Tables 4 and 5 and Supplementary Fig. 2). A subset 

formed from strictly-defined TFs will be referred to as the TF set (844 genes). The term TF 

will be used to refer to all transcription regulating genes for simplicity.

For every pair of genes and every pair of cell types, we define the reversal score Δ to be the 

difference between cell types of the mean rank difference (within each cell type) between 

genes (Eq. 1–3 in Methods, Fig. 1). Use of rank data rather than absolute expression 

obviates the need for sample normalization, typically needed due to sample distribution 

differences (Supplementary Fig. 3), because all direct comparisons between genes happen 

within samples, and conventional normalization methods are rank-

preserving(Supplementary Results). Thus, large absolute values of Δ identify gene pairs that 

reverse expression between cell types. Δ is clamped to 0 for pairs of genes that do not 

change relative expression (the difference in their mean ranks does not change sign) between 

cell types. Fixing the gene pair in Δ and letting the cell types vary produces gene pair 

reversal plots which visualize the potential for a gene pair to participate in a lineage split 

between any pair of cell types (Fig. 1b). Finally, we define the participation score Ψ for a 

fixed gene (Eqs. 4,5 in Methods) to be an aggregate measure of the number and strength of 

reversals in which the gene participates (Fig. 1c).

Revealing critical factors for induced pluripotency

We hypothesized that participation of a gene in reversals involving a given cell type is 

indicative of the specificity of the gene for that cell type as well as its potential to participate 

in lineage determination. We sorted genes by their participation scores in comparisons of 

embryonic stem cells (ESC) with other cell types (Fig. 2a). Interestingly, the genes NANOG, 

POU5F1 (OCT3 or 4), SOX2 and LIN28 that appear on this top list are precisely those that 

jointly are capable of inducing the pluripotent state from differentiated cells11 (see also 

Supplementary Fig. 4). A critical role in regulation of stem cell transcription has been 

reported for 17 of the top 20 genes (Supplementary Table 6). These results are very robust to 

noise and sample size differences (Supplementary Figs 5–7 and Supplementary Results).

We validated the cell type-restricted reversal patterns of the top 20 gene portraits using 

sequencing data12 for chromatin markers (ChIP-seq) and for RNA (RNA-seq) from normal 

human cell types (including H1 ESCs in yellow) (Fig. 2b). Genes with a highly ESC-

restricted gene portrait appear ESC-specific in both ChIP-seq and RNA-seq results. 

Furthermore, TF ChIP-seq data also suggest that the pluripotency inducing TFs NANOG, 

OCT4 and SOX2 co-occupy regulatory regions of genes that, with respect to our reversal 

participation score Ψ, are among the top 20 genes associated with ESCs13 (Supplementary 

Fig. 8). Therefore, our analysis highlights genes that are not only maximally restricted to the 

respective cell type but may also operate in a lineage-determining switch.
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Reversals expose genes with lineage-determining potential

Our data shows that reversal participation captures cell type–restricted expression. We chose 

the ESC for the analysis since the discovery of induced pluripotency factors paved the way 

toward exploiting cell type plasticity to actuate direct lineage-conversions. The ability of our 

analysis to highlight the core ESC network suggested that such reversals may identify TFs 

with lineage-specifying power which could be used to induce differentiation towards a 

particular cell type. We investigated this possibility in a published reprogramming 

experiment14.

ASCL1 is a critical TF that alone and in combination with other factors was discovered to 

induce fibroblast to neuron conversion14. We sorted the reversal participation (Ψ) portraits 

of 19 candidate genes initially evaluated in the published reprogramming experiment by 

their potency14 in enhancing ASCL1-induced neuronal differentiation (as reflected by strong 

color bands localized to few cell type pairs) (Fig. 3). The diffuse patterns in the plots of the 

two bottom rows are in agreement with experimental results14 in which these genes showed 

no effect. Therefore, gene reversal participation also identifies potential fate-determining 

roles of a TF in a given lineage.

Expression reversals in the hematopoietic lineage splits

To demonstrate how gene pair reversal analysis (Fig. 1b) can shed light on toggle switch 

circuits, we selected three characterized mutual repression circuits involved in blood cell 

lineage control: {GATA1, SPI1}, {GATA1, GATA2} and {GFI1, EGR2}. These pairs govern 

the lineage splits between erythroid vs. myeloid, erythroid vs. megakaryocyte and 

granulocyte vs. macrophage, respectively5,15,16. The first lineage split occurs via the mutual 

repression of the {GATA1, SPI1} TF pair5. Here the {SPI1 ≈ GATA1} configuration is 

observed in the progenitor cells, consistent with the characteristic promiscuous expression 

pattern of multipotent cells17, whereas a pronounced reversal of their relative expression 

levels occurs between the pro-erythroid and pro-myeloid cells: GATA1 ≫ SPI1 in all pro-

erythroid arrays and GATA1 ≪ SPI1 in all pro-myeloid arrays (Supplementary Fig. 9a). 

Thus, the behavior of this gene pair across all cell types in the comparison set highlights the 

erythroid-myeloid lineage split as a distinct pattern (Supplementary Fig. 9b). Similarly, the 

{GATA1, GATA2} TF pair is reversed between pro-erythroid cells and platelets that 

segregate in a downstream lineage split15 (Supplementary Fig. 9c). Finally, the {GFI1, 

EGR2} pair is strongly reversed between the granulocyte-lineage progenitors and the 

differentiated macrophages. Interestingly, this pair exhibits a signal in the lymphoid lineage, 

suggesting a broader role in the blood system, i.e. the reuse of circuits for different 

decisions2 (Supplementary Fig. 9d).

Lineage branching is often controlled not just by one toggle switch circuit but rather the 

integrated action of many interconnected18 mutually repressing gene pairs. We demonstrate 

that using reversal scores and a priori knowledge of the lineage branching, we can identify 

TF pairs that exhibit an expression reversal associated specifically with the erythroid-

myeloid lineage split or the B- vs T- lymphoid lineage split (Methods). We evaluated the 

reversal behavior of all gene pairs in the TF set in the context of an extended set of 

hematopoietic cell types. To increase specificity, we required that the TF pairs separating 
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erythroid and myeloid cells are disjoint with the pairs separating lymphoid cells. For 

comparison, we performed a similar analysis using two rank-based methods to detect 

candidate genes based on differential expression (Supplementary Results).

We matched the expression reversal pattern expected in these lineage splits (Fig. 4a) against 

the gene pair data to extract specific pairs {TF1, TF2} that are maximally lineage-restricted 

for either the common erythroid-myeloid or lymphoid progenitors and exhibit minimal 

reversal outside these cell types. To distinguish from reversals obtained by chance in 

comparisons between irrelevant cell types, we ordered the results of our reversal analysis by 

the probability of obtaining reversals in the entire 166x166 cell type comparison matrix 

using the hypergeometric distribution. Five pairs {TFi, TFj} that fulfill the erythroid-

myeloid reversal pattern (exhibiting at least one reversal with |Δ| > 1) were found (Fig. 4b), 

including {GATA1, SPI1}. The complete (166x166 cell types) gene pair reversal plots used 

for the statistical significance calculation are shown below the pattern matched (exact p-

values are indicated below the plots). The lymphoid pattern was matched to three TF pairs 

(Fig. 4c), each containing GATA3. Interestingly, many of the TFs found, including the 

validated GATA1-PU1 toggle switch, are known to be part of the core network that controls 

erythropoiesis, myelopoiesis or lymphopoiesis19–27 and have been shown in some cases to 

engage in mutual interaction5,28–30. For comparison, we also used standard rank-based 

differential expression to identify relevant genes (see Supplementary Results). In doing so, 

we also obtain several of the same genes but fail to capture the lineage differentiating 

property, as this is not attributable to single genes but pairs of genes (Supplementary 

Results, Supplementary Tables 7–9).

A number of independent experiments support the involvement in lineage determination of 

several of the genes identified by expression reversal scoring. Gata3 binding was observed 

in mouse ChIP-seq data31 near the TSS of Ebf1 but not Spib or Aff3. In support of an 

antagonistic pair interaction, Gata3 is among the Ebf1-repressed genes in a gain of function 

study32. In addition, human ChIP-seq data from the GM12878 lymphoblastoid cells12 

indicates EBF1 binding nearby GATA3 TSS. ChIP-seq data also confirmed the possibility of 

cross-inhibitory interactions at the DNA-level for all three putative toggle switch circuits 

from the erythroid-myeloid analysis (Supplementary Figs 10 and 11). Moreover, the 

observed binding of the regulatory factors to their own promoter indicated possible auto-

regulation, proposed to be important for genes that participate in lineage-regulatory toggle 

circuits for stabilizing the poised progenitor state2,6.

Here, we studied whether the binding of the TFs GATA1, TAL1, PU1, EBF1 and GATA3, 

that show evidence of cross-inhibitory interactions among the specific TF pair, maps on a 

genome-wide scale into the mutually exclusive phenotypes. Based on multiple independent 

ChIP-seq datasets (Supplementary Table 10) we performed genomic region enrichment 

analyses (Methods) to test whether their binding preferentially occurs in the vicinity of 

genes associated with the specific hematopoietic lineages. Indeed, we found that GATA1 

and TAL1 binding is clearly associated with the erythrocyte phenotype and differentiation, 

SPI1 with the myeloid-macrophage, EBF1 with B cells and GATA3 with T cells 

(Supplementary Tables 11–15), matching the TF knockout phenotype (Supplementary Table 

16). Furthermore, each member of the antagonistic pairs was associated with phenotype 
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terms of the respective sister lineage. Such binding to the genes of the reciprocal fate is 

indicative of wide-spread repressive regulation, beyond the antagonistic pair.

The gene pair reversals reflect lineage relationships

Lineage relationships are often illustrated as a tree because of the developmental genealogy 

of cell types, although the detailed structure of the actual “tree of development” (“cell fate 

map”)10 of all cell types in higher metazoa remains unknown. We hypothesized that the 

number of gene pairs with reversed expression between a pair of cell types is indicative of 

the relatedness of the cell types. Formalizing this, we define a similarity measure Φ(X,Y) 

between two cell types, X and Y, as the count of gene pairs for which |Δ| > 1. We selected 

well-studied sets of hematopoietic cells and the developmentally related endothelial cells to 

test whether the similarity measure Φ was able to capture the hierarchical lineage 

relationships, which are well studied in this system. Moreover, several precursor cells of 

these lineages were present in the transcriptome dataset, permitting the study of branch 

points. Although traditional hierarchical clustering methods generate dendrograms, they 

cannot reflect the biological lineage tree since all precursors (which exhibit promiscuous 

gene expression profiles) would necessarily be placed on terminal branches (leaves). To 

build this biological intuition into our analysis, we first performed a hierarchical clustering 

of differentiated cell types using Φ similarity, followed by a separate placement of precursor 

cell types onto the tree branch points, taking Φ into consideration (see Methods). The 

resulting dendrogram (Fig. 5a) reflects the well-known hierarchical lineage relationships 

among these cell types. To facilitate interpretation, the similarity Φ of each cell profile to 

that of the embryonic stem cell (ESC) is used to superimpose an elevation onto the 

dendrogram (Fig. 5a). Interestingly, this exposed a key feature of the cell fate map in that the 

HSC and other precursor cell types are more proximal to the ESC than terminally 

differentiated cells. The third dimension therefore captured properties of a true 

differentiation landscape reminiscent of Waddington’s metaphoric epigenetic landscape10. 

We obtained a very similar landscape for blood cell types using an independent dataset (see 
Supplementary Fig. 12 and Supplementary Table 17).

To challenge this concept, we first extended the clustering to include all 166 cell types (Fig. 

5b) and then compared to a result we obtained using metabolic genes33 instead of TFs (Fig. 

5c and Supplementary Fig. 13). Since the precursors of many cell types are not present in 

the dataset used, multidimensional scaling was used to visualize cell type dissimilarities on a 

plane. We used the similarity Φ from the ESC similarly to superimpose an elevation of the 

landscape. In the TF landscape, we found precursor cell types at elevated locations and a 

distinct peak for the pluripotent cells. In contrast, metabolic genes that are not expected to 

drive lineage-determination failed to discriminate the precursor cells that now resided in a 

large basin that connects cell types from multiple lineages and differentiation stages.

DISCUSSION

Here we show a unique way to analyze cell type gene expression profiles that is connected 

to the very principles by which gene circuits govern cell type diversification. Using the 

information in the reversal of gene expression levels between pairs of TFs in pairs of cell 
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types, we generated “participation portraits” of cell types that identified TFs known to play a 

role in fate determination. Furthermore, our curated sets of TFs that operate at the core of 

cell fate switch circuits now pave the way towards investigating how TFs, chromatin 

modification and RNA processing act together in cell lineage control34 and within 

regulatory networks. For instance, two genes, DNMT3B and TET1 that were highly ranked 

in ESCs by our analysis regulate DNA methylation: DNMT3B had been described as an 

epigenetic regulator of pluripotency genes35–37. Upon its discovery, TET1 lacked annotation 

of its cellular function38. Our analysis suggests a developmental function and links 

uncharacterized genes to specific cell types (a key role for TET1 in pluripotent cells was 

indeed subsequently found39). Knowing the mechanistic interactions of transcriptional 

regulatory networks in different cell types40 will enable cell type specific modeling of 

genetic networks and understanding how mutually repressive pairs of TFs that act as bistable 

lineage determining toggle switches affect other TFs and ultimately the global state of the 

network.

By exploiting the concept of bidirectional regulation epitomized by the toggle switch 

circuits that we show is manifested in expression reversal behavior, we ground our method 

on proposed mechanisms in developmental biology2–4 to successfully identify highly 

lineage-specific profiles and TFs involved in core fate-determining circuits. Since the 

identified genes are not only reporters correlated with cell lineages, but possibly involved in 

regulatory circuits that carry out cell fate decisions, the interactive tool we provide to 

explore this dataset could also inform the choice of potential candidate genes used in cell 

fate reprogramming.

We identify with high significance eight relevant gene pairs for the developmental circuitry 

of the common progenitors in the blood system that allowed us to explore further how 

inherent properties of antagonistic pairs may manifest in other types of large scale datasets. 

Their active participation in developmental regulatory networks was confirmed by the high 

degree of inter-connectivity via co-occupied genomic sites and overlap in target genes found 

in ChIP-seq datasets. Finally, we utilize the reversal analysis to design a new cell type 

similarity measure that integrates regulatory information, affording a first opportunity to 

capture the “epigenetic landscape” of the cell differentiation tree directly from expression 

profile data. In conclusion, we present a global analysis of published cell type 

transcriptomes using the reversal of expression levels as a key quantity that captures the 

underlying regulatory dynamics in static gene expression profiles.

METHODS

Dataset collection and preprocessing of expression values

We analyzed 2,919 microarrays comprising 166 different cell types (in some cases tissues) 

that represent each cell type in its normal state. The dataset was collected from the GEO 

microarray repository from the hgu133Plus2 array type with each cell type represented by at 

least two arrays. Further details on the selection of the samples can be found in the 

Supplementary Results.
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Gene expression for the transcription regulating gene set was summarized using the GC-

RMA algorithm41 (no quantile normalization) and custom probe mappings. In total, the 

2,602 genes are included in the analysis of which 844 represent TFs with high confidence 

(TF set). Details on gene set curation and probe mapping can be found in the Supplementary 

Results.

Representing gene expression data as gene pair data

To derive a normalization-independent quantity, we first convert the gene expression values 

to ranks r within each sample. The quantity that represents the gene pair configuration on a 

cell type level, the normalized mean rank difference of two genes, δ, is calculated as the 

mean rank difference of the two genes from each sample that represents this cell type with 

the requirement that the relative ranking between the pair members must be consistent 

(always rg > rg′ or rg < rg′).

Towards this end, let T be an ordered set of cell type labels, G be an ordered set of genes and 

nt be the number of samples for t ∈ T (nt ≥ 2 always). Let Rt = [r(t) gi] be the matrix of 

normalized expression ranks for gene g∈ G, and sample i for cell type t. By averaging over 

all samples nt for a given cell type t, we construct the matrix R = [rgt] of mean normalized 

expression ranks.

Normalized here means that simple rank values (integers in 1,…,|G|) are scaled by |G|−1 so 

that r(t)
gi ∈ [|G|−1,1]. Clearly rgt∈ [|G|−1,1] as well. In the sequel, we will use “ranks” with 

the understanding that we are speaking of normalized ranks.

To detect a gene pair expression reversal, we are interested in how the two genes’ ranks 

differ between cell types. To this end, we define the mean normalized rank difference of two 

genes in a given cell type:

(1)

Notice that δ(g, g′, t) is non-zero if and only if the genes’ ranks manifest the same strict 

inequality across all samples associated with cell type t. Clearly, δ(g, g′, t) ∈ (−1, 1). In the 

text we denote this by δ for short.

Comparison of gene pair data across cell types: gene pair reversal analysis

Because we are interested in reversals of the genes’ relationship between cell types we 

similarly define the difference of differences as:

(2)

Clearly, Δ (g, g′, t, t′) ∈ (−2, 2), and non-zero only if calculated from non-zero values. Those 

pairs with Δ ≠ 0 are referred to as reversal pairs. In order to extract only results where both 
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members of a gene pair change their mean rank between the cell types, |Δ| ≥ 1 must hold. In 

the text we use the notation Δ for Δ (g, g′, t, t′).

A simple result to justify thresholds: |Δ| ≥ 1 is possible only when both genes’ mean ranks 

change between cell types. Assume without loss of generality the mean rank of g does not 

change between cell types, so rgt = rgt′. Then,

(3)

and −1 < rg′t′ −1 ≤ rg′t′ − rg′t < rg′t′ ≤ 1 with each inequality by virtue of positivity of [rgt].

To identify candidate toggle pairs we consider the ternary states Δ < 0, Δ > 0 or Δ = 0 and 

compare the expected configuration for the lineage split to the observed one within a 

particular cell type set (with representative cell types of a lineage split). To account for the 

possibility of obtaining a match by chance, the list is sorted based on the hypergeometric 

probability of obtaining the given number of reversals across cell type comparisons that 

include all 166 cell types.

Reversal participation

We define the reversal participation score Ψ to quantify the strength of participation of gene 

g in (potentially bistable) expression reversals in all pairs of cell types, t and t′. That is, g is 

fixed for the entire plot displayed, and t and t′ correspond to cell types. This measure of 

strength is the product of: (the log of) the number of reversals above a given threshold in 

which the gene participates and the actual magnitude of the strongest (positive or negative) 

reversal in which it participates.

First, we identify the gene ĝ with respect to which g exhibits the strongest reversal Δ for a 

given pair of cell types, t and t′ as:

(4)

and then define the reversal participation score as:

(5)

where H is the |Δ | value above which we deem a reversal to have occurred, and I is the 

indicator function. We use H = 1 in our analysis. As t and t′ range over all 166 cell types, 

this yields square, skew-symmetric plots. Note that genes ubiquitously high expressed do 

not show up as reversal pairs thus separating them from lineage-specific high expressed 

genes.
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Finding the top reversal pairs for a specific lineage split

A supervised search for candidate toggle gene pairs was formulated by setting criteria based 

on biological knowledge of lineage relationships and expected reversal pattern of such a 

gene pair in the precursor (P), lineage 1 (L1) and lineage 2 (L2) cells. An external (E) group 

corresponds to cell types outside the lineage split. The search was performed to extract the 

top pairs of the erythroid-myeloid and B-T lymphoid splits.

Erythroid-myeloid—The hematopoetic stem cell was selected as the precursor cell type 

(P), L1 has three erythroid (proerythroid, erythroblast, erythrocyte), L2 five myeloid 

(promyeloid, CD11b+ bone marrow cell, monocyte, CD16+ monocyte and neutrophil) cell 

types included, and three cell types from the lymphoid lineage (naive CD4+ T cell, naive 

CD8+ T cell and naive B cell) were selected as an external (E) group.

B-T lymphoid—The hematopoetic stem cell served again as the precursor cell type (P), L1 

has four B-lymphoid (naïve B cell, activated B cell, germinal center centrocyte and 

centroblast), L2 four T-lymphoid (naive CD4+ T cell, activated CD4+ T cell, naive CD8+ T 

cell and activated CD8+ T cell) cell types included, and the proerythroid and promyeloid 

cell types were selected as an external (E) group.

We expect no reversals (Δ = 0) in the P-L1, P-L2, P-E, L1-E and L2-E comparisons and 

always a reversal in all L1-L2 comparisons (Δ < 0 for each L1 vs L2 and Δ > 0 for each L2 

vs L1, or Δ > 0 for each L1 vs L2 and Δ < 0 for each L2 vs L1). The exact match is the first 

filter to find candidate pairs. (The external group can be omitted, but is useful if pairs that do 

not exhibit expression reversals in neighboring lineages should be excluded.) Additionally, 

at least one reversal with |Δ | > 1 is required to accept a candidate gene pair to the final list 

shown. Supplementary Table 7 shows additional results when one or more of these criteria 

are relaxed. Invariantly, the top pairs presented are among the most promising candidates. 

Finally, the hypergeometric probability to obtain a defined set of reversals was calculated 

for each pair and used to sort the gene pairs. To calculate this distribution, the number of 

successes in the sample corresponds to the observed reversals within the specified cell type 

set, the number of successes in the population to the observed reversals across all cell type 

comparisons and the sample size to the number of cell types assigned to P, L1, L2 and E.

Clustering of cell types

We define a similarity measure based on gene pair expression reversals, Φ, as the number of 

reversal pairs with | Δ | ≥ 1 (as defined above) for a given cell type comparison. By 

examining all possible pairs of TFs in our dataset we can count the number of reversal pairs 

{g, g′} between two cell types (X, Y). Then, the greater the number of reversal pairs, the 

greater the similarity Φ(X,Y) between the two cell types.

The cell lineage was reconstructed using hierarchical clustering with average linkage for the 

endothelial and hematopoietic cell types. Clustering was applied to terminally differentiated 

cell types. The hematopoietic and endothelial cells are closely related in early development. 

A hemangioblast cell type is a progenitor for both hematopoietic and endothelial 

precursors42. In the clustering, we do not have the common precursor cell type present, nor a 
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precursor for endothelial differentiation. Therefore, all endothelial cells are assigned as 

differentiated cell types. The hematopoietic cell is the common precursor of the blood cell 

types and placed to the center. There are three early precursor cell types for the erythroid-

myeloid lineage: erythroblast, bone marrow promyelocyte and CD11+ cells. In addition, we 

chose to assign monocyte as a precursor cell type as the data set contains multiple 

monocyte-derived cell types (macrophages and dendritic cells). There is no early lymphoid 

precursor in the data set. We chose to assign the naive cell types as precursors. For the B-

cell lineage a further maturation step occurs in the germinal centers43. For this reason, the 

germinal center centrocyte and centroblast were assigned as precursors. The other cell types 

were considered to represent a differentiated state.

The placement of the progenitor cell types {B1,…,BM}, where M is the number of progenitor 

cell types was done using Hungarian algorithm (HA)44 to solve an assignment problem: Let 

Xn = {Φ(a1,Bi),…,Φ(ak,Bi)} and Yn = {Φ(b1,Bi),…,Φ(bl,Bi)} contain the similarities Φ from 

progenitor cell type Bi to the cell types on the left {a1,…,ak} and right {b1,…,bl} branch of 

the node n, n ∈ {1,…,N} respectively and where N is the number of branches in the 

clustering tree. Here, k and l is the number of cell types in the left and right branches, 

respectively. Similarity D(n, Bi) of cell type Bi from node n is defined as D(n,Bi) = |mean 

{Xn} − mean{Yn}|, where |.| denotes absolute value and mean{.} denotes the mean value 

from a set of similarities. The obtained similarity matrix DN,M, containing D(n, Bi) for all the 

node and cell type pairs is then scaled by the similarity to the ESC from each progenitor cell 

type type Ds = D·desc, where desc = [Φ(Aesc,B1),…, Φ(Aesc, BM)] and Aesc is the ESC. desc is 

normalized to the [0,1] interval. This makes the ESC a reference point. HA is then applied 

on Ds to obtain the optimal assignment for each progenitor cell type.

It should be noted that there are more nodes in the clustering tree than there are progenitor 

cell types with measurement data. Thus, a progenitor cell type is assigned only to best fitting 

nodes according to HA optimization. For a representation containing all 166 cell types, 

multidimensional scaling was used to obtain a two-dimensional representation of the full 

reversal similarity matrix. A landscape is interpolated over the 2D representation of cell 

types using the similarity Φ to the ESC as elevation.

ChIP-seq data

The ChIP-seq datasets used are listed in Supplementary Table 10 and their use is further 

described in Supplementary Results. The peak lists as published by the authors were 

assembled for each TF. The peak sizes were equalized to +/− 250 bp around the peak centre. 

For the ESC data, overlapping intervals representing the binding of the same protein were 

merged into one. The intersection of peak lists between pairs of TFs was defined as a 

minimum 1 bp overlapping region. The genomic region enrichment analysis was performed 

using the GREAT45 tool (binomial test, FDR 1%).

Online resource

The online data resource and interactive tool (http://trel.systemsbiology.net/) encompassing 

pair-wise comparisons of the genes and cell types presented in this article is available to 

explore transcriptome diversity in metazoa, accompanied by a user guide and video tutorial. 
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The TF landscape is also available as an interactive browsable format online. The source 

code to perform the analysis is available upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We would like to thank Ryan Bressler (Institute for Systems Biology) for providing the interactive landscape 
visualization for the webpage, Thomas Sauter and Tanja Schilling (University of Luxembourg) for the use of their 
computational resource, David Galas and Carsten Carlberg for useful discussions and suggestions, Evelyne 
Friederich and Nikos Vlassis for reading of the manuscript, and gratefully acknowledge these sources of funding: 
The Academy of Finland project no. 132877 to MN; funding from the University of Luxembourg; Tekes FiDiPro 
Program to SK; Alberta Innovates the Future to SH and National Institute of Health and National Institute of 
General Medical Sciences R01GM072855 and P50GMO76547 to IS.

References

1. Alberts, B., et al. Molecular Biology of the Cell. Vol. 3E. Garland Science; New York: 1994. Cells 
and Genomes; p. 1408

2. Zhou JX, Huang S. Understanding gene circuits at cell-fate branch points for rational cell 
reprogramming. Trends Genet. 2010; 27:55–62. [PubMed: 21146896] 

3. Kauffman SA. Control circuits for determination and transdetermination. Science. 1973; 181:310–8. 
[PubMed: 4198229] 

4. Kauffman SA, Shymko RM, Trabert K. Control of sequential compartment formation in Drosophila. 
Science. 1978; 199:259–70. [PubMed: 413193] 

5. Zhang P, et al. Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. 
Proc Natl Acad Sci US A. 1999; 96:8705–10.

6. Huang S, et al. Bifurcation dynamics in lineage-commitment in bipotent progenitor cells. Dev Biol. 
2007; 305:695–713. [PubMed: 17412320] 

7. Geman D, d’Avignon C, Naiman DQ, Winslow RL. Classifying gene expression profiles from 
pairwise mRNA comparisons. Stat Appl Genet Mol Biol. 2004; 3:Article19. [PubMed: 16646797] 

8. Tan AC, et al. Simple decision rules for classifying human cancers from gene expression profiles. 
Bioinformatics. 2005; 21:3896–904. [PubMed: 16105897] 

9. Price ND, et al. Highly accurate two-gene classifier for differentiating gastrointestinal stromal 
tumors and leiomyosarcomas. Proc Natl Acad Sci US A. 2007; 104:3414–9.

10. Waddington CH. The strategy of the genes: a discussion of some aspects of theoretical biology. 
262. Allen & Unwin, London. 1957

11. Yu J, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007; 
318:1917–20. [PubMed: 18029452] 

12. The ENCODE Project Consortium. Identification and analysis of functional elements in 1% of the 
human genome by the ENCODE pilot project. Nature. 2007; 447:799–816. [PubMed: 17571346] 

13. Chen X, et al. Integration of external signaling pathways with the core transcriptional network in 
embryonic stem cells. Cell. 2008; 133:1106–17. [PubMed: 18555785] 

14. Vierbuchen T, et al. Direct conversion of fibroblasts to functional neurons by defined factors. 
Nature. 2010; 463:1035–41. [PubMed: 20107439] 

15. Grass JA, et al. GATA-1-dependent transcriptional repression of GATA-2 via disruption of 
positive autoregulation and domain-wide chromatin remodeling. Proc Natl Acad Sci US A. 2003; 
100:8811–6.

16. Laslo P, et al. Multilineage transcriptional priming and determination of alternate hematopoietic 
cell fates. Cell. 2006; 126:755–66. [PubMed: 16923394] 

17. Hu M, et al. Multilineage gene expression precedes commitment in the hemopoietic system. Gene 
Dev. 1997; 11:774–85. [PubMed: 9087431] 

Heinäniemi et al. Page 12

Nat Methods. Author manuscript; available in PMC 2014 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



18. Zhou JX, Brusch L, Huang S. Predicting Pancreas Cell Fate Decisions and Reprogramming with a 
Hierarchical Multi-Attractor Model. PLoS ONE. 2011; 6:e14752. [PubMed: 21423725] 

19. Hosoya T, et al. GATA-3 is required for early T lineage progenitor development. J Exp Med. 2009; 
206:2987–3000. [PubMed: 19934022] 

20. Miranda-Saavedra D, Göttgens B. Transcriptional regulatory networks in haematopoiesis. Curr 
Opin Genet Dev. 2008; 18:530–5. [PubMed: 18838119] 

21. Swiers G, Patient R, Loose M. Genetic regulatory networks programming hematopoietic stem cells 
and erythroid lineage specification. Dev Biol. 2006; 294:525–40. [PubMed: 16626682] 

22. Feinberg MW, et al. The Kruppel-like factor KLF4 is a critical regulator of monocyte 
differentiation. EMBO J. 2007; 26:4138–48. [PubMed: 17762869] 

23. Hoang T, et al. Opposing effects of the basic helix-loop-helix transcription factor SCL on erythroid 
and monocytic differentiation. Blood. 1996; 87:102–11. [PubMed: 8547631] 

24. Ma C, Staudt LM. LAF-4 encodes a lymphoid nuclear protein with transactivation potential that is 
homologous to AF-4, the gene fused to MLL in t(4;11) leukemias. Blood. 1996; 87:734–45. 
[PubMed: 8555498] 

25. Nagasawa M, Schmidlin H, Hazekamp MG, Schotte R, Blom B. Development of human 
plasmacytoid dendritic cells depends on the combined action of the basic helix-loop-helix factor 
E2-2 and the Ets factor Spi-B. Eur J Immunol. 2008; 38:2389–400. [PubMed: 18792017] 

26. Hagman J, Belanger C, Travis A, Turck CW, Grosschedl R. Cloning and functional 
characterization of early B-cell factor, a regulator of lymphocyte-specific gene expression. Gene 
Dev. 1993; 7:760–73. [PubMed: 8491377] 

27. Zandi S, et al. EBF1 is essential for B-lineage priming and establishment of a transcription factor 
network in common lymphoid progenitors. J Immunol. 2008; 181:3364–72. [PubMed: 18714008] 

28. Lukin K, et al. A dose-dependent role for EBF1 in repressing non-B-cell-specific genes. Eur J 
Immunol. 2011; 41:1787–93. [PubMed: 21469119] 

29. Dontje W, et al. Delta-like1-induced Notch1 signaling regulates the human plasmacytoid dendritic 
cell versus T-cell lineage decision through control of GATA-3 and Spi-B. Blood. 2006; 107:2446–
52. [PubMed: 16317090] 

30. Rosa A, et al. The interplay between the master transcription factor PU.1 and miR-424 regulates 
human monocyte/macrophage differentiation. Proc Natl Acad Sci US A. 2007; 104:19849–54.

31. Wei G, et al. Genome-wide Analyses of Transcription Factor GATA3-Mediated Gene Regulation 
in Distinct T Cell Types. Immunity. 2011; 35:299–311. [PubMed: 21867929] 

32. Treiber T, et al. Early B cell factor 1 regulates B cell gene networks by activation, repression, and 
transcription- independent poising of chromatin. Immunity. 2010; 32:714–25. [PubMed: 
20451411] 

33. Duarte NC, et al. Global reconstruction of the human metabolic network based on genomic and 
bibliomic data. Proc Natl Acad Sci US A. 2007; 104:1777–82.

34. Pardo M, et al. An expanded Oct4 interaction network: implications for stem cell biology, 
development, and disease. Cell Stem Cell. 2010; 6:382–95. [PubMed: 20362542] 

35. Kashyap V, et al. Regulation of stem cell pluripotency and differentiation involves a mutual 
regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with 
polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev. 2009; 18:1093–108. 
[PubMed: 19480567] 

36. Li JY, et al. Synergistic function of DNA methyltransferases Dnmt3a and Dnmt3b in the 
methylation of Oct4 and Nanog. Mol Cell Biol. 2007; 27:8748–59. [PubMed: 17938196] 

37. Sinkkonen L, et al. MicroRNAs control de novo DNA methylation through regulation of 
transcriptional repressors in mouse embryonic stem cells. Nature Struct Mol Biol. 2008; 15:259–
67. [PubMed: 18311153] 

38. Tahiliani M, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian 
DNA by MLL partner TET1. Science. 2009; 324:930–5. [PubMed: 19372391] 

39. Ito S, et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell 
mass specification. Nature. 2010; 466:1129–33. [PubMed: 20639862] 

Heinäniemi et al. Page 13

Nat Methods. Author manuscript; available in PMC 2014 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



40. Neph S, et al. Circuitry and dynamics of human transcription factor regulatory networks. Cell. 
2012; 150:1274–86. [PubMed: 22959076] 

41. Wu Z, Irizarry RA. Stochastic models inspired by hybridization theory for short oligonucleotide 
arrays. J Comput Biol. 2005; 12:882–93. [PubMed: 16108723] 

42. Nishikawa SI, et al. Progressive lineage analysis by cell sorting and culture identifies FLK1+VE-
cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development. 1998; 
125:1747–57. [PubMed: 9521912] 

43. Allen CDC, Okada T, Cyster JG. Germinal-center organization and cellular dynamics. Immunity. 
2007; 2(7):190–202. [PubMed: 17723214] 

44. Burkard, RE.; DellAmico, M.; Martello, S. Assignment Problems. SIAM; Philadelphia: 2009. p. 
382

45. McLean CY, et al. GREAT improves functional interpretation of cis-regulatory regions. Nat 
Biotechnol. 2010; 28:495–501. [PubMed: 20436461] 

Heinäniemi et al. Page 14

Nat Methods. Author manuscript; available in PMC 2014 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. Gene pair expression reversal analysis exemplified by schematic data
A schematic example to illustrate the principle of the expression reversal method is shown. 

(a) The ranks of two hypothetical genes g and g′ are plotted from microarray samples 

assigned to three hypothetical cell types. (b) Gene pair reversal plot. The reversal behavior 

of the {gene g, gene g′} gene pair quantified for all pair-wise comparisons of N = 3 cell 

types is shown as an N x N symmetric matrix. The value, indicating the extent of reversal 

behavior is represented by the color in the heat map. Red tones indicate that the pair 

configuration changes from gene g ≫ gene g′ in the first cell type of a comparison pair 

(“row-to-column comparison”) to gene g ≪ gene g′ in the second cell type. A reversal in the 

opposite direction in cell type comparisons are indicated in blue shades. (c) Reversal 

participation. The Ψ value for gene g quantifies its reversal participation from all gene pairs 

displayed across each pair-wise comparisons of (here N = 32) cell types. A specific gene 

pair configuration in multiple gene pairs involving g, will be reflected by a high score (dark 

red or blue). Alternatively, the gene reversal participation can be assessed at the cell type 

level by extracting from the gene portraits the cell type (row) of interest, and subsequently 

sorting by maximal Ψ value.
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Fig. 2. Cell type-level analysis of reversal participation in the ESC highlights genes used to 
induce pluripotency
Reversal participation analysis for ESCs compared to all other cell types reveals genes that 

are important in determining ESC (refer to Supplementary Table 3 for the order of cell types 

in columns). (a) The first 100 rows (of 2,602 TFs evaluated) of the ESC cell portrait are 

displayed and the names of top 20 most specific ESC-high transcription regulating genes are 

indicated, including those used to induce pluripotency in human cells11: LIN28, NANOG, 

POU5F1 and SOX2. (b) Active ESC transcription and promoter state was evaluated from 

ENCODE12 RNA-seq (R) and ChIP-seq (C) of histone methylation datasets. The level of the 

H3K4me3 marker for active promoters around 5 kb up- or downstream from the gene 

transcription start site (TSS) is shown from six normal ENCODE cell types H1 ES: human 

ESC line H1, HMEC: breast epithelial cell, HSMM: skeletal muscle myoblast, HUVEC: 

umbilical vein endothelial cell, NHEK: epithelial keratinocyte, NHLF: lung fibroblast. 

RNA-seq data is available from H1 ES, HUVEC and NHEK cells. The high ESC expression 

and its specificity can be compared against the gene reversal portraits shown adjacent to the 

ChIP tracks.
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Fig. 3. Reversal participation analysis of a candidate gene set for the induction of neuronal 
differentiation reflects success in a functional assay
A set of 19 candidate transcription regulating genes was characterized experimentally for 

their neuronal differentiation induction potential14. The reversal participation gene portraits 

of these genes are shown. The ordering of the portraits reflects the experimental success to 

induce neuronal fate in combination with ASCL1 that was found14 most potent on its own to 

induce the conversion of fibroblasts to neuronal cells. The grey bar indicates the location 

(rows) of neuronal cells in the figures.
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Fig. 4. Identification of reversal pairs in lineage splits of the blood system
The HSC is the common precursor of all blood cells. Lymphoid cells branch off separately 

to give rise to the B and T cell lineages, wheras the myelo-erythroid lineage gives rise to the 

later binary split between the erythroid and myeloid cells. Lineage-determining TF pairs of 

the binary splits are expected to follow the reversal pattern shown in the idealized gene pair 

reversal plots for the subset of relevant lineages used as a query criterion. An ideal pair will 

also show no reversals for other cell type pairs in the full 166x166 cell type comparison 

matrix (a). Pairs of TFs that satisfy such properties and show a statistically significant 

restricted reversal in the 166x166 cell type data are shown with their p-values 

(hypergeometric test) for the erythroid-myeloid (in (b)) and B-T lymphoid (in (c)) splits. 

The heat maps represent gene pair reversal plots as in Fig. 1b, color corresponds to the mean 

normalized rank difference.
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Fig. 5. Lineage relationships among hematopoietic and endothelial cell types revealed measuring 
similarity based on gene pair expression reversals
An evaluation of utility of the similarity Φ to reflect lineage separation is shown. (a) 

Hierarchical clustering of differentiated cell types with the new feature of placement of 

precursor cell types to three branch points using the Hungarian algorithm and mapping of 

the tree to a landscape is visualized. The circular dendrogram in the x-y plane arranges cells 

to branching lineages identified by different colors. To represent all cell types and their 

similarity Φ, multidimensional scaling is shown with (b) TFs or (c) metabolic genes43. The 

landscape elevation (z-dimension) represents the Φ similarity to the ESC giving rise to a 

potential-like landscape in which development follows the downhill gradient as in 

Waddington’s epigenetic landscape10. Blue color and high altitude on the landscape 

corresponds to large similarity to the pluripotent state.
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