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ANTONIO Muñoz-Mérida1, ENRIQUE Viguera2, M. GONZALO Claros3, OSWALDO Trelles1,4,
and ANTONIO J. Pérez-Pulido5,*
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Spain5

*To whom correspondence should be addressed. Tel. þ34 954-348-652. Fax. þ34 954-349-376.
E-mail: ajperez@upo.es

Edited by Prof. Kenta Nakai
(Received 29 October 2013; accepted 6 January 2014)

Abstract
Automatic sequence annotation is an essential component of modern ‘omics’ studies, which aim to extract

information from large collections of sequence data. Most existing tools use sequence homology to establish
evolutionary relationships and assign putative functions to sequences. However, it can be difficult to define a
similarity threshold that achieves sufficient coverage without sacrificing annotation quality. Defining the
correct configuration is critical and can be challenging for non-specialist users. Thus, the development of
robust automatic annotation techniques that generate high-quality annotations without needing expert
knowledge would be very valuable for the research community. We present Sma3s, a tool for automatically
annotating very large collections of biological sequences from any kind of gene library or genome. Sma3s
is composed of three modules that progressively annotate query sequences using either: (i) very similar
homologues, (ii) orthologous sequences or (iii) terms enriched in groups of homologous sequences. We
trained the system using several random sets of known sequences, demonstrating average sensitivityand spe-
cificity values of ∼85%. In conclusion, Sma3s is a versatile tool for high-throughput annotation of a wide
variety of sequence datasets that outperforms the accuracy of other well-established annotation algorithms,
and it can enrich existing database annotations and uncover previously hidden features. Importantly, Sma3s
has already been used in the functional annotation of two published transcriptomes.
Key words: functional annotation; genome annotation; transcriptome annotation; bioinformatic tool

1. Introduction

Sequenceannotation is theprocessofassociatingbio-
logical informationtosequencesof interest.Annotations
can include the potential function, cellular localization,
biological process or protein structure of a given se-
quence.1 Some sequences are annotated using direct ex-
perimental evidence, but most annotations are inferred
from sequence similarities or conserved patterns asso-
ciated with known characteristics.2–5 Large publically
accessible databases of annotated sequences make it
possible to automatically annotate large collections of

unknown sequences. This is especially valuable for the
interpretation of large sequence datasets generated by
genome and expressed sequence tag (EST) sequencing
projects as well as gene and protein expression experi-
ments, such as DNA microarrays, and many other emer-
ging research areas.6

Sequence annotation is also important in transcrip-
tomic experiments that aim to identify gene clusters
with similarexpression patterns that are linked to a par-
ticular biological process or experimental condition.
Biological function can then be inferred from annota-
tions shared within these clusters.7
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Several methods have been developed for the anno-
tation of the large datasets generated by sequencing
projects. These methods typically perform homology-
based searches and infer annotations from sequences
with high levels of homology to the query sequence.
To detect sequence similarity, most methods use
BLAST, a fast heuristic algorithm for identifying hom-
ology between sequences based on local sequence
alignments.8

Blast2GO is one of the most widely used tools for
genomic annotation.9 It performs three steps: a BLAST
search, a step that maps similar sequences to existing
annotation associations, and finally term annotation.
As its name suggests, Blast2GO mainly uses terms
from the Gene Ontology (GO) controlled vocabulary
for annotation,10 although it also includes other anno-
tation classes. However, Blast2GO is most commonly
run online, which can make it more difficult to
analyse large collections of sequences. Other methods
can be installed locally, and so avoid problems asso-
ciated with remote execution, such as sequence
number limitations or resource thresholds. Blast2GO
is also available in an offline form, but installation
requires knowledge of relational databases that make
it less suitable for routine use and difficult for non-spe-
cialist users. AutoFact11 can perform several types of
BLAST search using locally downloaded domain and
motif databases. However, it uses databases with de-
scriptive non-standard annotation entries rather than
controlled vocabularies such as GO. The resulting lack
of homogeneity in terms of vocabulary or syntax can
make it much more difficult to automatically assign
annotations or evaluate annotation quality.

The above methods can be applied to a wide range of
different sequence types and organisms. Many other
tools are specialized for specific applications. Some
tools only deal with single annotation classes, as is the
case for Gotcha, which only uses GO terms.12 Others
are specialized for the annotation of specific sequence
types, such as the EST-specific ESTAnnotator13 and
EST-PAC.14 In addition, some tools are designed espe-
cially for the annotation of specific organisms. For
example, BLANNANOTATOR assigns non-standard
annotations to bacterial sequences.15

Some platforms allow diverse data sources to be inte-
grated for the purposes of sequence annotation and an-
notation analysis. For example, the Babelomics suite,16

of which Blast2GO is part, contains tools for assigning
interactions, pathways or even regulatory annotations
to analysed sequences. Another widely used platform
is DAVID,17 which extracts functional annotations
from a variety of public genome resources, and allows
subsequent analysis by biological enrichment. One of
the richest annotation sources is BioMart,18 which
retrieves sequence annotations from Ensembl and
other databases.

All of these annotation methods use BLAST to detect
and evaluate the similarity between a query sequence
and putative homologues.8 For each query sequence,
BLAST attempts to create alignments with database
sequences and uses these alignments to judge se-
quence similarity. Most annotation methods select
the database sequence with the highest overall similar-
ity score for each query sequence as the donor of anno-
tation information. In addition, a minimum similarity
threshold sets the limit below which sequences will be
rejected even if they are the most similar sequence in
the database. Defining the similarity threshold is not
an easy task, as it must balance annotation quality
and sequence coverage (SC). Moreover, it has been
shown that the optimal similarity threshold can vary
between different sequence types.19 Several other
BLAST variables, such as how it scores alignment gaps,
can also result in significantly different results. These
factors can be difficult to configure, particularly for
non-specialist users.

We have developed Sma3s, a fast, accurate and flex-
ible annotation tool specifically designed for the anno-
tation of large collections of sequences obtained from
diverse gene libraries or coding sequence datasets. It is
comprised of three modules that solve the annotation
process withprogressively less-stringent sequence simi-
larity requirements, combined with methods to opti-
mize specificity. Each module uses an initial
exhaustive BLAST search as its starting point. The third
Sma3s module enhances annotation quality using
term enrichment to identify annotations shared by
groups of similar sequences. We have defined optimal
default Sma3sparameter valuestominimizeuser inter-
vention for most applications, thus aiding consistency
and comparability. We show that Sma3s can rapidly
produce high levels of prediction accuracy with
minimal human supervision and modest computation-
al resources.

2. Materials and methods

2.1. Implementation
Sma3s was written in Perl using modules of the

BioPerl 1.6 project (http://www.bioperl.org) and is
freely accessible from the Sma3s website (http://www.
bioinfocabd.upo.es/sma3s/). Sma3s uses two pro-
grammes from the Blast package: blastp for amino
acid sequences and blastx for nucleotide sequences,
using an E-value threshold of 1026, and blastclust for
sequence clustering procedures. A Perl biological en-
richment module, based on hypergeometric distribu-
tion, was used to calculate probability values (http://
www.cse.huji.ac.il/course/2006/bioskill/Ex2/HyGe.pm).

Sma3s uses the UniProt database in plain-text format
files ( file.dat), corresponding to the taxonomic division
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of the organism under study, as its main data source.
More details about programme requirements and op-
eration are available on the website.

Running on a dual-processor Intel Pentium 4 CPU
3.00 GHz with 4 Gb of RAM, the programme takes an
average of 0.7 s to annotate each sequence (mean
length ¼ 400 amino acids) against a division of the
Swiss-Prot database (�45 000 sequences), using the
three modules. In fact, the most time-consuming
process (�90%) is the initial exhaustive BLAST (blastp
or blastx), whose results are then reused in subsequent
parameter tuning and annotation refinement steps.

2.2. Annotation types
UniProt20 is arguably the most complete publically

available protein database. Human-based curation
ensures high-quality annotations, which is particularly
evident in the Swiss-Prot section, compared with the
automatically annotated TrEMBL section (also part of
UniProt). Sma3s uses Swiss-Prot as its main source for
extracting annotations. The UniProt fields used by
Sma3s are:

Gene ontology GO10 provides a controlled vocabu-
lary to describe genes and gene product attributes. It
is organized into three biological ontologies: molecular
function, biological process and cellular component.
Standardized GO term annotations are included in
the cross-reference (DR) field of UniProt.

Interpro InterPro21 is an integrated documentation
resource of protein families, domains and sites. It com-
bines complementary sequence pattern information
from several databases. UniProt provides InterPro iden-
tifiers also from the DR field.

Swiss-Prot keywords The Swiss-Prot keywords consti-
tute a well-defined and controlled vocabulary of
terms used to annotate a UniProt protein entry. These
keywords (the KW field in UniProt) describe functions,
biological processes, structure, cellular localization
and other protein characteristics.

Pathway annotation This annotation provides a de-
scription of the metabolic pathway(s) in which a
protein is involved. It is obtained from the comment
(CC) field containing generic and specific metabolic
pathway descriptors (e.g.: -!- PATHWAY: Nucleotide
metabolism; purinemetabolism). Sma3sgathersanno-
tations of the most generic level (‘Nucleotide metabol-
ism’ in the previous example). This type of annotation is
particularly useful for identifying co-expressed genes
that are active in the same metabolic pathway.

New annotation types can be incorporated into
Sma3s with only minor changes to its algorithms.

2.3. Threshold calculation for the selection of multiple
homologous sequences

Module 3 uses a modified version of Sander’s
formula,22 later updated by Rost23 to select alignments
based on both identity and alignment length. The ori-
ginal formulas describe the relationship between se-
quence identity and alignment length observed in
sequences sharing structural similarities as a curve. In
the Rost equation, the identity threshold (p) for an
alignment of length L is defined as:

plðnÞ ¼ nþ 480� L�0:32�ð1þe�L=100Þ; ð1Þ

where n describes the distance in percentage from the
original curve. This value allows curve adjustment to in-
crease stringency and to ensure at least 40% identity
(n ¼ 20) at any alignment length in accordance with
the �40% threshold for functional conservation
described by Wilson et al.24 and will be the default
value used for Module 3 annotation.

2.4. Statistical significance analysis of annotations
Each term assigned by Sma3s’ prediction algorithm is

assigned a P-value to indicate annotation quality.
Annotations fromModule3takeP-values fromabiologic-
al enrichment calculation, while those from Modules 1
and 2 are derived from the highest rated BLAST hit.

The biological enrichment algorithm (see below) is
based on hypergeometric distribution as follows: from
M sequences in the database, K contains annotation X;
with m sequences in the annotated cluster, the prob-
ability P(x ¼ k) that k sequences will have annotation
X is:

Pðx ¼ kÞ ¼

K
k

� �
M�K
m�k

� �

M
m

� � ð2Þ

Assuming that l sequences were found with annotation
X, the probability P that l can be adjusted to the null
hypothesis is:

P ¼
XminfK;mg

k¼1

Pðx ¼ kÞ; ð3Þ

The cut-off P-value was determined experimentally to
be �0.1 (see the Results section).

2.5. Accuracy estimation
Sma3s assesses three different ratios to evaluate

method accuracy taking into account test sets of previ-
ously annotated sequences. These ratios are based on
TP (true positives: predicted terms corresponding to
the real annotation), FP (false positives: predicted
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termsnotcorresponding to the real annotation)andFN
(false negatives: non-predicted real terms).

It is worth pointing out that (TP þ FN) corresponds to
the number of real annotations and (TP þ FP) repre-
sents the number of predicted annotations. In this
way, we can calculate both sensitivity and specificity
indices. We can also calculate the Relative Error
Quotient (REQ), which evaluates the overall prediction
quality by considering both the sensitivity and specifi-
city measurements as described in the GOtcha
method.12 REQ is calculated as:

REQ =
FN�W+ FP
TP� ð1þWÞ ; ð4Þ

where W is a weighting factor that moderates the influ-
ence of FN and FP. In this work, W has been set to 1 to
make results comparable with the literature. Low REQ
values indicate a low annotation error rate, whereas a
high REQ indicates a higher proportion of errors. This
measure of accuracy has the advantage that it encom-
passes TP, FP and FN, thus combining sensitivity and se-
lectivity in a single value.

To evaluate prediction coverage percentages, two
more values were calculated: the SC (the number of
sequences with predicted annotations with respect to
sequences with known annotations) and term coverage
(TC, the number of predicted annotations with respect
to known annotations).

2.6. Test datasets
2.6.1. Random sequence datasets All the databases

used in this work belong to the UniProt Knowledgebase
Release 2011_08, which were obtained from the EBI ftp-
site: ftp://ftp.ebi.ac.uk/pub/databases/uniprot/current_
release/knowledgebase/taxonomic_divisions/.

We downloaded four taxonomic divisions (bacteria,
plants, invertebrates and mammals) and built five inde-
pendent random datasets of 1000 sequences (5000 in
total) for each taxonomic division. These datasets
were processed with Sma3s. Query sequences were
removed from the database before each run to avoid
self-annotation.

2.6.2. Sequence sets fromDNA arrays Weextracted
two independent DNA arrays from the GEO database:25

Affymetrix Murine 11K SubB Array (AC:GPL76) and
the Affymetrix Arabidopsis ATH1 Genome Array
(AC:GPL198). The nucleotide sequences from these
arrays were downloaded, and sequences shorter than
150 were removed (to ensure a minimum amino acid
sequence length of 50). Reference annotations were
taken from both Affymetrix-assigned GO terms and
GO terms extracted from the Swiss-Prot entries referred
to in the Affymetrix annotation.

2.7. Blast2GO and Top-BLAST tests
We opened Blast2GO as a Java application (http://

www.blast2go.com/b2ghome), selecting the 2Gb
memory version, as would be typical for non-expert
users performing a search with default parameters.
The test did not include graphical data mining or en-
richment analysis Blast2GO options. For Top-BLASTan-
notation, the best hit from a default BLAST search was
used to annotate every sequence in the dataset. Self-
prediction in Blast2GO (annotation based on annota-
tions from the query sequence) was unavoidable,
since dataset sequences cannot be removed from the
database.

3. Results

3.1. Sma3s algorithm overview
With Sma3s, we set out to develop a tool that can in-

telligently assign annotations to query sequences in a
way that maximizes accuracy without sacrificing cover-
age, and works in a way that is robust enough to gener-
ate high-quality results without having to adjust the
parameters.

To achieve these aims, we designed Sma3s as a
modular system that processes query sequences in a
series of discrete steps. The method starts with a BLAST
similarity search, followed by a three-step annotation
processwhichsequentially testsdifferentdegreesof simi-
larity between query and database sequences (Fig. 1).
The first module annotates query sequences using
database homologues with very high levels of similarity
(Fig. 1, M1). The second module performs a reciprocal
BLAST on sequences unannotated in the first step to
generate annotations from orthologous database
sequences (Fig. 1, M2). The third module uses a novel
strategy (Fig. 1, M3) that looks for more distantly
related sequences and analyses these data for statistic-
ally significant sequence annotations.

Module 1: The first annotator uses a Top-BLAST strat-
egy to check whether the query sequence (or one very
similar to it) already exists in the UniProt database,
and then directly assigns database annotations to the
query sequence. We established a minimum sequence
identity of 90% and a sequence overlap of at least 90%
of the database sequence, although these parameters
are customizable. In all cases, Sma3s uses annotations
from Swiss-Prot in preference to TrEMBL when identical
amino acid sequences are found in both databases
(Table 1, see the next section for details).

Module 2: This module annotates using information
from putative orthologues with lower similarity. The
second module of Sma3s is based on reciprocal BLAST
searches. It detects lower similarity sequences with at
least 75% of per-residue identity, covering at least
75% of database sequence length. The best hit is then

344 Sma3s: AThree-Step Modular Sequence Annotator [Vol. 21,



used as an input seed in a blastp or tblastn search
against the initial set of query sequences. If this
second BLAST identifies the starting query sequence
as the best hit, then an orthology relationship is estab-
lished, and consequently, the annotation recovered.
As in the previous step, Sma3s uses Swiss-Prot annota-
tions in preference to TrEMBL (Table 1, see the next
section for details).

Module 3: Module 3 recovers annotation informa-
tion from multiple homologous sequences using a
novel multi-step approach. The first step is to determine
which homologues have sufficient similarity to the
query sequence. Work by Sander22 and Rost23 found
that minimum alignment length was a better criterion
than overall percentage sequence identity for estimat-
ing sequence and structural homology, especially
when comparing pairs of structurally matched proteins
with lower levels of similarity. Intuitively, for short se-
quence alignments, a high percentage identity is

needed to establish statistically significant relation-
ships. Conversely, long pairwise alignments require
lower identity to be qualified as significant. In the
context of protein structure, a minimum threshold of
�20%was foundtobeagoodpredictorofprotein struc-
ture,providedthatthealignmenthada lengthofat least
150 residues. Function is less well conserved than struc-
ture, but further studies have reported that biological
function is typically conserved when two sequences
exhibit 40% sequence identity.24 Thus, based on the
hypothesis that function conservation is also related
to sequence alignment length, we have used a modified
form of Rost’s equation (see Materials and Methods for
details) that only selects sequences whose alignments
have at least 40% identity at any alignment length.

Although the sequences selected by this method can
have significantly lower similarities to those identified
by Modules 1 and 2, the combined analyses of multiple
sequences can be used to increase annotation reliabil-
ity. This is based on the hypothesis that annotations
shared by several homologous sequences are more
likely to reflect functions shared by the query sequence.
Module 3 uses biological enrichment to only select
those terms which appear more frequently in the iden-
tified homologues than would be expected by chance in
the source database (see ‘Statistical significance assess-
ment of annotations’ in the Materials and Methods
section for details).

The presence of several redundant sequences in the
search results could bias the term enrichment

Figure 1. Sma3s workflow. The first M1 module derives annotations from highly similar sequences stored in the database, choosing sequences
using the Top-BLAST method, which selected the highest similarity homologue from each BLAST search that meets the minimum similarity
criteria. The remaining sequencesare passed to the secondmodule (M2),which performs reciprocal BLAST searchesto identifyorthologous
sequences as annotation sources, also using the Top-BLAST method. Finally, the M3 module obtains annotations from a set of related
sequences whose similarity is supported by statistically significant concentrations of similar annotations, filtered by clustering
techniques to avoid over-representation from duplicated gene families. This figure appears in colour in the online version of DNA Research.

Table 1. Sma3s results with different source databases

Sn Sp REQ SC

Swiss-
Prot

0.83+0.13 0.87+0.07 0.19+0.15 0.87+0.13

TrEMBL 0.61+0.15 0.86+0.08 0.45+0.25 0.94+0.06

UniProt 0.68+0.09 0.87+0.07 0.32+0.14 0.94+0.05

Sequence coverage (SC), specificity (Sp), sensitivity (Sn) and
REQ values are shown together with the corresponding stand-
ard deviation.

No. 4] A. Muñoz-Mérida et al. 345



algorithm. To reduce this possibility, very similar
sequences are first combined by ‘clustering’.
Redundant sequences are identified using blastclust
(part of the Blast package), using 95% identity and
alignment lengthas searchcriteria. Thus,whenevaluat-
ing the frequency of annotation terms, each cluster
counts only once, regardless of the number of
sequences it contains.

In summary, Module 3 processes each query as
follows (also see Fig. 1, M3): (i) the BLAST report is
scanned for statistically significant alignments accord-
ing to Rost’s equation; (ii) identification and grouping
of clusters containing very similar members of the
same family; (iii) a preliminary annotation set is
formed by combining individual non-redundant anno-
tations from each clusterand finally, (iv) biological term
enrichment is used to select significantly overrepre-
sented annotations in each group of homologous
sequences. Owing to the modular implementation of
the algorithm, each module can be run independently,
allowing the user to easily customize annotation criteria.

3.2. Sma3s annotates random Swiss-Prot sequence
collections with high accuracy

We trained Sma3s using random datasets extracted
from the four Swiss-Prot taxonomic divisions. Five inde-
pendent random sets of 1000 sequences (5000 in
total) were extracted foreach division. These sequences
were then annotated using the corresponding division
from Swiss-Prot, and each query sequence removed
from the database at each step to avoid self-annotation.

We evaluated the annotation of each random set of
sequences for SC, specificity, sensitivity and REQ values
(an accuracy measurement which combines both spe-
cificity and sensitivity, with 0 being the best possible
value). The results obtained varied significantly
between taxonomic divisions, but not between differ-
ent datasets from the same division (Fig. 2).

To identify the optimal default cut-off value, we
tested Sma3s with different P-values using our
random datasets as query sequences and the corre-
sponding taxonomic divisions of the Swiss-Prot data-
base as annotation sources. As can be seen in Fig. 2,
more restrictive P-values generated consistent results
with low REQ values and higher specificity (Sp) but at
the cost of reduced sensitivity (Sn). The highest accur-
acy, as defined by the lowest REQ values, was obtained
when specificity and sensitivity had equal or similar
values. With the exception of the invertebrate dataset,
a P-value of 0.1 resulted in average sensitivity and spe-
cificity values .0.8. These values compare favourably
with those of other tools, such as Blast2GO9 or
Gotcha,12 whose accuracy typically ranges between
0.65 and 0.7. On this basis, we established a default
P-value of 0.1 for Sma3s.

When the same test datasets were annotated using
the uncurated TrEMBL database or the complete
UniProt database instead of Swiss-Prot, the average ac-
curacy was reduced despite the high coverage obtained
(Table 1). This can be explained by the fact that the
unreviewed TrEMBL sequence collection is much
larger than the manually annotated Swiss-Prot set.
Thus, a large proportion of annotations assigned from
the UniProt database are derived from TrEMBL, even
though UniProt also contains Swiss-Prot sequences.

Accuracy was also calculated separately for each of
the four annotation types recovered by Sma3s: GO
terms, SW-Keywords, InterPro and Pathways (Fig. 3).
Best results were obtained for Pathway and InterPro
annotations, which had REQ values �0.2 for all except
the invertebrate dataset. Keyword and GO annotations
had poorer REQ values, but still achieved average sensi-
tivity and specificity values of 0.8 (and as high as 0.97
for bacteria). The exception, again, was the invertebrate
dataset for which Sma3s generated higher REQ values,
associated with significantly lower sensitivity. The rela-
tively poor results for the invertebrate dataset are prob-
ably due to the relatively small number of sequences
present in the corresponding invertebrate database.
Sequence length is also important. In fact, this dataset
is the group with the highest proportion of very short
sequences (10-40 amino acids), which are usually
annotated with difficulty (Supplementary Fig. S1a).

3.3. The M3 module can enrich the annotation of
previously analysed sequences

As described above, each dataset sequence is anno-
tated by one of the three different modules in the
Sma3s algorithm, which sequentially run from M1 to
M3. To determine the effectiveness of each module,
we calculated the percentage of random dataset
sequences annotated by each module. On average, the
M1 module annotated 53.76% of sequences (Table 2)
with M2 and M3 annotating the remainder (19.70
and 26.54%, respectively). As modules M2 and M3
only annotate query sequences that were not anno-
tated by the previous module(s), the �26% of
sequences annotated by M3 suggests that it significant-
ly increases Sma3s annotation coverage.

M1 and M2 modules provide highly accurate results
since annotations are obtained from verified ortholo-
gues with high degrees of identity between query and
donor sequences. However, as both modules employ
the traditional Top-BLAST approach, each query se-
quence isannotated fromonlyoneputativeorthologue.
In contrast, the M3 module typically extracts annota-
tions from several homologous sequences identified
in the BLASTreport. To bettercompare the relative ben-
efits of the different approaches used by Sma3s, we
compared the annotation of our random datasets
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using the three modules as described above (M123)
against annotation using Module 3 alone (M3). In the
latter case, all sequences are annotated by Module 3,
not just the sequences unannotated by Modules 1
and 2. Figure 4 shows that the mean specificityand sen-
sitivity of the M3 module were slightly lower than the
full Sma3s analysis, with the REQ value increasing
from 0.19 to 0.32. However, M3 obtained more anno-
tations (Fig. 4, column TC) due to its ability to extract
annotations from multiple homologues. M3 accuracy
was also compared with combined M1 and M2
modules (M12), which represent more conventional
annotation algorithms. M12 obtained higher specifi-
city (0.97) since it annotates only using very similar
sequences (Fig. 4). However, sensitivity is rather less
(0.47) with only 64% of dataset sequences annotated.
This results in an REQ value of 0.71 for M12 versus

the 0.32 for M3. Several examples illustrate this add-
itional advantage of Sma3s M3 as a standalone annota-
tion tool.

The best BLAST hit of the pig Qil1 protein (QIL1_PIG)
in the mammalian dataset is the primate homologue
(QIL1_MACFA). Because this protein entry does not
contain any of the four annotation types used by
Sma3s, pig Qil1 was not annotated by M1. However,
the M3 module was able to annotate pig Qil1 localiza-
tion using the GO term ‘Mitochondrion’, obtained from
a more distant Qil1 mouse homologue (QIL1_MOUSE).

The Sma3s M3 module could be used even in cases
where incomplete annotations are present in Swiss-
Prot. For example, when M1 or M2 Sma3s modules
are used with invertebrate datasets, the U3-lycotoxin-
Ls1a protein from the wolf spider (TX308_LYCSI) only
generatestheGOterm ‘extracellular region’. Incontrast,

Figure 2. Sma3s annotation of random Swiss-Prot test datasets. The sequence coverage (SC), specificity (Sp), sensitivity (Sn) and REQ values
obtained by Sma3s are shown for (a) bacteria, (b) plants, (c) mammals, (d) invertebrates, (e) and average values, with standard
deviation for all four datasets. This figure appears in colour in the online version of DNA Research.
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the M3 module annotates the sequence with two add-
itional GO terms: ‘pathogenesis’ and ‘calcium channel
inhibitor activity’. Since this protein belongs to the

spider toxin CSTX superfamily, which blocks mamma-
lian neuronal calcium channels,26 these terms should
be present in the annotation of this protein.

Figure3. Sensitivity, specificityand REQindex for differentannotation types. (a) Sensitivity, (b) specificityand(c) REQ index calculated fromthe
results obtained by Sma3s with the random datasets from different taxonomic divisions are shown, separated by the different annotation
types under study. This figure appears in colour in the online version of DNA Research.
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Another example is the SfsA protein (SFSA_PSEF5)
from Pseudomonas fluorescens. SfsA was annotated in
bacterial datasets with the Swiss-Prot keyword
‘Complete proteome’ and no GO terms. However, M3
predicted the following Keywords and GO terms: DNA
binding and carbohydrate metabolic process. These
terms seem valid because the bacterial SfsA family
includes sugar fermentation stimulation proteins that
contain a helix-turn-helix motif that probably binds
DNA at its C-terminus.27

3.4. Accurate annotation of DNA array sequence sets
To test Sma3s with an experimental set of sequences,

wechosecollectionsbelongingtotwodifferentAffymetrix
DNA arrays (one mouse and one Arabidopsis). The real
annotations for these datasets were extracted from the
Affymetrix web server (March, 2012) as GO terms
linked to the sequences, or as GO terms extracted
from Swiss-Prot IDs linked to the sequences. Sma3s
was used to annotate these arrays using default para-
meters, and accuracy measured using the reference
annotations. We compared these results with the trad-
itional Top-BLAST method, and the widely used
Blast2GO tool with default annotation settings (Fig. 5).

Arabidopsis and mouse array analyses were per-
formed with either the Swiss-Prot (Fig. 5a) or
Affymetrix (Fig. 5b) annotations as references. In the
case of Arabidopsis, Sma3s showed the best accuracy
(as measured by REQ, sensitivity and specificity), al-
though Top-BLAST provided a better sequence and TC.
However, there were striking differences between the
Swiss-Prot and Affymetrix annotation sources. We
observed a much bigger difference in REQ values
between Sma3s (M123 and M3 alone) and the other
methods with Swiss-Prot annotations.

In the case of the mouse dataset, Sma3s provided sig-
nificantly better sensitivity albeit with slightly poorer
specificity than Top-BLAST when using Swiss-Prot as
an annotation source (Fig. 5c). A similar pattern oc-
curred when using Affymetrix sources (Fig. 5d), but
the differences were more marginal. In contrast to the
Arabidopsis collection, Sma3s generated the highest
TC values for mouse sequences with both annotation
sources. Our results suggest that both the full and M3-
only implementations of Sma3s analysis compare
favourably with commonly used annotation tools,
with equal or better REQ values in almost all cases.
However, it is clear that the annotation results obtained
were very sensitive to both the query dataset and the
choice of annotation source.

3.5. Sma3s is fast and has low-memory usage
In the post-genomic era, it is critical to have annota-

tion tools that can be easily integrated into sequence
analysis pipelines and applied quickly to large datasets.
Therefore, it is important that annotation analyses run
efficiently without excessive resource demands or se-
quence limitations. To this end, we estimated the
speed of Sma3s analysis using the modest computer
hardware (see Materials and Methods for details). We
tested run times and memory usage using three datasets
with progressively increasing sizes (Fig. 6). Measurements
were taken separately for the BLAST search and sequence
annotation steps. Sma3s processing times increased in

Table 2. Number of annotations assigned by each Sma3s module

Dataset Module Number of annotations %

Random M1 468.45+164.25 53.76
M2 171.70+45.12 19.70
M3 231.30+80.72 26.54

DNA arrays M1 386.5+369.82 5.23
M2 462.5+556.49 6.26
M3 6536.5+4531.85 88.50

The average number of annotations identified by Sma3s is
shown for the random and DNA arrays datasets, together
with the corresponding standard deviation. Note that the
percentages for each dataset group sum 100%, since
Sma3s has applied its three modules consecutively (default
configuration).

Figure 4. Comparison of Sma3s performance using all modules (M123) or the M3 module alone. Corresponding sensitivity (Sn), specificity
(Sp), sequence coverage (SC) and term coverage (TC) values appear above the bars. This figure appears in colour in the online version of
DNA Research.
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proportiontothenumberofsequencesanalysed(Fig.6a).
Times were highly dependent on the initial BLAST step
which increased in proportion to the sequence number.
However, Sma3s annotation times were much lower
and barely affected by increasing dataset sizes.
Significantly, Sma3s run times were two orders of magni-
tude shorter than those of the Blast2GO method.

Memory usage was also measured using the same
datasets and methods (Fig. 6b). Sma3s had an essen-
tially constant memory usage in its two steps despite
the sequence number increase, in contrast to the
Blast2Go method. Our results show that Sma3s is able
to efficiently annotate large sequence datasets using
modest computational resources.

4. Discussion

Sequencing projects produce hundreds of thousands
of new biological sequences that need to be quickly and
accuratelyannotated since this information constitutes
the basis for subsequent analysis, such as pathway
design or genomics and transcriptomics studies.
Therefore, fast and user friendly methods are needed
to support sequence annotation at this stage.

Sma3s uses three consecutive modules: M1 (which
searches for very similar sequences in the database),
M2 (which searches for orthologues) and M3 (which
extracts informationfromseveralhomologoussequences).
Thenovelapproachusedby theM3moduleselects several

homologues for each query sequence, using a modified
Rost equation, which takes into account both alignment
length and percentage identity. Annotations from all the
non-redundant sequences are pooled, but only annota-
tions that are significantly enriched versus the expected
backgroundfrequencyareassignedtothequerysequence.
Thishastheadvantage thatuseful annotation information
present in several homologues can be extracted, rather
than only from the sequence with the highest homology.

Our tests have shown that Sma3s is a fast annotation
method requiring minimal human supervision and
computational resources. Mean Sma3s accuracy using
different annotation types (GO, Swiss-Prot keywords
and pathways, and InterPro) was higher than 0.8
(except for the invertebrate dataset), and was even
higher (0.9) for specific datasets such as bacteria. In add-
ition, REQ values were consistently very low. InterPro an-
notation was highly specific and sensitive (see Fig. 3),
which can be explained by the fact that current InterPro
annotation is strongly focused on sequence similarity,
whichhasbeenshowntobeeffective forprotein function
prediction 26. On the other hand, it is difficult to judge
Sma3s Swiss-Prot Pathway annotation given the limited
coverage of this category in the UniProt database.
Importantly, both InterPro and Pathway use short and
controlled vocabularies with low term diversification.

Some annotation methods can assign sentences
derived from the database description line 15. Sma3s
can also assign this descriptor (data not shown).
However, theaccuracyofthesenon-standardannotations

Figure 5. Annotation of two DNA arrays using Sma3s, Blast2GO and Top-BLAST. The annotation prediction results of mouse and Arabidopsis
sequences are shown from Sma3s with all modules, Sma3s with the M3 module only, Blast2GO and Top-BLAST. The corresponding values
appear above the bars. Sn, sensitivity; Sp, specificity; SC, sequence coverage; TC, term coverage. This figure appears in colour in the online
version of DNA Research.
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is difficult to measure, whereas controlled terms such as
GO or Keywords are more useful for experiments using
massive datasets. Sma3s can be easily adapted to use dif-
ferent annotation classes, and each term predicted by
Sma3s can be assigned a corresponding probability
value. For example, Sma3s also includes annotations for
the most probable gene names for each annotated se-
quence (data not shown), which can be useful for non-
specialized users who only want to rapidly identify their
sequences. Furthermore, Sma3s could be used with
other annotation sources since the annotation assign-
ment step can easily be disengaged from the main algo-
rithm and used with other databases. For example, the
annotation component could be extended to use data
from the BioMart project, which links annotations from
heterogeneous databases to UniProt identifiers. If
Sma3swasconverted toawebservice,28 it couldbedirec-
ted to use BioMart public web services as an annotation
source.ThiswouldalsomakeSma3smoreversatilebydiv-
iding Blast and annotation steps into separate services.

4.1. The reference dataset and the BLAST results
influence annotation accuracy

We demonstrated the accuracy of Sma3s with tests
using different random datasets (Fig. 2). Moreover,
Sma3s outperformed other widely used annotation
methods when annotating DNA array datasets (Fig. 5).
The only exception was the mouse dataset using Swiss-
Prot as a reference. The annotation accuracy of this
dataset is strongly dependent on reference annotations,
which in this case came from Affymetrix. These annota-
tions are assigned using NetAffx, which is based on
homology transfer from heterogeneous databases, in-
cluding Swiss-Prot, but also Unigene and LocusLink 27.
Furthermore, these annotations depend on the external
database entries associated with individual Affymetrix
sequences,whichhavebeenshowntocontainfrequentin-
accuracies28.Thus,selectionofasuitablyhigh-qualityref-
erence annotation set seemsto bean important factor for
testingthisoranyothermethod.Nevertheless,Sma3spro-
duced the best results in virtually all cases.

Further evidence for the idea that database annota-
tion influences annotation accuracy is presented in
Table 1, where the well-annotated Swiss-Prot division
of UniProt provided the best accuracy (including speci-
ficity and sensitivity), while TrEMBL provided the lowest
values.UniProt isthemostwidelyusedproteindatabase
since it contains rich information on each sequence.
UniProt is comprised of Swiss-Prot, a curated section
reviewed by skilled annotators and TrEMBL, an unre-
viewed section containing additional sequences that
can be moved to Swiss-Prot once they have been manu-
ally reviewed. We have found that the best annotation
accuracy is obtained when Swiss-Prot is used as the
sole reference database (Table 1). Conversely, accuracy
was reduced when using either TrEMBL or the complete
UniProt database, mainly due to lower sensitivity. These
lower values are expected partly because the test data-
sets were extracted from Swiss-Prot, and partly because
TrEMBL is a much larger database. Thus, when UniProt
or TrEMBL are used as reference sources, a higher pro-
portion of Sma3s annotations are TrEMBL-derived,
which consequently lowers the average annotation
accuracy.

Similarly, it is important to highlight that results were
also dependent on the quality of annotated reference
sequences for each taxonomic group. For example,
Sma3s annotation of random invertebrate sequences
was of a much lower quality than those of bacterial
sequences. The main difference between the two
Uniprot datasets is in the number of sequences they
contain: 24 050 invertebrate sequences versus
326 570 bacterial sequences. In order for Module 3
to assign an annotation, it has to be statistically
enriched within the homologous sequences. The prob-
ability of finding enriched annotations is more likely

Figure 6. Run times and memory usage of Sma3s versus Blast2GO.
Tests were performed using datasets with different numbers of
sequences (500, 1000 and 2000). The different steps in both
tools are shown as separate bars. Blast2GO did not report results
with datasets .1000 sequences due to memory problems. (a)
Sma3s and Blast2GO run times are shown in the first and second
bars, respectively. (b) Sma3s and Blast2GO memory usage are
shown in the first and second bars, respectively. Sma3s includes
Blast and annotation (term assignment to query sequences)
steps, and Blast2GO additionally includes the mapping step
(term extraction from the obtained hits). This figure appears in
colour in the online version of DNA Research.
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with the higher numbers of candidate sequences avail-
able in the bacterial dataset. In fact, we have found that
a combination of TrEMBL and SWISS-PROT databases
increases sensitivity when annotating weakly con-
served genomes (unpublished observation). However,
this approach results in a higher rate of false positives.

Sequence length may be an important factor for suc-
cessful annotation. For example, short sequences occur
most frequently in invertebratesandto a lesserextent in
plants (Supplementary Fig. S1a). These sequences are
rarely annotated due to the low alignment scores they
produce. The M1 module, which requires very high
levels of similarity, is typically the most effective
Sma3s component for annotation of these sequences
(Supplementary Fig. S1b). This effect is likely to be
enhanced by the higher diversity of the invertebrate
dataset versus the bacterial one.

Another key factor for successful annotation is the
initial BLAST search. In order for a sequence to be anno-
tated by any of the three Sma3s modules, the initial
BLAST must identify sequence alignments. For example,
of the 30% of mouse array sequences which were not
annotated by Sma3s (SC ¼ 0.7 in Fig. 5), 86% lacked
BLAST results, making annotation impossible. In the
case of Arabidopsis array sequences, 40% lacked
BLAST results thus limiting annotation coverage to a
maximum of 60%. This dependency on BLAST results
is shared with most annotation methods, including
AutoFact 11, Blast2GO 9 and GOtcha 12. In the case
of Sma3s, the effect of the BLAST search is especially im-
portant given that Sma3s was able to annotate 90% of
array sequences with BLAST alignments, largely due to
the novel M3 module (Table 2).

4.2. The combined use of the three Sma3s modules
generates accurate annotation, with enhanced
coverage from the M3 module

We have shown that Sma3s can annotate different
dataset types using its three module structure. Modules
M1 and M2 are able to identify closely related database
sequences and extract specific annotations, albeit with
low overall coverage (TC in Figs 4 and 5). Thus,
modules M1 and M2 provide high-quality annotations
(with lowerREQ values), increasing theoverall sensitivity
and specificity of Sma3s (Sn and Sp in Fig. 4).

Our findings suggest that the M3 module can in-
crease SC in some cases, especially where close ortholo-
gues lack database annotation. The initial BLAST result
can be reused by the M3 module to obtain newannota-
tions for sequences previously annotated by M1 or M2.
M3 annotation is broader, allowing new terms to be
found (Fig. 4) but with lower specificity, thus increasing
the chance of generating false positives. For most appli-
cations, using the three Sma3s modules sequentially
balance the higher accuracy of Modules 1 and 2 with

the identification of useful annotations from Module
3 for otherwise unannotated sequences.

Our results demonstrate that the Sma3s M3 module
is able to generate new annotations for sequences that
were unannotated in their original databases. Thus, the
M3 module may be valuable as a database curation
tool, adding new annotations to existing public data-
bases. However, it is important to take into account
that this module is likely to generate annotations with
lower specificity (Sp in Figs 4 and 5). Ideally, users
would be able to choose between high sensitivity and
high specificity according to the goal of the experiment.

4.3. Sma3s has low computing requirements
The Sma3s algorithm comprises two different basic

steps: similarity searching by BLAST and annotation by
different strategies in each of the three modules. For
high-throughput analyses, the BLAST itself accounts
for most of the calculation time. Result execution
times (Fig. 6) demonstrate that parallel BLAST searches
could accelerate the process without affecting the rest
of the algorithm. In fact, both Sma3s and Blast2GO
can use separately generated BLAST reports, which
may allow accelerated analysis if the user was to
execute similarity searches in parallel. However, the
speed advantage of Sma3s over Blast2GO is due to
more than the speed of the BLAST search. Another
reason for the speed of Sma3s is that it uses Swiss-
Prot, a relatively small high-quality database, which
itself increases annotation accuracy (Figs 2, 3 and 5).
These results together allow for a faster and more accur-
ate annotation process when analysing large datasets.
Thus, Sma3s can annotate a set of 20 000 sequences
in �3 h, without human intervention. Finally, memory
usage is low (Fig. 6b), alleviating the need for high per-
formance computing facilities.

Inconclusion, Sma3s isafastandaccuratemethodfor
annotating massive nucleotide or amino acid datasets
in a way that is readily accessible for non-expert users.
Infact,Sma3shasalreadybeenusedinthefunctionalan-
notation of both the olive29 and the maritime pine30

transcriptomes, and is now being used for the annota-
tionofbothanewbacterialgenomeandanESTdatabase
of almost 300 plant datasets containing a total of 8.6
million sequences (data not published yet).
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