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Abstract

Background: Randomized controlled trials (RCTs) are considered the gold standard for assessing the efficacy of new
treatments compared to standard treatments. However, the reasoning behind treatment selection in RCTs is often unclear.
Here, we focus on a cohort of RCTs in multiple myeloma (MM) to understand the patterns of competing treatment
selections.

Methods: We used social network analysis (SNA) to study relationships between treatment regimens in MM RCTs and to
examine the topology of RCT treatment networks. All trials considering induction or autologous stem cell transplant among
patients with MM were eligible for our analysis. Medline and abstracts from the annual proceedings of the American Society
of Hematology and American Society for Clinical Oncology, as well as all references from relevant publications were
searched. We extracted data on treatment regimens, year of publication, funding type, and number of patients enrolled. The
SNA metrics used are related to node and network level centrality and to node positioning characterization.

Results: 135 RCTs enrolling a total of 36,869 patients were included. The density of the RCT network was low indicating little
cohesion among treatments. Network Betweenness was also low signifying that the network does not facilitate exchange of
information. The maximum geodesic distance was equal to 4, indicating that all connected treatments could reach each
other in four ‘‘steps’’ within the same pathway of development. The distance between many important treatment regimens
was greater than 1, indicating that no RCTs have compared these regimens.

Conclusion: Our findings show that research programs in myeloma, which is a relatively small field, are surprisingly
decentralized with a lack of connectivity among various research pathways. As a result there is much crucial research left
unexplored. Using SNA to visually and analytically examine treatment networks prior to designing a clinical trial can lead to
better designed studies.
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Introduction

Multiple myeloma (MM) is a hematological malignancy, which

accounts for 1% of cancer deaths and 10% of all hematological

malignancies in the US. [1] Several advances in the treatment of

MM have been possible due to testing of newer agents in

randomized controlled trials (RCTs). As a result of these

advancements, MM has transformed into a chronic disease.

The first randomized controlled trial (RCT) in MM was

published in 1966. [2] Since then over 300 RCTs have been

published and nearly half have been conducted in an induction

and transplant setting. [3] While there is a vast body of research

involving RCTs in MM as well as systematic reviews and meta-

analyses [4–7], there has been no formal assessment of patterns of

treatment discoveries in the context of RCTs. That is, it is not

known how a new treatment regimen makes its way through the

translational cycle to be tested in an RCT. Understanding the

process of this translational cycle, specifically in relation to the

choice of new regimens for the treatment of MM in RCTs, is

important and has several benefits. At the highest level, it can

provide investigators interested in assessing the efficacy of similar

treatment regimens with collaborative opportunities, thereby

avoiding duplication of research efforts. Avoiding duplication

can result in not only consolidation of research efforts and

allocation of limited resources, but can also lead to averting

patients from participating in trials where the answers to the

treatment efficacy may already be known.

Using methodologies that provide analytical as well as visual

representations of existing research in MM, prior to conducting

new RCTs, could lead to better designed studies and enable

researchers to address more relevant clinical and research

questions. In this paper, we propose using social network analysis

(SNA) to study the patterns of interactions between treatment

regimens in RCTs, to identify potential limitations, and draw
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future research directions. SNA provides a ‘‘bird’s-eye view’’ of the

overall RCT universe, which enables us to examine relationships,

directions, and importance of different treatment regimens in the

network. Such an approach could allow industry and government

to save valuable healthcare dollars by focusing resources on

relevant research.

We have previously reported on a preliminary SNA on RCTs of

autologous stem cell transplant (ASCT) and novel agents for MM

[8]. Our analyses showed that research programs in myeloma,

which is a relatively small field, were surprisingly decentralized

and various research pathways suffered by lack of connectivity. We

hypothesize that this finding is attributed to lack of interaction

among researchers performing RCTs and the absence of policies

that enforce consolidation of the totality of existing evidence prior

to designing new RCTs. In this paper, we expand our initial

analyses to include all RCTs of induction or ASCT among

patients with MM and we illustrate a novel application of SNA to

study the topology of RCT treatment networks.

Methods

Dataset
We searched MEDLINE for any relevant RCTs published until

April 2012 using the searching strategies described by Haynes

et al. [9] No limits of any kind were imposed. Abstracts from the

American Society of Hematology and the American Society of

Clinical Oncology were also searched. All references from relevant

publications were scanned manually to identify additional

candidate studies. Any MM RCT studying the treatment regimens

of induction or ASCT was eligible for our analysis. We extracted

data on treatments used for experimental arm and control arm,

year of publication, funding type, and number of patients enrolled.

For funding type, we categorized the funding source into the broad

categories of public, private for profit, or private not for profit. If

the funding source were a mix of these categories, funding type

was recorded as mixed. For publications that did not report a

funding source, we labeled their funding type as unclear.

Social networks
A social network is represented as a set of nodes denoting

different entities such as individuals or organizations and their

interactions denoted as ties [10,11]. SNA is the theoretical

framework developed to understand social networks and to reveal

hidden and potentially useful information regarding entities and

their interactions. SNA has been used extensively to explain

phenomena such as (among others) scientific interaction [12],

information exchange [13], and treatment success [14]. In this

paper, we use SNA to study the RCTs of MM universe focusing

on the treatment regimen interactions as they appear in each

RCT. Such modeling can provide an in-depth understanding of

how treatments and comparisons are distributed and identify the

factors associated with development of research questions. [10] We

define a treatment network as the set of nodes denoting each

treatment tested in an RCT connected with ties denoting a direct

comparison between treatments in RCTs (Figure S1 in File S1).

The direction of a tie in the treatment network is used to

distinguish treatments as experimental and as control. That is, the

ties are directed away from the experimental node and toward the

control node. Using SNA we can measure the properties of the

entire treatment network as well as the properties of each node

individually. [15] These measures help us understand how nodes

interact and identify opportunities and constraints for future

research.

Node-level properties
Not all nodes in a network are of the same importance. Nodes

with a certain position in the network can interact easier/harder

with particular nodes and faster/slower with others. To measure

the ability of the node to interact with other nodes in the network

or to facilitate interactions between nodes we use the centrality
measures of degree, closeness, and betweenness. In general,

centrality measures describe key attributes of the position of a

node representing a treatment regimen in the treatment network.

[10] Degree measures the number of different comparisons a

treatment regimen has participated in; closeness measures the ease

at which a treatment regimen can reach other treatment regimens

in a network [16], and it is directly associated with the ability to

extract information about regimen superiority outside an RCT

environment (i.e. indirect meta-analyses); betweenness [17]

represents the ability of a treatment regimen to link other

treatment regimens, a property that is particularly desirable in

indirect meta-analyses. Degree and closeness are further classified

into in- and out-degree and in- and out-closeness respectively. In

the RCT network, in- and out-degree show the number of times a

particular regimen has been participating in an RCT as control or

experimental respectively. In-closeness shows the easiness at which

a node can be reached and out-closeness the easiness at which a

node can reach others in the network. When measuring degree

and closeness we need to differentiate between control and

experimental treatments. Therefore, degree and closeness calcu-

lations are performed on the directed treatment networks. On the

other hand, when measuring betweenness, we are interested only

in the position of the node. Therefore, betweenness calculations

were performed on the undirected networks. Note that directed

and undirected networks have the same structure (i.e. same

number of nodes and number of ties); however, directed networks

are represented with directional ties, while undirected networks

are represented with bidirectional ties.

Network level properties
Network level properties are associated with the topology of the

entire treatment network. We compute measures such as the

network’s density, maximum geodesic distance, clustering coeffi-
cient, centrality measures, KeyPlayer function, and the Girvan-
Newman Algorithm as indicators of the network structure. [10]

Density reports the actual treatment interactions in the network as

a fraction of all possible interactions (e.g. each regimen is

compared to all other regimens). A density value of 15% to 25%

indicates that a very small portion of all available comparisons

have been achieved and that any changes to the interactions

between treatments would have a profound effect on the cohesion

of the network. [10] Conversely, values greater than 50%

demonstrate that a significant number of comparisons have been

made and that changes to interactions will have no or little effect

on the cohesion of the network. The maximum geodesic distance

corresponds to the network’s diameter and it measures the

maximum distance between any two treatments in the network.

The clustering coefficient is the degree at which treatments in the

network form clusters. [10] The clustering coefficient takes values

between 0 and 1 where 1 indicates a fully connected network (e.g.

each treatment is connected to all the rest). Smaller values of

clustering coefficient reveal a rather random pattern of connec-

tivity. [10] The network level centralization measures such as

closeness, betweenness, and degree provide an overall impression

of network centrality. Interpretation of the network level

centralization values is similar to their node level centrality

counterparts. For example, a network with low betweenness does

not facilitate sharing of information. The Girvan-Newman
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Algorithm identifies communities of treatment regimens. Commu-

nities are loosely connected groups of tightly interconnected nodes.

[18] The existence of multiple communities may be an indicator of

research in isolation. The KeyPlayer function determines the

optimal set of treatments in the sense that if an optimal set of nodes

were to be removed from the network, this would have a crippling

effect. Additionally, the KeyPlayer function determines the most

well-connected treatment regimens. Changes to these regimens

can influence other treatment regimens. [19]

2-mode networks
In addition to the treatment network described in the previous

subsections we formed and studied a different category of

networks. 2-Mode networks are used to report and analyze the

relationships between two different classes of entities. While the

treatment network presented previously is used to analyze the

relationships between all treatment regimens, the 2-mode network

is built to analyze the relationships between treatment regimens

and an additional entity such as the funding source or the

publication year. We have generated two 2-mode networks. The

first 2-mode network (treatment – year) provides a visual

association of treatment regimens and the decade they have been

used. Similarly, the second 2-mode network (treatment –funding)

provides a representation of the funding mechanisms used for each

regimen. In the 2-mode networks, the direction of the ties is

formed from the experimental and control nodes towards either

year of publication or funding type.

Data analysis
The main analysis included calculation of the following

measures: betweenness, density, clustering coefficient, closeness,
degree, Girvan-Newman Algorithm, KeyPlayer, maximum geodesic
distance and distance among treatments. For the analysis of the

node-level and network level properties, we included only

treatment regimens from the connected component of the

treatment network (e.g. disregarded isolated sets of nodes). The

first well-designed RCT of ASCT versus chemotherapy was

published in 1996. [20] In order to examine the effect of the first

important breakthrough (ASCT) on the evolution of treatment

regimens, we also conducted a subgroup analysis of trials

published in 1996 or later. Additionally, a time series analysis of

the networks with trials from 1996 to 2012 was conducted to

compare network properties through time. All networks ware

analyzed with UCINET 6 [21] and KeyPlayer 1.44 [19]. Visual

representations of the networks were created with NetDraw 2.119.

[21]

Figure 1. Connected component of RCT treatment network. Each node is associated with a treatment tested in an RCT and each tie denotes a
comparison between two treatments. The width of the ties among treatments denotes the number of times two treatments have been tested in
RCTs. The network represents the connected component of the network depicted in Figure S1 in File S1 and it is comprised of 155 treatment
comparisons. The most frequently tested comparison is between combination therapy and MP.
doi:10.1371/journal.pone.0104555.g001
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Table 1. Abbreviations of Treatment Regimens.

Abbreviation Name of Treatment Regimens

M melphalan

P prednisone

C cyclophosphamide

V vincristine

MP melphalan, prednisone

ASCT autologous stem cell transplant

LEN lenalidomide

DEX dexamethasone

TD thalidomide, dexamethasone

MPT melphalan, prednisone, thalidomide

MPB melphalan, prednisone, bortezomib

MPLen melphalan, prednisone, lenalidomide

BTP bortezomib, thalidomide, prednisone

BD bortezomib, dexamethasone

VAD vincristine, doxorubicin, dexamethasone

MPBT melphalan, prednisone, bortezomib, thalidomide

TAD thalidomide, doxorubicin, dexamethasone

TVAD thalidomide, vincristine, doxorubicin, dexamethasone

BTD bortezomib, thalidomide, dexamethasone

CTD cyclophosphamide, thalidomide, dexamethasone

VP vincristine, prednisone

Q quinine

IFN interferon

Combination chemotherapy vincristine, doxorubicin, melphalan, cyclophosphamide, prednisone

vincristine, BCNU, doxorubicin, melphalan, prednisone

vincristine, BCNU, melphalan, cyclophosphamide, prednisone

vincristine, BCNU, doxorubicin, dexamethasone

BCNU, doxorubicin, melphalan, cyclophosphamide

BCNU, melphalan, cyclophosphamide, prednisone

vincristine, BCNU, doxorubicin, prednisone

vincristine, doxorubicin, cyclophosphamide, prednisone

doi:10.1371/journal.pone.0104555.t001

Table 2. Node-level properties of RCT treatment network (connected component).

Treatment Betweenness In-Closeness Out-Closeness In-Degree Out-Degree

MP 1399.8 4.572 1.471 72 4

Combination chemotherapy 1129.5 2.209 1.753 23 39

VAD 451.3 1.694 1.779 7 1

TD 264.3 1.493 1.838 3 4

MPB 207.167 1.538 1.492 4 1

C 197 2.293 1.515 2 4

Single ASCT 188.5 1.538 1.779 7 9

M 262.0 5.732 1.449 11 0

VAD-doxil 67 1.471 1.805 1 1

doi:10.1371/journal.pone.0104555.t002
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Results

Study selection
We found 135 trials which examined induction or ASCT

therapies among patients with MM. Because of multi-arm RCTs,

these 135 trials represented 165 comparisons and enrolled 36,869

patients. The entire treatment network is shown in Figure S1 in

File S1. Figure 1 depicts the connected portion (connected

component) of the entire treatment network that includes 155

comparisons and disregards the unconnected regimens. The

treatment regimen abbreviations are listed in Table 1.

Node-level properties
Table 2 shows selected node-level properties for treatment

regimens in the network depicted in Figure 1. The tie thickness, in

Figure 1, denotes the frequency that two trials have been

compared in an RCT. For example, the treatment regimen of

combination chemotherapy was frequently compared to the

treatment regimen of MP. The size of a node represents the

number of different comparisons a regimen has been included in

(node degree). The larger the size of the node, the greater the

number of trials the associated treatment was compared to. The

treatment participated in most trials was MP followed by

combination chemotherapy. Also, based on the measures for in-

and out-degree we see that MP (in-degree of 72) and combination

chemotherapy (in-degree of 23) are the regimens used most often

as controls in RCTs. Combination chemotherapy has also been

frequently used as experimental therapy in RCTs (out-degree of 39).

Regarding closeness (measured using directed network), all

nodes had small, relatively similar closeness measures demonstrat-

ing a large distance between each node in the network and all

other nodes in the network (Table 2). The node-level betweenness

(measured using undirected network) was largest for the treatment

regimens of combination chemotherapy, MP, and VAD, indicating

that these regimens and those directly connected to them are

excellent candidates for indirect meta-analysis.

Distances between selected treatment regimens (undirected

network) are reported in Table 3. The majority of the distance

between many important treatment regimens (e.g. MP to

combination chemotherapy; MPT to MPB; MPT to MPLen;

MPB to MPLen; and MPB to single ASCT) is equal to 2. This

demonstrates that these treatment regimens can reach each other

in two ‘‘steps’’, a property of significance in indirect meta-analyses.

This also indicates that these treatment regimens have never been

tested in a head-to-head comparison in an RCT.

Network level properties
The network level properties of density, geodesic distance,

clustering coefficient, and the centrality measures are reported in

Table 4. The density of the network was low, indicating there is

Table 3. Distances between selected treatment regimens.

Measure Value

Distance from:

MPT to combination chemotherapy 2

MPB to combination chemotherapy 2

MPLen to combination chemotherapy 2

MPT to MPB 2

MPT to MPLen 2

MPB to MPLen 2

MPT to single ASCT 1

MPB to single ASCT 2

MPLen to single ASCT 2

doi:10.1371/journal.pone.0104555.t003

Table 4. Results of network level analysis for myeloma treatment network.

Measure RCT network Erdos-Renyi (random network) value

Density (%) 2.5 2.5

Average Geodesic Distance 3 4.33

Maximum Geodesic Distance 6 10

Clustering Coefficient 3.4 0.025

Network Centralization Metrics

Betweenness 55.3 78

in-Closeness 1.69 24.1

out-Closeness 1.59 24.1

in-Degree 2.36 4.2

out-Degree 2.13 4.2

doi:10.1371/journal.pone.0104555.t004
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little cohesion among the treatments studied. The maximum

geodesic distance was equal to 6, indicating that all connected

treatments could reach each other in six ‘‘steps’’ within the same

pathway of development. All centrality measures are much lower

than a similar random network (e.g. Erdos-Renyi with same

number of nodes and same density). This shows that the RCT

network is decentralized.

The KeyPlayer function identified that the treatment regimens

of MP, combination chemotherapy, and VAD are vital to the

network. The Girvan-Newman Algorithm (Figure 2) identified 9

research communities that are loosely connected with each other.

These communities would be completely disconnected if the nodes:

MP, combination chemotherapy, and VAD were to be removed.

For our subgroup analysis, we focused on trials published in

1996 or later to determine the effect of the publication by Attal et

al., [20] on evolution of treatment regimens. The associated

network is shown in Figure S2 in File S1. The KeyPlayer function

identified again the combination chemotherapy, MP, and VAD as

vital to the network. As in the complete treatment network, the

Girvan-Newman Algorithm (Figure 3) shows that there are six

research communities that are loosely connected to each other. A

visual inspection of Figure 3 shows that these communities would

be completely disconnected if the MP, combinational chemother-

apy, TD and VAD therapies were to be removed.

2-mode network
Figure 4 demonstrates trends in treatment regimens over time

and Figure S4 in File S1 displays the treatment comparisons by

funding source. In these figures, degree is represented by the size

of the node i.e. the larger the node the more comparisons are

directed toward that node. All treatment comparisons were used in

these networks, which included 165 comparisons.

In Figure 4, the largest number of treatment regimens was

studied in the decades of the 1990s and 2000s, which corresponds

to these nodes being the largest out of the six decades in which

RCTs of MM patients have existed. As shown in Figure S4 in File

S1, the highest number of comparisons came from trials which

were publicly funded while the fewest trials were funded by private

for profit funding organizations. Out of the 47 trials which did not

report funding source, the majority (77%) were trials reported in

either abstracts only (full publication not available) at the time this

search was conducted or in trials published prior to 1996 when the

CONSORT statement [22] was published.

The funding trends have changed for RCTs conducted after

1996. Figure 5 demonstrates the results of our subgroup analysis,

where it is clear that the majority of RCTs are funded by both

public and private entities (mixed). However, there are many trials

that did not clearly report their funding mechanisms. The number

of these trials is larger than the trials with mixed funding

Figure 2. Girvan-Newman Algorithm. The algorithm identified 9 research communities that are loosely connected with each other.
doi:10.1371/journal.pone.0104555.g002
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(Figure 6). Even though the evidence is missing, we believe that

these trials have been funded by private entities.

Finally, Figure 6 presents the evolution of different centrality

measures as the treatment network is constructed over time (Figure

S3 in File S1). It is interesting to note that even with the addition of

multiple treatment regimens over time, there is very little change

in the network’s centrality, which stresses the fact that there is no

coordinated research effort in MM.

Discussion

We have analyzed a diverse network of induction and transplant

treatment regimens compared in RCTs. Our main finding is that

new therapies are compared against established treatments over

and over again and not proceeding within a logical framework of

testing the most relevant hypotheses. This is demonstrated by the

low closeness at both the node and network level and the high

betweenness for MP, combination chemotherapy, VAD, and single
ASCT that do not fully extend to novel agents such as bortezomib,

lenalidomide, and thalidomide. This is further exemplified by the

fact that there are no direct comparisons between many new

regimens, which draws future research directions for RCTs in

indirect meta-analysis.

One surprising finding was that through the KeyPlayer function

and Girvan-Newman Algorithm we identified two newer treat-

ment regimens, TD and MPB, which in addition to combination
chemotherapy and VAD, are crucial in maintaining the network

structure. However, lenalidomide was not identified as being

important in the network even though it is widely used in

contemporary practice as first line treatment. These findings point

to the discrepancy in regimens being tested in RCTs versus

regimens used in practice by the treating Oncologists. The results

also demonstrate that researchers tend to compare experimental

treatments to inferior regimens. That is, researchers do not

compare the most active experimental treatments in head to head

trials.

The results of our subgroup analyses show that since 1996 the

MM treatment network has evolved in such a way that the novel

agents of thalidomide and bortezomib have become very

important in maintaining network cohesion. In 1996, Attal et al.

[20] demonstrated that ASCT was superior to chemotherapy. This

is considered to be the first important breakthrough in the

treatment of MM. This subgroup analysis also indicates that

chemotherapy and MP are of mostly historical importance.

We also found that the largest number of treatment regimens

was studied in the decades of the 1990s and 2000s. The three

Figure 3. Girvan-Newman Algorithm of RCTs published 1996–2012. The algorithm 6 research communities that are loosely connected with
each other.
doi:10.1371/journal.pone.0104555.g003
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novel agents of thalidomide, bortezomib, and lenalidomide were

developed in the late 1990s and early 2000s which may explain

this increase in comparisons of treatment regimens during this

time. Additionally, funding source has changed in recent years

(since 1996) from being predominately publically funded to a mix

of both private and public funding sources.

In this treatment network, designing trials which compare these

treatment regimens to each other directly has been avoided by

researchers and funders. As a result, better treatment regimens

may not be discovered. The fastest rate of discovery occurs when a

few hypotheses are tested sequentially. The lack of attention to the

entire network is likely the reason that there is current confusion in

the field and as a result guideline panels [23] are not able to

provide conclusive recommendations on the best first-line treat-

ment from a list of 83 regimens.

Our analysis has some limitations. The main limitation is that

we are inferring reasons from published trials on why researchers

and funders choose which treatment to study. Since we only

included trials examining treatment regimens used in induction or

transplant setting, we cannot decipher how this treatment network

fits into the larger network of all MM trials. Future research should

focus on conducting a SNA on other areas of MM treatment such

as supportive, maintenance, and salvage therapies. Nevertheless,

our network analysis focuses on giving insight into first-line

treatment, which is the practitioner’s best attempt to slow down

the progression of disease.

Figure 4. Decades in which treatments have been tested. Most treatment comparisons have been implemented in the decades of the 1990s
and 2000s.
doi:10.1371/journal.pone.0104555.g004
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Furthermore, the current design does not allow for analysis of

single arm RCTs, which may provide valuable information

regarding a regimen’s efficacy in MM, and does not include

phase I or phase II trials. Finally, since this is the first SNA study

on RCT treatments, it is impossible to compare our findings with

similar networks in different diseases, which forced us to use

random networks for comparison.

Performing SNA in RCTs may provide both funders and

researchers with the overall assessment of existing evidence in a

given field within the totality of research efforts that may help

avoid isolation and duplication. Once performed, researchers may

visualize the overall research network and determine the relevance

of their hypotheses and if necessary derive future research

directions such as those suggested in this study (e.g. MP to

Figure 5. Funding type of trials published in the period 1996–2012. Most treatment comparisons have been funded by a mix of public and
private entities. Even though the evidence is missing, we believe that the trials within the unclear funding node have been funded by private entities.
doi:10.1371/journal.pone.0104555.g005
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combination chemotherapy; MPT to MPB; MPT to MPLen;

MPB to MPLen; and MPB to single ASCT).

We conclude that research programs in myeloma are decen-

tralized with a lack of connectivity among various research

pathways. This results in lack of head-to-head RCTs of novel

agents compared to each other or single ASCT. We have

demonstrated that by using SNA to visually and analytically

examine treatment networks prior to designing a clinical trial,

researchers can better design studies to address more relevant

clinical and research questions.

Supporting Information

File S1 Contains the following files: Figure S1. Entire

treatment network. Each node is associated with a treatment

participating in an RCT and each tie denotes a comparison

between two treatments. The width of the ties among treatments

denotes the number of times two treatments have been tested in

RCTs. The network is comprised of 165 treatment comparisons.

Figure S2. Connected component of network of RCTs published

between1996–2012. The width of the ties among treatments

denotes the number of times two treatments have been tested in

RCTs. Figure S3. Evolution of the treatment network over time.

The figure presents the network’s topology 40, 30, 20 and 1 year

ago. 3a. RCT network that includes trials performed more than

40 years ago; 3b. RCT network that includes trials performed

more than 30 years ago; 3c. RCT network that includes trials

performed more than 20 years ago; 3d. RCT network that

includes trials performed more than 1 year ago. Figure S4
Funding type of all trials. Most treatment comparisons have been

funded by the public sector.
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