
Research Article
The Coral Reefs Optimization Algorithm: A Novel Metaheuristic
for Efficiently Solving Optimization Problems

S. Salcedo-Sanz,1 J. Del Ser,2 I. Landa-Torres,2 S. Gil-López,2 and J. A. Portilla-Figueras1

1 Department of Signal Theory and Communications, Universidad de Alcalá, Escuela Politécnica Superior,
28871 Alcalá de Henares, Spain

2 Tecnalia Research & Innovation., Parque Tecnológico de Bizkaia, Zamudio, 48170 Bizkaia, Spain

Correspondence should be addressed to S. Salcedo-Sanz; sancho.salcedo@uah.es

Received 4 April 2014; Accepted 19 June 2014; Published 22 July 2014

Academic Editor: Chun-Wei Tsai

Copyright © 2014 S. Salcedo-Sanz et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper presents a novel bioinspired algorithm to tackle complex optimization problems: the coral reefs optimization (CRO)
algorithm. The CRO algorithm artificially simulates a coral reef, where different corals (namely, solutions to the optimization
problem considered) grow and reproduce in coral colonies, fighting by choking out other corals for space in the reef. This fight
for space, along with the specific characteristics of the corals’ reproduction, produces a robust metaheuristic algorithm shown to be
powerful for solving hard optimization problems. In this research the CRO algorithm is tested in several continuous and discrete
benchmark problems, as well as in practical application scenarios (i.e., optimum mobile network deployment and off-shore wind
farm design). The obtained results confirm the excellent performance of the proposed algorithm and open line of research for
further application of the algorithm to real-world problems.

1. Introduction

In the last years, huge research efforts have been conducted
towards solving hard optimization problems, by well balanc-
ing the trade-off between the complexity incurred by the
utilizedmethod and the optimality of the produced solutions.
These problems, often characterized by search spaces of
high dimensionality (either discrete or continuous), non-
linear objective functions and/or stringent constraints arise
frequently in science and engineering applications. In such
fields, classical optimization approaches do not provide in
general good solutions to these problems or are just not
applicable, due to the unmanageable search space structure
or its huge size.

In this context, modern optimization heuristics and
metaheuristics have been lately the core of research, aimed at
solving the aforementioned lack of efficient methods. A good
number of such algorithms are bioinspired techniques such as
evolutionary algorithms (EA), which includes a whole family
of techniques such as genetic algorithms [1], evolutionary
strategies [2], evolutionary programming [3], and differential
evolution [4]. These schemes are based on concepts borrow

from natural evolution and survival of the fittest individuals
in nature. Likewise, ant colonies optimization (ACO) [5]
is based on the social behavior of ants, whereas artificial
immune system (AIS) algorithms [6] focus on imitating the
behavior of the immune system in animals. In this same line
of research, particle swarm optimization (PSO) approaches
[7] are in essence elegant algorithms specially well-suited for
continuous optimization problems.They imitate the behavior
of birds flocks or fish schools.There have been more research
activity on bioinspired metaheuristics, with approaches such
as artificial bee colony [8], which imitates the bees behavior
when locating and bring food to the hive, as well as other
recently proposed techniques such as the gravitational search
algorithm (GSA), [9], inspired by the law of the gravity,
the invasive weed optimization algorithm (IWO), [10], based
on weed growth and their invasive properties, the hunting
search (HS), [11], based on how group of animals hunt, the
biogeography-based optimization algorithm (BBO), [12, 13],
based on the geographical distribution of living organisms,
optimization based on virus infection [14], and on colonies
of bacteria [15, 16], the bat algorithm [17, 18], based on
the behaviour of bats and its capability for echolocation of

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 739768, 15 pages
http://dx.doi.org/10.1155/2014/739768

http://dx.doi.org/10.1155/2014/739768

2 The Scientific World Journal

objects, the amoeba algorithm [19] that uses the intelligence
of groups of amoebas to explore solutions to complicated
problems in networks, the collide bodies optimization algo-
rithm [20], based on the behaviour of bodies colliding at
different speeds, the ray optimization algorithm [21], based
on particles that follow the snell’s law for ray of light, or
the so-called cuckoo search approach [22], built upon the
reproduction and breeding of the cuckoo bird.

There exist other metaheuristic optimization approaches
not straightforwardly classifiable as bioinspired approaches;
instead, they are based on alternative concepts or processes
that make them worth to be considered in this literature
review. For instance, simulated annealing [23] (SA) is a well-
known metaheuristic based on the process of annealing in
metallic materials. It consists of heating a substance and then
cooling it down slowly, until a final strong molecular struc-
ture is obtained. This process can be artificially simulated
in order to solve optimization problems. There are several
variants of this algorithm such as simulated quenching [24].
Another recently proposed metaheuristic is the harmony
search (HS) algorithm [25], which has been successfully
applied to numerous optimization problems in the last few
years. HS is inspired by the improvisation process of musi-
cians, that is, the process by which the musicians (who may
have never played together before) refine, through variation
and check, their individually improvised notes, resulting in
an aesthetic harmony, played by the entirety of musicians in
the orchestra. Other modern heuristics recently proposed for
optimization problems include, among others, the teaching-
learning-based optimization (TLB) [26], based on the process
of teaching-learning produced by different teachers in a
class of students; the society and civilization algorithm (SaC)
[27], which simulates the social behavior of humans; the
imperialist competitive algorithm (ICA) [28], which makes
optimization based on imperial-colonies competition; the
artificial chemical reaction optimization algorithm (ACROA)
[29], based on different types of chemical reactions (syn-
thesis, decomposition, redox, etc.); or the electromagnetic-
like algorithm [30, 31], based on physics of electrically
charged particles, repelling and attracting each other in a
multidimensional space.

In this paper we present a novel bioinspiredmetaheuristic
for optimization problems, which will be hereafter coined as
the coral reefs optimization (CRO) algorithm. The CRO
algorithm is based on an artificial simulation of the process
of coral reefs’ formation and reproduction. During this
process, the CRO algorithm emulates different phases of
coral reproduction and fight for space in the reef, which
ultimately renders an efficient algorithm for solving difficult
optimization problems. The proposed CRO approach can
be regarded as a cellular-type evolutionary scheme [32],
with superior exploration-exploitation properties thanks to
the particularities of the emulated reef structure and coral
reproduction. The performance of the proposed approach
has been tested in different benchmark problems and in
two different practical applications (namely, mobile network
deployment and wind farm design), obtaining very good
results in comparison with alternative approaches in the
literature.

The rest of this paper is structured as follows. For the sake
of self-completeness of the paper, the next section provides
an introduction to coral reefs and corals’ structure and
reproduction. Next, Section 3 presents the CRO algorithm
in detail, including an analysis of similarities and differences
with other existing metaheuristics. Section 4 shows the per-
formance of the CRO algorithm in different optimization
problems. Finally, Section 5 ends the paper by giving some
concluding remarks.

2. Corals and Coral Reefs

This section describes some important properties of corals
and coral reefs that will be simulated by our CRO approach.
We first describe some characteristics of corals and reefs, and
then we focus on corals reproduction.

2.1. Corals and Reef Formation. A coral is an invertebrate
animal belonging to the group phylum: Cnidaria, which also
includes sea anemones, hydras, or jellyfishes [33]. In fact, a
more detailed classification includes corals in the Anthozoa
class, together with sea anemones, sea pens, or sea pansies.
These animals are characterized by their ability to subsist
either as individuals or in colonies of polyps, living attached
to a substrate. There are more than 2500 different species of
corals, living in shallow and deep waters, and each year new
species are found and described.

An important subclass of corals are reef-building corals,
also known as hermatypic or simply hard corals. Hard corals
are usually shallow-water animals that produce a rigid skele-
ton of calcium carbonate, segregated from their base. A coral
reef is formed by hundred of hard corals, cemented together
by the calcium carbonate they produce. Periodically, the
polyp lifts off its basal plate of calcium carbonate and secrete
a new one, forming a tiny chamber that will contribute to the
coral’s skeleton. Polyps continuously build these chambers in
the reef, so finally the complete reef grows upwards. Living
corals grow on top of the skeletons of calcium carbonate of
their dead predecessors. A coral reef is usually formed by
corals living in colonies or on its own. A colony is composed
of a single specie of coral, but a reef ’s structure can comprise
multiple types of species. In fact, a coral reef finally ends up
as a truly ecosystem, in which a diverse collection of animals
and plants interact with each other, as well as with their
environment. In addition to corals, many other animals and
plants live in and from the reef, such as algae, sponges, sea
anemones, bryozoans, sea stars, crustaceans (e.g., shrimps,
crabs, lobsters), octopuses, squids, clams, snails, and other
mollusca. And, of course, a huge variety of fish that find
shelter and food in the reef.

In general, hard coral species require free space to settle
and grow. Although a priori the implementation of this
settlement procedure might be easy for a potential new
member of the reef, in practice free space is an extremely
limited resource in the reef environment [34]. As a result,
species often compete with each other or exhibit aggressive
behavior to secure or maintain a given plot of substrate [35].
Different strategies used by corals to compete for the space
have been thoroughly described in the literature [35, 36].

The Scientific World Journal 3

Figure 1: Illustrative recreation of a coral sexual reproduction by
broadcast spawning: larvae are massively released into the water.

Among them, fast growing is deemed as the most used and
simple strategy since it grounds on the fact that there are
corals that have evolved to yield a faster growth rate than
others. When a fast-growing coral sets near a slow-growing
one, the former attacks the latter by overtopping it. The
underlying coral suffers from light deficiency, thus affecting
its ability to conduct photosynthesis and to get into contact
with food particles. As time evolves, overtopping by fast-
growing species kills the slower-growing species underneath.
Other aggressive strategies carried out by some species of
corals include sweeper tentacles (i.e., detect and damage adja-
cent coral colonies), mesenterial filaments (namely, enabling
external digestion of neighboring colonies), and terpenoid
compounds (coral chemical warfare).

2.2. Coral Reproduction. Corals can reproduce in two differ-
ent modes: sexual or asexual. In fact, an individual polypmay
use both modes within its life time [33]. Furthermore, sexual
reproduction can be either external or internal, depending on
the coral species.

2.2.1. Sexual External Reproduction: Broadcast Spawning. The
majority of hard corals species resort to a sexual external
reproduction method known as broadcast spawning [37]:
every coral produces male and/or female (some species
of corals are hermaphrodites) gametes that are massively
released out to the water. Figure 1 shows a recreation of a
coral spawning event in a reef. Once the egg and sperm meet
together, a larva (also called planula) is produced. Planulae
float in the water until they find a proper space to attach
and start growing a polyp [38]. In the majority of reefs, the
phenomenon of coral spawning occurs as a synchronized
event.This timing is crucial for successful reproduction, since
corals can not move to force reproductive encounters. There
are different natural aspects that affect the timing of the corals’
spawning, such as temperature, day length, or temperature
change rate.

2.2.2. Sexual Internal Reproduction: Brooding. Brooding is
a method of internal reproduction used by some species
of corals. In this reproduction mode, some female polyps

contain eggs that are not released to the water. Instead, sperm
released by other male corals of the same species gets inside
the polyp and fertilizes the eggs, producing small planulae.
These planulae are released later through the mouth of the
coral in an advanced stage of development, so it becomes
easier for these planulae to set onto hard substrate without
being attacked or depredated.There has also been described a
type of brooding reproduction in hermaphrodite corals [39].

2.2.3. Asexual Reproduction: Budding or Fragmentation. Bud-
ding is a form of asexual reproduction in corals: basically,
new polyps bud off from parent polyps to expand or begin
new coral colonies [40]. Budding occurs when the coral
has grown enough to produce budding. Fragmentation is
a process similar to budding, but it is caused by external
phenomena (e.g., storms or boats’ grounding), and usually a
larger part of the coral is divided in comparison to budding
[41]. As such, in fragmentation a part of a coral colony is
separated from the parent polyps. Individuals broken off this
way from themain colony are able to keep growing and finally
establishing a new colony far way from the parent one if
conditions are favorable. It is important to note that both
budding and fragmentation processes produce polyps that are
genetically identical to the parent polyp/colony.

2.3. Reef Longevity andCauses ofDeath. There are not reliable
statistics on corals’ lifespan. However, it is well known that
coral colonies can live for several centuries. Corals and coral
reefs must face different hazards during their life. In larva
state, corals are massively depredated by fishes and other
predators. However, the huge number of larvae produced in
broadcast spawning reproduction ensures that enoughpolyps
settle in favorable ground and start forming a colony. On the
other hand, coral polyps encounter many types of predators
including sea stars, parrot-fishes, or butterfly-fishes. Human
activities (e.g., fishing activities or industrial processes that
increase ocean pollution) and climate changes (increase of the
oceans’ temperature, among others) also contribute to the loss
of living corals [42].

3. The Coral Reefs Optimization Algorithm

Having these fundamentals on the corals’ reproduction and
formation in mind, the CRO algorithm tackles optimiza-
tion problems by modeling and simulating all the distinct
processes explained in Section 2. Let Λ be a model of reef,
consisting of a 𝑁 × 𝑀 square grid. We assume that each
square (𝑖, 𝑗) of Λ is able to allocate a coral (or colony of
corals) Ξ

𝑖,𝑗
, representing different solutions to our problem,

encoded as strings of numbers in a given alphabet I. The
CRO algorithm is first initialized at random by assigning
some squares in Λ to be occupied by corals (i.e., solutions
to the problem) and some other squares in the grid to be
empty; that is, holes in the reef where new corals can freely
settle and grow. The rate between free/occupied squares in Λ
at the beginning of the algorithm is an important parameter
of the CRO algorithm, which will be denoted in what follows
as 0 < 𝜌

0
< 1. Figure 2(a) exemplifies this reef model using a

5 × 6 grid, whereas Figure 2(b) illustrates an initialization of

4 The Scientific World Journal

(a) (b)

Figure 2: Coral reef simulation; (a) grid; (b) corals and holes in the reef.

the reef with corals and coral colonies representing solutions
to a given problem. Note that in this example 𝜌

0
= 9/21 ≈

0.43. Each coral is labeled with an associated health function
𝑓(Ξ
𝑖𝑗
) : I → R that represents the problem’s objective

function. Note that the reef will progress as long as healthier
(stronger) corals (which represent better solutions to the
problem at hand) survive, while less healthy corals perish.

After the reef initialization described above, a second
phase of reef formation is carried out by the CRO algorithm.
To this end, a simulation of the corals’ reproduction in the
reef is done by sequentially applying different operators. This
sequential set of operators is then applied iteratively until a
given stop criteria is met. Thus, we define different opera-
tors for modeling sexual reproduction (broadcast spawning
and brooding), asexual reproduction (budding), and polyps
depredation. In both sexual and asexual reproduction we
give the conditions under which new corals effectively get
attached to the reef or are depredated while at the larvae
phase, it is as follows:

(1) Broadcast Spawning (External Sexual Reproduction). The
modeling of coral reproduction by broadcast spawning con-
sists of the following steps.

(1a) In a given step 𝑘 of the reef formation phase, select
uniformly at random a fraction of the existing corals
𝜌
𝑘
in the reef to be broadcast spawners. The fraction

of broadcast spawners with respect to the overall
amount of existing corals in the reef will be denoted
as 𝐹
𝑏
. Corals that are not selected to be broadcast

spawners (i.e., 1−𝐹
𝑏
) will reproduce by brooding later

on, in the algorithm.
(1b) Select couples out of the pool of broadcast spawner

corals in step 𝑘. Each of such couples will form a coral
larva by sexual crossover, which is then released out
to the water. Note that, once two corals have been
selected to be the parents of a larva, they are not
chosen anymore in step 𝑘 (i.e., two corals are parents
only once in a given step). These couple selection can

be done uniformly at random or by resorting to any
fitness proportionate selection approach (e.g., roulette
wheel).

(2) Brooding (Internal Sexual Reproduction). As previously
mentioned, at each step 𝑘 of the reef formation phase in the
CRO algorithm, the fraction of corals that will reproduce by
brooding is 1 − 𝐹

𝑏
. The brooding modeling consists of the

formation of a coral larva by means of a random mutation
of the brooding-reproductive coral (self-fertilization con-
sidering hermaphrodite corals). The produced larva is then
released out to the water in a similar fashion than that of the
larvae generated in step (1b).

(3) Larvae Setting. Once all the larvae are formed at step 𝑘
either through broadcast spawning (1) or by brooding (2),
they will try to set and grow in the reef. First, the health
function of each coral larva is computed. Second, each larva
will randomly try to set in a square (𝑖, 𝑗) of the reef. If the
square is empty (free space in the reef), the coral grows
therein nomatter the value of its health function. By contrast,
if a coral is already occupying the square at hand, the new
larva will set only if its health function is better than that of
the existing coral. We define a number 𝜅 of attempts for a
larva to set in the reef: after 𝜅 unsuccessful tries, it will be
depredated by animals in the reef.

(4) Asexual Reproduction. In the modeling of asexual repro-
duction (budding or fragmentation), the overall set of exist-
ing corals in the reef are sorted as a function of their level
of healthiness (given by 𝑓(Ξ

𝑖𝑗
)), from which a fraction 𝐹

𝑎

duplicates itself and tries to settle in a different part of the
reef by following the setting process described in Step (3).

(5) Depredation in Polyp Phase. Corals may die during the
reef formation phase of the CRO algorithm. At the end of
each reproduction step 𝑘, a small number of corals in the reef
can be depredated, thus liberating space in the reef for next
coral generation. The depredation operator is applied with a
very small probability 𝑃

𝑑
at each step 𝑘, and exclusively to

The Scientific World Journal 5

Reef initialization

Finish

Broadcast spawning

Sexual crossover

Brooding

Larvae setting

Asexual reproduction

No

Yes

Stop criteria
met?

(budding or fragmentation)

Depredation

The solution is given by the best
coral existing in the reef

𝜌o

Fb

1 − Fb

𝜅

Fa

Fd

Figure 3: Flow diagram of the proposed CRO algorithm.

a fraction 𝐹
𝑑
of the worse health corals in Λ. For the sake

of simplicity in the parameter setting of the CRO algorithm,
the value of this fraction may be set to 𝐹

𝑑
= 𝐹
𝑎
. Any other

assignment may also apply provided that 𝐹
𝑑
+ 𝐹
𝑎
≤ 1 (i.e., no

overlap between the asexually reproduced and the depredated
coral sets).

Figure 3 illustrates the flow diagram of the CRO algo-
rithm referencing the twoCROphases (reef initialization and
reef formation), along with all the operators described above.

3.1. Analysis of the CRO Algorithm. The CRO algorithm
differs from other existing bioinspired algorithms in several
peculiarities. In this subsectionwe analyze the structure of the
CRO, similarities, and differences with other metaheuristics.
An insight on the proper choice of theCROparameters is also
provided.

We have already stated that the CRO structure resembles
that of a cellular evolutionary algorithm [32].This implies that
it can be programmed as a fully parallel algorithm in a cluster
ofmicroprocessors. Of course, the implementation in a single
processor is possible, and in fact it is expected to be the most
widely implemented method. However, a major difference
with cellular genetic and evolutionary algorithms is that in the
CRO approach there are not neighborhoods defined in the

grid. Instead, the CRO implements different processes based
on corals reproduction and coral reef formation. In cellular
evolutionary algorithms, the definition of neighborhoods in
the grid is the key ingredient for the good performance of the
algorithm, since a diffusion of solutions among the different
neighborhoods in the grid is performed [32]. On the contrary,
the CRO performance is driven by the fight for the space in
the reef; that is, the fundamental point is the presence of holes
in the reef that grant poorer solutions a possibility to survive.
Note that the algorithm should be a priori structured in such a
way that at the first stages this probability of survival of poor
solutions is high (to favor the explorative capabilities of the
search process), whereas in the last stages it should be made
almost negligible (correspondingly, to make the algorithm
exploit promising potential solutions detected during the
evolutionary process). In the CRO, this tradeoff is controlled
by two parameters: (1) in the reef formation, by the initial rate
between free/occupied squares 𝜌

0
, and (2) in the last stages

of the algorithm, by the depredation probability 𝑃
𝑑
, which

controls the appearance of available space in the reef when
𝜌
𝑘
gets close to 1.
Regarding the exploration/explotaition capabilities of the

algorithm, it is interesting to observe that the CRO adopts
concepts from evolutionary computation and simulated
annealing algorithms, but with new variants.The exploration

6 The Scientific World Journal

phase of the algorithm is carried out by operators that simu-
late the sexual and asexual reproductive processes of corals.
The major exploration structure is the broadcast spawning
process which should be carried out with a high probability,
whereas the brooding reproduction is important for avoiding
local optima. The budding (asexual reproduction) ensures
that the best solutions replicate and span over the reef, so
this process contributes to the exploitation phase of the CRO
algorithm. As mentioned before, the fight for space in the
reef is crucial in this exploitation phase. In this context, it is
important to highlight that the exploitation phase resulting
from the CRO is quite similar to the obtained by means of
a simulated annealing algorithm, where the temperature of
the system controls this phase, and the cooling rate is the
key factor. In the CRO approach, the free/occupied rate is the
factor that controls this exploitation phase.

We could also establish a first analysis of the parameters
values of the CRO in terms of its intuitive theoretical
behavior. Note, however, that the optimal specific values will
be different in each case, so a sensitivity analysis of the
CRO parameters must be carried out before its application to
new problems. The initial free/occupied squares (𝜌

𝑜
) should

be enough to allow new poorer solutions to have enough
survival probabilities. Thus, a value for 𝜌

𝑜
≃ 0.4 may be

reasonable. On the other hand, it is intuitive that in the first
steps of the algorithm the depredation probability 𝑃

𝑑
should

be null, whereas in the final steps of the CRO, with the
reef potentially complete with corals, a small value of this
probability could help to avoid getting stuck in suboptimal
solutions. Thus, a value of 𝑃

𝑑
in the interval [0, 0.1] could be

suitable for most applications, for example, if the stopping
criteria is a maximum number of iterations, by imposing a
linear progression of 𝑃

𝑑
with 0 as initial value and 0.1 at the

end of the algorithm. Other parameters to be studied are the
fractions 𝐹

𝑏
and 𝐹

𝑎
associated with coral reproduction. A

high value of corals applying broadcast spawning is needed
in order to ensure an efficient exploration of the search space.
On the other hand, a small value of brooding and asexual
reproduction is advisable. Therefore 𝐹

𝑏
≃ 0.9 and 𝐹

𝑎
≃ 0.1

could be a good starting parameter set.
Finally, a note on the computational complexity of the

CRO is needed to close this analysis. In order to do this, we
consider a situation where we establish a number of function
evaluations for a given optimization problem. If this is the
case, the computational cost of the algorithm will depend on
the different operators applied to guide the search and exploit
the solutions found. We can use a well-known algorithm
for comparison purposes such as an evolutionary algorithm
(EA). A basic EA with the same number of function eval-
uation implements operators of crossover, mutation, and
selection. The number of corals in the CRO is variable along
the generations, but since the number of function evaluations
is fixed, the computational effort of the algorithm in the
evaluation of new algorithms is similar. Crossover operator
in the EA and broadcast spawning utilize the same operation,
whereas mutation and brooding also resort to the same
approach towards forming new individuals/corals. Therefore
the main difference between these two approaches lies on
the selection/larvae setting processes. The selection of the

EA usually involves comparison between a fixed number of
individuals (consider, e.g., a selection using ranking), whereas
the larvae setting process is carried out until a free space or
a worse coral is found or a maximum number of tries 𝜅 are
reached. The selection of the positions in the reef where a
larva can be set is driven uniformly at random. Thus, at the
beginning of the CRO, the number of comparisons between
corals is small (there are quite free spaces in the reef), and at
the last stages of the algorithm the number of comparisons
tends to be 𝜅 for each coral. In the case of the EA, the number
of comparisons is kept similar all along the algorithm. This
should mean a slightly better behavior in computation time
of the CRO versus the EA. In spite of these differences and
analysis, themain factor of computational complexity of these
approaches is the number of function evaluations, and if
this parameter is fixed, the differences in computation time
between the different algorithms are negligible.This has been
empirically checked in the experimental section of this paper,
where all algorithms run within a very similar computation
time.

4. Experiments and Numerical Results

In this paper we carry out a first performance assessment
of the proposed CRO algorithm in different test problems.
Specifically, different well-known continuous and discrete
benchmark problems are under consideration: continuous
analytical functions and several instances of the Max Ones,
3-bit Deceptive, and MAX-3SAT functions. Besides, the
well-known traveling salesman problem (TSP) will be also
included in our study. To end with, we finally show the
performance of the CRO approach in two practical problem
instances: optimum mobile network deployment and off-
shore wind farm design.

We have selected other metaheuristic algorithms for
comparison: evolutionary algorithms and genetic algorithms
(EA and GA, [1]), harmony search (HS, [25]), particle swarm
optimization (PSO, [7]), and differential evolution (DE, [4]),
which have obtained excellent results in a wide range of
optimization problems during the last years. Regarding the
continuous benchmark problems, we have compared the
results obtained by the CRO in the same problems tackled
in [43], where different hybrid EAs are described, and also
in different larger-dimensional problems described in [3]. On
the other hand, in the case of the discrete benchmark prob-
lems we have assessed naı̈ve versions of all the considered
techniques. When specific operators must be included due to
the intrinsic characteristics of the problem at hand (such as
the TSP instances), such operators have been included in all
the compared algorithms.

Following this rationale, the encoding strategy used to
represent the produced solutions for the aforementioned
problems is set identical for all the algorithms under com-
parison. Specifically, real encoding has been adopted for the
continuous benchmark problems, whereas the Max Ones, 3-
bit Deceptive, and MAX-3SAT problems resort to standard
binary encoding, and the TSP utilizes permutations for
representing a path among all cities. In the TSP we have
used existing operators to manage crossover and mutation in

The Scientific World Journal 7

Table 1: Summary of the continuous benchmark functions considered in this paper.

Function Expression 𝑛 Feasible region
Rosenbrock 𝑓

1
(𝑥) = 100 ⋅ (𝑥

2

1
− 𝑥
2
)
2

+ (1 − 𝑥
1
)
2 2 [−2.048, 2.048]

2

Schwefel 𝑓
2
(𝑥) = 418.9829 ⋅ 𝑛 +

𝑛

∑

𝑖=1

[−𝑥
𝑖
⋅ sin(√󵄨󵄨󵄨󵄨𝑥𝑖

󵄨󵄨󵄨󵄨)] 10 [−512, 512]
𝑛

Rastrigin 𝑓
3
(𝑥) = 𝐴 ⋅ 𝑛 +

𝑛

∑

𝑖=1

[𝑥
2

𝑖
− 𝐴 ⋅ cos (2𝜋𝑥

𝑖
)] 10 [−5.12, 5.12]

𝑛

Griewank 𝑓
4
(𝑥) = 1 +

𝑛

∑

𝑖=1

[
𝑥
2

𝑖

4000
] −

𝑛

∏

𝑖=1

[cos(
𝑥
𝑖

√𝑖
)] 10 [−600, 600]

𝑛

𝐹
1

𝐹
1
=

𝑛

∑

𝑖=1

𝑥
2

𝑖
30 [−100, 100]

𝑛

𝐹
2

𝐹
2
=

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 +

𝑛

∏

𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 30 [−10, 10]

𝑛

𝐹
3

𝐹
3
=

𝑛

∑

𝑖=1

(

𝑖

∑

𝑗=1

𝑥
𝑗
)

2

30 [−10, 10]
𝑛

𝐹
4

𝐹
4
= max

𝑖
(|𝑥
𝑖
|, 1 ≤ 𝑖 ≤ 𝑛) 30 [−100, 100]

𝑛

𝐹
5

𝐹
5
=

𝑛

∑

𝑖=1

[100 ⋅ (𝑥
2

𝑖+1
− 𝑥
𝑖
)
2

+ (1 − 𝑥
𝑖
)
2

] 30 [−30, 30]
𝑛

𝐹
6

𝐹
6
=

𝑛

∑

𝑖=1

(⌊𝑥
𝑖
+ 0.5⌋) 30 [−100, 100]

𝑛

𝐹
7

𝐹
7
=

𝑛

∑

𝑖=1

𝑖𝑥
4

𝑖
+ random [0, 1) 30 [−1.28, 1.28]

𝑛

permutation encoding [44–46]. On the other hand, values of
all parameters controlling the CRO approach have been set
to be comparable to that of its counterparts tested in every
benchmark function. Therefore we have kept the number of
function evaluations constant for all the compared algorithms
inMax Ones (15000) and TSP (20000), whereas for the 3-bit
Deceptive problem the total number of function evaluations
is set to 50000 for GA and HS and 30000 for the proposed
CRO. In the MAX-3SAT problem the number of function
evaluations has been set to 15000 for all the algorithms.
In the continuous benchmark functions, we have set the
number of function evaluations to be comparable with the
results in [43] (first set of functions), and we have set it to
10000 in the comparison with larger dimensional functions
(CRO versus PSO, the best algorithms in the first set of
functions). For every simulation instance 30 executions of
each algorithm have been launched so as to obtain well-
sampled performance statistics (best, average and standard
deviation of themetric after all iterations are done). Note that
the size of the population−𝑁×𝑀 for CRO, population length
𝐿 for the GA, and harmony memory size HM for HS have
been set equal for all the experiments for the sake of fairness
in the comparison of the algorithms: in the Max-Ones and
MAX-3SAT problems𝑁×𝑀 = 5× 10, 𝐿 = 50 and HM = 50,
in the 3-bit Deceptive problem 𝑁 × 𝑀 = 10 × 10, 𝐿 = 100

and HM = 100 and in the TSP 𝑁 × 𝑀 = 10 × 10, 𝐿 = 100,
andHM = 100.The CRO parameters 𝐹

𝑏
and 𝜌 has been set to

𝐹
𝑏
= 0.9 and𝜌 = 0.7, unless otherwise stated in the discussion

on the specific simulated application.
For the sake of validating the statistical significance of

the obtained results, the distributions of the metric val-
ues obtained by the different algorithms on each scenario
(groups) have been compared by means of a nonparametric

Kruskal-Wallis test [47]. This test represents the nonpara-
metric version of the classical one-way ANOVA and is an
extension of the Wilcoxon rank sum test to groups larger
than 2. To this end, the test compares the medians of the
group, and returns the 𝑃 value for the null hypothesis that all
samples are drawn from the same population (or equivalently,
from different populations with the same distribution). If the
𝑃 value is lower than a predefined 𝛼, we can infer that the
null hypothesis does not hold, that is, at least one sample
median in the group is significantly different from the others,
with (1 − 𝛼) level of confidence, then to determine which
samplemedians are statistically different, we have applied this
multiple comparison procedure with 𝛼 = 0.05 (thus, with a
95% level of confidence).

4.1. CRO Evaluation in Continuous Benchmark Problems.
This first round of experiments includes four well-known
benchmark functions, onwhich the proposedCRO is compa-
ratively assessed with respect to different hybrid evolutionary
algorithms described in [43]. In these experiments we have
incorporated Gaussian and Cauchy mutations [3] in the
internal reproduction (brooding) of the corals in order
to accommodate the corresponding operator to the real
encoding of the solutions. In the Gaussian mutation we have
established a fixed standard deviation 𝜎 = (max−min)/100,
where max and min are the maximum and minimum values
that each component of the solution can take, whereas in the
Cauchy mutation the value of the 𝜏 parameter has been fixed
to 1 following the guidelines in [3]. The rest of operators in
the CRO are the ones shown in Section 3. The first 4 rows of
Table 1 summarize the details of the considered continuous
benchmark functions.

8 The Scientific World Journal

Table 2: Results (mean/standard deviation) obtained in the different continuous benchmark functions tested.

Algorithm Rosenbrock Schwefel Rastrigin Griewank
CRO (G) 0.00000709/0.000005 0.000132/0.00000207 0.007154/0.003039 0.223783/0.058051
CRO (C) 0.00000722/0.000006 0.000132/0.00000158 0.006713/0.002297 0.035024/0.019209
CRO (G + C) 0.00000229/0.000001 0.000131/0.00000145 0.004304/0.001564 0.053141/0.019543
HAEA (XUG) 0.000509/0.001013 0.005599/0.011702 0.053614/0.216808 0.054955/0.029924
HAEA (XU) 0.004167/0.004887 1.362088/0.932791 0.240079/0.155614 0.530857/0.227458
HAEA (XG) 0.001322/0.003630 140.5647/123.7203 7.731156/3.223595 0.050256/0.025888
HAEA (GU) 0.000160/0.000258 201.9162/81.28619 6.320374/1.462898 1.586373/0.383703
PSO 0.00000227/0.000002 0.000134/0.00000196 0.004719/0.002319 0.05018/0.01814

Table 3: Comparison of CRO (G + C) versus PSO in different
benchmark functions from [3]. Average and standard deviation of
the results of the 30 runs are shown.

Algorithm PSO CRO (G + C)
𝐹
1

1.24 ⋅ 10
−3
/3 ⋅ 10

−3
1.30 ⋅ 10

−3
/2 ⋅ 10

−4

𝐹
2

2.1 ⋅ 10
−3
/7 ⋅ 10

−4
1.83 ⋅ 10

−3
/3 ⋅ 10

−4

𝐹
3

2.6 ⋅ 10
3
/1 ⋅ 10

2
2.0 ⋅ 10

3
/4 ⋅ 10

2

𝐹
4

7.5/0.8 6.2/0.7

𝐹
5

1.7 ⋅ 10
3
/3 ⋅ 10

2
1.6 ⋅ 10

3
/1.5 ⋅ 10

2

𝐹
6

7.1 ⋅ 10
−3
/2 ⋅ 10

−4
1 ⋅ 10
−3
/6 ⋅ 10

−4

𝐹
7

0.02/1 ⋅ 10
−2

0.02/0.9 ⋅ 10
−2

Table 2 lists the results obtained by three different ver-
sions of the CRO (with Gaussian, Cauchy and Gaussian-
Cauchy internal reproduction) in the benchmark functions
tackled in this first round of experiments. We also include
the results for different versions of the hybrid evolutionary
algorithm proposed in [43], labelled as hybrid adaptive
evolutionary algorithm (HAEA), and the results obtained
with the PSO algorithm. It is straightforward to note that
the CRO approach is able to obtain better results than the
different versions of HAEA consistently, and with statistical
significance positively checked through Kruskal-Wallis tests,
in all the functions under consideration. The inclusion of
both Gaussian and Cauchy mutations in the brooding coral
reproduction (always maintaining the number of functions
evaluations) appears to improve the performance of the CRO
solver. Note that the PSO approach obtains results similar to
the CRO, improving the best result obtained in some of the
functions. In order to clarify the performance of the CRO
versus the PSO, we have carried out some different tests of
these algorithms in objective functions of larger dimensions,
taken from [3] (functions 𝐹

1
to 𝐹
7
in Table 1). In this case the

comparison of the proposed CRO versus the PSO algorithm
is carried out with 1000 function evaluations per run. Table 3
shows the obtained statistical performance metrics: the per-
formance of both algorithms results to be quite similar (so
dictates the statistical irrelevance by the Kruskal-Wallis test
when applied on both result sets), though the CRO slightly,
yet without statistical relevance, outperforms the PSO in 5 out
of the 7 evaluated functions. This observation elucidates that
the CRO algorithm renders a satisfactory performance level
in continuous optimization problems.

Table 4: Results obtained by CRO, GA, and HS in Max-Ones
problems of increasing size. The results are shown in best/average/
standard deviation over 30 runs of the algorithms.

𝑛 CRO GA HS
50 100/100/0 100/100/0 100/100/0
100 100/100/0 100/100/0 98/95.67/0.92
150 100/100/0 100/100/0 94.67/90.84/1.13
200 100/99.98/9.12 ⋅ 10−4 100/99.93/0.17 90/87.32/0.88
250 100/99.97/7.3 ⋅ 10−4 100/99.81/0.25 86.80/84.64/1.04
300 100/99.96 /8.45 ⋅ 10−4 100/99.61/0.39 83.67/82.0700/0.62
350 100/99.96/9.8 ⋅ 10−4 100/99.21/0.46 81.4300/80.03/0.71
400 100/99.95/7.3 ⋅ 10−4 99.50/98.67/0.58 79.50/78.45/1.04
450 100/99.93/0.13 99.55/98.11/0.67 78.67/76.97/0.99
500 100/99.92/0.1 98.60/97.04/0.75 78/75.99/0.69

Table 5: Value assignment in the considered 3-bit Deceptive
function.

Groups of 3 bits Value
1 1 1 80
0 0 0 70
0 0 1 50
0 1 0 49
1 0 0 30
1 1 0 3
1 0 1 2
0 1 1 1

4.2. CRO Evaluation in Discrete Benchmark Problems. The
first discrete benchmark problem considered in this second
stage is the well-known Max Ones problem, often used in
a number of previous works aimed at evaluating different
approaches of genetic algorithms (e.g., see [43, 48] and
references therein). This optimization problem is defined in
a binary search space S = {0, 1}

𝑛, where 𝑛 stands for the
dimension of the space.TheOneMax problem is then defined
as

max
x∈S

𝑓 (x) = 100

𝑛

𝑛

∑

𝑖=1

𝑥
𝑖 [%] . (1)

The Scientific World Journal 9

Table 6: Results obtained by CRO, HS, and GA in the considered 3-bit Deceptive instances. The results are shown in best/average/standard
deviation over 30 runs of the algorithms.

𝑛 CRO HS GA Upper bound
15 400/400/0 400/399.66/1.82 400/400/0 400
30 800/800/0 800/792/8.05 800/795/6.82 800
45 1200/1200/0 1190/1159/14.93 1200/1179.3/13.37 1200
60 1600/1600/0 1560/1517.3/21.96 1590/1562.70/18.74 1600
75 2000/2000/0 1910/1882/20.97 1990/1940.30/22.04 2000
90 2400/2400/0 2280/2243/22.63 2340/2297.30/21.16 2400
105 2800/2799.70/1.82 2660/2598.80/34.20 2730/2687.70/27.75 2800
120 3200/3200/0 2990/2924.8/37.90 3090/3049/21.22 3200

Despite the evident simplicity of its definition, this problem
is challenging for optimization algorithms when dealing with
large values of the space dimensionality 𝑛.

Table 4 summarizes the results (maximum, average and
standard deviation) obtained by CRO, GA, and HS in Max
Ones instances of varying size from 𝑛 = 50 to 𝑛 = 500. As
onemay expect, in the scenarios of smallest dimension all the
utilized heuristic approaches are able to obtain the optimum
solution (100%) in every run of the algorithm. However,
when the dimensions of the simulated problem increase, the
differences between the CRO and the other tested algorithms
becomemore significant. Specially remarkable is the fact that
the CRO obtains the best value in all the instances with a
very high probability (over 99% of the times in which the
algorithm was run). HS also obtains good solutions, but
notably worse than the GA even in the smallest instances. By
contrast, the CRO clearly dominates GA and HS, specially in
the largestMax Ones instances.

The second discrete benchmark problem addressed in
this second phase is the maximization of the aforementioned
3-bitDeceptive function,which has beenpreviously utilized to
evaluate different improvements in genetic and evolutionary
heuristics [43]. The 3-bit Deceptive function is a binary
optimization problem defined in blocks of 3 bits. Each
3-bit block is assigned a value according to Table 5. The
optimization of the function is known to be computationally
hard for heuristic algorithms, since the 111 block (optimum
since it is assigned the highest value) is “surrounded” by
low-valued blocks of two 1s (i.e., with small Hamming
distance with respect to 111). Different size functions (integer
multiple of 3) are considered in this study; that is, 𝑛 =

{15, 30, 45, 60, 75, 90, 105, 120}.
Table 6 shows the results obtained by the CRO in the

considered 3-bit Deceptive functions, and its comparison to
those of HS and GA. In this problem the CRO clearly obtains
the best results among all the compared algorithms. Indeed,
it is able to obtain the optimum (maximum) value in all the
instances and in almost every executed run.The performance
of the alternative algorithms degrades significantly in the
largest instances, though in the smallest ones the GA is able
to obtain the optimum value.

Finally, we have carried out a small test in several MAX-
3SAT instances [49]. The MAX-3SAT is a well-known NP-
complete optimization problem whose inherent complexity

Table 7: Results obtained by CRO, HS, and GA in the consid-
ered MAX-3SAT instances (20 clauses). The results are shown in
best/average/standard deviation over 30 runs of the algorithms.

Instance CRO HS GA
1 0/1.4000/1.1425 1/6.6500/3.7314 0/0.1500/0.4894
2 0/1.3000/0.8645 2/6.5000/3.6921 0/0.1500/0.3663
3 0/1.9000/1.0208 1/6.5000/3.1871 0/0.3000/0.4702
4 0/1.4000/1.2732 1/5.5000/2.7625 0/0.0500/0.2236
5 0/1.3500/1.0894 1/6.1500/2.9249 0/0.1000/0.4472

has motivated its wide adoption as a benchmark to assess
the performance of different search algorithms. In this case
five different MAX-3SAT instances of 20 clauses each have
been considered, over which the performance of the CRO
algorithm has been contrasted to that of HS and GA under
the same operational setup (number of fitness evaluations
per execution, solution encoding approach and parameter set
optimized beforehand via intensive simulation). As Table 7
shows the results obtained. As can be seen, the CRO and
GA are able to obtain the optimal result in all the considered
instances, as opposed to the HS approach, which is not
able to obtain the optimal result. Comparatively, both CRO
and GA seem to perform similarly, as further supported
by the lack of statistical significance of the results of both
algorithms computed by the aforementioned Kruskal-Wallis
test.

4.2.1. Experiments in the Traveling Salesman Problem. The
experimental discrete-variable benchmark follows by apply-
ing the proposed CRO algorithm to the TSP [45], which is
a classical combinatorial optimization problem defined in
the following way: given a finite number of cities along with
the distance between each pair of them, the TSP consists of
finding the shortest possible route visiting each city exactly
once and returning to the origin city. Mathematically, let V
denote the set of cities and O a Hamiltonian cycle (In graph
theory, a Hamiltonian cycle is a cyclic path in an undirected
graph that visits each vertex exactly once.) in V. Having
these definitions in mind, the TSP hinges on finding the
Hamiltonian cycleO∗ thatminimizes the sumof the distances

10 The Scientific World Journal

Table 8: Results obtained by the CRO, HS, and GA in the considered TSP instances.The results are shown in best/average/standard deviation
over 30 runs of the algorithms. I1 to I5 denote the index of the TSP instance for each value of |V|.

CRO I1 I2 I3 I4 I5
30 44.48/44.93/0.59 46.50/46.70/0.58 47.67/48.73/1.32 47.36/47.69/0.74 45.86/46.40/0.53
40 50.99/52.47/0.79 48.04/48.96/1.14 54.86/55.93/1.02 47.81/48.15/0.77 49.16/50.25/1.00
50 59.47/62.02/1.75 54.51/56.34/1.63 57.73/58.97/1.34 58.14/60.16/1.09 57.92/59.77/1.19
75 75.48/78.41/1.61 72.16/75.07/1.98 77.53/81.16/2.04 75.40/80.49/2.17 72.04/6.28/0.05
100 108.03/111.98/2.78 108.26/115.38/3.40 106.93/113.81/3.81 109.35/115.38/2.75 107.79/113.81/3.02
GA I1 I2 I3 I4 I5
30 44.48/45.68/1.26 46.50/47.02/1.19 47.67/49.20/1.20 47.36/48.30/1.42 45.86/47.05/0.88
40 51.60/53.86/1.31 48.12/51.15/1.68 55.94/57.39/1.19 48.49/50.11/1.25 49.29/51.68/1.60
50 64.70/68.01/2.22 57.04/61.63/2.59 61.55/65.07/2.12 60.97/64.45/2.45 61.15/64.86/2.08
75 88.12/94.47/3.6864 85.29/91.91/3.17 90.78/98.84/3.67 89.96/100.16/4.29 85.78/92.89/3.32
100 125.42/132.25/4.54 132.47/139.58/4.26 125.07/135.86/5.30 126.05/137.31/4.91 127.28/137.76/5.49
HS I1 I2 I3 I4 I5
30 44.48/46.63/1.70 46.50/48.28/2.29 47.67/50.10/1.73 47.36/48.99/1.86 45.86/47.89/1.27
40 51.44/55.37/2.04 48.04/52.36/2.59 55.45/58.06/1.92 47.93/51.73/2.48 49.59/53.98/2.40
50 66.26/72.47/2.96 59.16/65.21/3.52 63.43/69.58/4.32 62.9215/68.89/3.33 62.37/69.05/3.47
75 98.34/108.36/6.41 85.70/105.76/8.81 94.98/113.17/7.77 100.26/113.85/6.22 91.45/106.42/6.45
100 127.85/152.37/10.48 148.39/164.16/9.25 142.38/163.93/10.00 144.57/164.13/9.44 146.70/162.67/8.46

between all the cities visited in the order stated by O∗, that is,
that minimizes the objective function

𝑓 (O) = (

|V|−1

∑

𝑘=1

𝑑 (O (𝑘) ,O (𝑘 + 1))) + 𝑑 (O (|V|) ,O (1)) ,

(2)

where | ⋅ | denotes cardinality, O(𝑘) indicates the 𝑘th vertex
(city) in the Hamiltonian cycle O, and 𝑑(𝑎, 𝑏) stands for the
distance measurement between city 𝑎 and 𝑏.

In this paper we use different instances of the TSP with
increasing number of cities. In a first round of experiments,
we have set TSP instances of |V| = {30, 40, 50, 75, 100} cities,
and generated 5 different TSP instances for each size. Hereby,
we consider 25 different problems in this first analysis. Table 8
collects the results (again, in best/average/standard deviation
format) of CRO, GA, and HS when averaged over 30 runs
of each algorithm. It is straightforward to conclude the
CRO clearly outperforms statistically GA and HS in all the
considered instances. To be concise, in the TSP instances
with |V| = 30 nodes all the algorithms obtain the same
minimum value; however, the average value over 30 runs
is better for CRO. In the rest of TSP instances the CRO
clearly outperforms GA andHS in all cases. Furthermore, the
differences between the CRO and alternative metaheuristics
become wider as the size of the TSP increases, as the
computed statistics clearly show. Also remarkable is the fact
that for all instances with |V| ∈ {50, 75, 100}, Kruskal-Wallis
tests performed on the results of the comparedmetaheuristics
confirm their statistical significance.

In order to further buttress this last observation, we have
first carried out two extra experiments in very large TSP
instances, that is, with |V| = {200, 400}. The results of these
experiments shown in Table 9 indicate that indeed the CRO

Table 9: Results obtained by the CRO, HS, and GA in TSP
instances of large size (|V| = {200, 400}). The results are shown in
best/average/standard deviation over 30 runs of the algorithms.

CRO
200 133.98/138.18/2.58
400 407.84/424.76/8.00
GA
200 194.02/205.19/4.05
400 495.21/514.62/10.61
HS
200 233.58/266.16/17.03
400 618.85/674.18/22.02

Table 10: Results obtained by the CRO, HS, and GA algorithms in
the TSP instance “Berlin 52.”

GA HS CRO
7758/7967/108 7688/7983/218 7542/7752/233

performs remarkably better than its GA andHS counterparts,
with statistical significance verified by Kruskal-Wallis. This
set of TSP experiments concludeswith a benchmark in awell-
known TSP instance (“Berlin 52”), publicly available in the
Internet. Table 10 summarizes the results obtained by CRO,
GA and HS in this problem, whereas Figure 4 shows the
distribution of the cities in this problem, and the structure
of the distance matrix, the best solution found by the CRO
and the evolution of the best coral (solution) produced by the
algorithm. Note that the CRO approach clearly obtains the
best statistical results, again with proven statistical relevance
by Kruskal-Wallis tests.

The Scientific World Journal 11

0 500 1000 1500 2000
0

500

1000

1500 City locations

(a)

Distance matrix

10 20 30 40 50

10

20

30

40

50

(b)

0
0

500

1000

1500

500 1000 1500 2000

Total distance = 7542

(c)

0 500 1000
0

0.5

1

1.5

2

Best solution history×104

(d)

Figure 4: TSP instance “Berlin 52” and solution by the proposed CRO algorithm.

(a)

4.64 4.65 4.66 4.67 4.68 4.69 4.7 4.71 4.72 4.73
4.479

4.48

4.481

4.482

4.483

4.484

4.485

4.486

Y

(m
)

X (m) ×105

×106

(b)

Figure 5: City of the study (Alcalá de Henares, Madrid) and electromagnetic field measurement points; (a) situation of Alcalá de Henares,
in Madrid, Spain; (b) electromagnetic field measurement points considered at Alcalá de Henares.

12 The Scientific World Journal

Table 11: Best values obtained in the MNDP problem considered at Alcalá de Henares, by the proposed CRO and an existing EA. EF stands
for electric field and NC stands for noncoverage percentage.

Algorithm Min. fitness EF (mV/m) Cost (KC) NC (%) Number of BTSs
EA in [50] 0.21554 3.16 2.4 2.75 10
CRO 0.1991 3.54 2.3 1.77 12

X (m)
4.64 4.65 4.66 4.67 4.68 4.69 4.7 4.71 4.72 4.73

4.479

4.48

4.481

4.482

4.483

4.484

4.485

4.486

×105

×106

Y

(m
)

(a)

4.64 4.65 4.66 4.67 4.68 4.69 4.7 4.71 4.72 4.73
4.479

4.48

4.481

4.482

4.483

4.484

4.485

4.486

×105

×106

Y

(m
)

X (m)

(b)

Figure 6: Best individual found by the CRO and EA algorithms in the MNDP considered at Alcalá de Henares; (a) CRO solution; (b) EA
solution.

4.3. Experiments in a Practical Application Scenario: AMobile
Network Deployment Problem. In order to shed light on the
performance of the CRO approach in a practical application,
a mobile network deployment problem recently tackled
in [50] has been chosen. Coined as the mobile network
deployment problem (MNDP), it essentially consists of posi-
tioning a set of base transceiver stations (BTS) controllers
taking into account a threefold criterion: maximization of
the coverage, minimization of the deployment cost, and
minimization of the electromagnetic pollution generated
by newly allocated base stations controllers. A thorough
statement of the problem can be found in the above reference
[50]. The MNDP tackled in this study is located at Alcalá
de Henares (Madrid, Spain), with specific details available in
[50]. Figure 5 shows the location of the city under study, and
the points consideredwhere a BTS controller can be installed.
The CRO approach has been compared to the evolutionary
approach (EA) proposed in [50] that provided the best results
so far in this problem. Both algorithms were run with the
same solution encoding strategy, repairing heuristics and
number of fitness evaluations.

Table 11 summarizes the results attained by the EA in [50]
and the proposed CRO in this application scenario. As can be
noticed from this table, CRO outperforms EA: although the
solution produced by the CRO involves 12 BTS controllers
versus 10 in the case of EA, it results in a lower cost. The
noncoverage part of the objective function is also better in
the case of the CRO solution, whereas the electromagnetic
field is quite similar in both solutions. Figure 6 shows the

best solution found by the CRO and EA approaches, where
the differences between the solutions found by the two
approaches can be visually assessed.

4.4. Experiments in a Practical Application Scenario: Design
of Off-Shore Wind Farms. The second practical application
in which the proposed CRO is shown to yield an excellent
statistical performance focuses on the optimal design of off-
shore wind farms. In this setup the main objective is to
maximize the production of the facility. Automatic wind
farm design is indeed a hot topic in wind engineering [51].
Specifically, different computational optimization methods
have been applied to the design of off-shore wind farms
[52–55], most of them involving metaheuristic approaches,
in particular evolutionary computation. In this section the
optimal design of an off-shore wind farm is tackled by using
the proposed CRO algorithm, an evolutionary algorithm
(EA, [1]) and a differential evolution approach (DE, [4]).
The specific problem is described in Figure 7, which shows
the feasible points of turbine locations and their enveloping
silhouette (with a uniform separation of 5 rotor diameters in
order to reduce wake disturbances and effects) of an off-shore
wind farm located at northern Europe. There are 73 possible
locations for turbines in the considered wind farm, and the
objective is to install 20 wind turbines in such a way that the
production of the wind farm is maximized. We consider the
Bonus 1.3MWwind turbinemodel, andwe resort to theOpen
Wind software ([56], freely available) for the corresponding
wakes calculation and wind farm production estimation of

The Scientific World Journal 13

4.63 4.631 4.632 4.633 4.634 4.635 4.636 4.637
6.076

6.077

6.078

6.079

6.08

6.081

6.082

6.083

6.084

6.085
×106

×106

Figure 7: Off-shore wind farm considered and feasible locations to
install wind turbines.

4.63 4.631 4.632 4.633 4.634 4.635 4.636 4.637
6.076

6.077

6.078

6.079

6.08

6.081

6.082

6.083

6.084

6.085
×106

×106

Figure 8: Best layout obtained by the CRO algorithm.

the different layouts. All the compared algorithms utilize the
same encoding approach, that is, integer numbers between
1 and the maximum number of feasible location sites in the
wind farm. The EA includes a tournament selection, two-
point crossover, and random mutation with a probability of
0.1. The chosen DE approach is a classical DE/rand/1/bin,
with select weighting factor 𝐹 = 0.8. Regarding the CRO
approach, a 15 × 5 reef was considered, with an initial
𝜌
0
≃ 0.7 and parameter 𝐹

𝑏
= 0.9 (ninety percent of corals

are considered as broadcast spawners). All the compared
algorithms have been run until the number of objective
function evaluations is 3000.

Table 12 compares the best solutions found by the three
compared algorithms. Note that the CRO approach produces
the layout with the best production, outperforming the EA
and DE algorithms. Figure 8 shows the best layout obtained

Table 12: Comparison of CRO, EA, and DE algorithms in the off-
shore wind farm design problem.

Algorithm Energy production (GWh)
CRO 84.352
EA 84.256
DE 84.292

by the CRO approach. Note that the wind turbines location
tend to occupy the external upper zones of the wind farm.
Since the wind rose in the zone of study has a predominant
north-west component, the solution obtained is good, since
the algorithm tries to locate the maximum number of
turbines at the upper left-hand of the wind farm, so these
turbines are not affected by wakes disturbances from other
turbines.

5. Conclusions

In this paper we have presented a novel algorithm to solve
optimization problems, inspired by the process of coral reefs
formation and guided by coral reproduction, reef expansion,
andfight for the space in the reef.The algorithm, named as the
coral reef optimization (CRO) algorithm, is a kind of cellular
evolutionary algorithm rendering very good properties of
convergence to global optima. In this paper we have studied
the main characteristics of the proposed CRO and analyzed
its comparison to other existing metaheuristic approaches in
different benchmark problems and two practical applications
of mobile network deployment in Spain and the optimal
design of an off-shore wind farm in northern Europe. The
promising obtained results encourage the application of the
proposed CRO approach to other practical optimization
paradigms of high complexity.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work has been partially supported by Spanish Ministry
of Science and Innovation, under Project nos. ECO2010-
22065-C03-02 and TEC2011-28250-C02-02.

References

[1] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Com-
puting, Natural Computing Series, Springer, Berlin, Germany,
1st edition, 2003.

[2] H. Beyer andH. Schwefel, “Evolution strategies—a comprehen-
sive introduction,” Natural Computing, vol. 1, no. 1, pp. 3–52,
2002.

[3] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made
faster,” IEEE Transactions on Evolutionary Computation, vol. 3,
no. 2, pp. 82–102, 1999.

14 The Scientific World Journal

[4] R. Storn and K. Price, “Differential evolution: a simple and
efficient heuristic for global optimization over continuous
spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–
359, 1997.

[5] M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system: opti-
mization by a colony of cooperating agents,” IEEE Transactions
on Systems, Man, and Cybernetics B, vol. 26, no. 1, pp. 29–41,
1996.

[6] J. O. Kephart, “A biologically inspired immune system for
computers,” in Proceedings of the 4th International Workshop on
the Synthesis and Simulation of Living Systems, pp. 130–139, MIT
Press, 1994.

[7] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proceedings of the 4th IEEE International Conference on Neural
Networks, pp. 1942–1948, December 1995.

[8] D. Karaboga and B. Basturk, “On the performance of artificial
bee colony (ABC) algorithm,” Applied Soft Computing Journal,
vol. 8, no. 1, pp. 687–697, 2008.

[9] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: a
Gravitational Search Algorithm,” Information Sciences, vol. 179,
no. 13, pp. 2232–2248, 2009.

[10] A. R.Mehrabian and C. Lucas, “A novel numerical optimization
algorithm inspired from weed colonization,” Ecological Infor-
matics, vol. 1, no. 4, pp. 355–366, 2006.

[11] R. Oftadeh, M. J. Mahjoob, and M. Shariatpanahi, “A novel
meta-heuristic optimization algorithm inspired by group hunt-
ing of animals: hunting search,” Computers and Mathematics
with Applications, vol. 60, no. 7, pp. 2087–2098, 2010.

[12] D. Simon, “Biogeography-based optimization,” IEEE Transac-
tions on Evolutionary Computation, vol. 12, no. 6, pp. 702–713,
2008.

[13] Z. C. Wang and X. B. Wu, “Hybrid biogeography-based opti-
mization for integer programming,” The Scientific World Jour-
nal, vol. 2014, Article ID 672983, 9 pages, 2014.

[14] P. Cortés, J. M. Garćıa, J. Muñuzuri, and L. Onieva, “Viral
systems: a new bio-inspired optimisation approach,” Computers
and Operations Research, vol. 35, no. 9, pp. 2840–2860, 2008.

[15] S. D. Müller, S. Airaghi, J. Marchetto, and P. Koumoutsakos,
“Optimization based on bacterial chemotaxis,” IEEE Transac-
tions on Evolutionary Computation, vol. 6, no. 1, pp. 16–29, 2002.

[16] K.M. Passino, “Biomimicry of bacterial foraging for distributed
optimization and control,” IEEE Control Systems Magazine, vol.
22, no. 3, pp. 52–67, 2002.

[17] X. S. Yang, “A new metaheuristic Bat-inspired algorithm,” in
Proceedings of the Nature Inspired Cooperative Strategies for
Optimization (NICSO '10), vol. 284 of Studies in Computational
Intelligence, pp. 65–74, Springer, Berlin, Germany, 2010.

[18] Y. Zhou, J. Xie, L. Li, and M. Ma, “Cloud model bat algorithm,”
The Scientific World Journal, vol. 2014, Article ID 237102, 11
pages, 2014.

[19] H. Wang, X. Lu, X. Zhang, Q. Wang, and Y. Deng, “A bio-
inspiredmethod for the constrained shortest path problem,”The
Scientific World Journal, vol. 2014, Article ID 271280, 11 pages,
2014.

[20] A. Kaveh and V. R. Mahdavi, “Colliding bodies optimization: a
novel meta-heuristic method,”Computers & Structures, vol. 139,
pp. 18–27, 2014.

[21] A. Kaveh and M. Khayatazad, “A new meta-heuristic method:
ray Optimization,” Computers and Structures, vol. 112-113, pp.
283–294, 2012.

[22] X. Yang and S. Deb, “Cuckoo search via Lévy flights,” in Pro-
ceedings of the World Congress on Nature and Biologically
Inspired Computing (NABIC ’09), pp. 210–214, Coimbatore,
India, December 2009.

[23] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680,
1983.

[24] P. A. Castillo, M. G. Arenas, N. Rico et al., “Determining
the significance and relative importance of parameters of a
simulated quenching algorithm using statistical tools,” Applied
Intelligence, vol. 37, no. 2, pp. 239–254, 2012.

[25] Z. W. Geem, J. H. Kim, and G. V. Loganathan, “A new heuristic
optimization algorithm: harmony search,” Simulation, vol. 76,
no. 2, pp. 60–68, 2001.

[26] R. V. Rao and V. Patel, “An elitist teaching-learning-based opti-
mization algorithm for solving complex constrained optimiza-
tion problems,” International Journal of Industrial Engineering
Computations, vol. 3, no. 4, pp. 535–560, 2012.

[27] T. Ray andK.M. Liew, “Society and civilization: an optimization
algorithm based on the simulation of social behavior,” IEEE
Transactions onEvolutionaryComputation, vol. 7, no. 4, pp. 386–
396, 2003.

[28] E. Atashpaz-Gargari and C. Lucas, “Imperialist competitive
algorithm: an algorithm for optimization inspired by impe-
rialistic competition,” in Proceedings of the IEEE Congress on
Evolutionary Computation (CEC ’07), pp. 4661–4667, Singapore,
September 2007.

[29] B. Alatas, “ACROA: artificial chemical reaction optimization
algorithm for global optimization,” Expert Systems with Appli-
cations, vol. 38, no. 10, pp. 13170–13180, 2011.

[30] S. I. Birbil and S. C. Fang, “An electromagnetism-like mecha-
nism for global optimization,” Journal of Global Optimization,
vol. 25, no. 3, pp. 263–282, 2003.

[31] A. Yurtkuran and E. Emel, “A new Hybrid Electromagnetism-
likeAlgorithm for capacitated vehicle routing problems,”Expert
Systems with Applications, vol. 37, no. 4, pp. 3427–3433, 2010.

[32] E. Alba and B. Dorronsoro, Cellular Genetic Algorithms,
Springer, Berlin, Germany, 2008.

[33] D. E. Burkepile and M. E. Hay, “Coral reefs,” in Encyclopedia of
Ecology, pp. 784–796, 2008.

[34] A. Genin, L. Karp, and A.Miroz, “Effects of flow on competitive
superiority in scleractinian corals,” Limnology and Oceanogra-
phy, vol. 39, no. 4, pp. 913–924, 1994.

[35] R. Ates, “Aggressive behaviour in corals,” Freshwater andMarine
Aquarium, vol. 12, no. 8, pp. 104–112, 1989.

[36] N. E. Chadwick, “Interspecific aggressive behavior of the
Corallimorpharian Corynactis Californica (Cnidaria: Antho-
zoa): effects on sympatric corals and sea anemones,” Biological
Bulletin, vol. 173, pp. 110–125, 1987.

[37] J. Molácek, M. Denny, and J. W. M. Bush, “The fine art
of surfacing: its efficacy in broadcast spawning,” Journal of
Theoretical Biology, vol. 294, pp. 40–47, 2012.

[38] Y. C. Tay, J. R. Guest, L. M. Chou, and P. A. Todd, “Vertical
distribution and settlement competencies in broadcast spawn-
ing coral larvae: Implications for dispersal models,” Journal of
Experimental Marine Biology and Ecology, vol. 409, no. 1-2, pp.
324–330, 2011.

[39] D. A. Brazeau, D. F. Gleason, and M. E. Morgan, “Self-
fertilization in brooding hermaphroditic Caribbean corals:
evidence from molecular markers,” Journal of Experimental
Marine Biology and Ecology, vol. 231, no. 2, pp. 225–238, 1998.

The Scientific World Journal 15

[40] H. Yamashiro andM. Nishihira, “Experimental study of growth
and asexual reproduction in Diaseris distorta (Michelin, 1843),
a free-living fungiid coral,” Journal of Experimental Marine
Biology and Ecology, vol. 225, no. 2, pp. 253–267, 1998.

[41] D. Lirman, “Fragmentation in the branching coral Acropora
palmata (Lamarck): growth, survivorship, and reproduction
of colonies and fragments,” Journal of Experimental Marine
Biology and Ecology, vol. 251, no. 1, pp. 41–57, 2000.

[42] M. P. Lesser, “Experimental biology of coral reef ecosystems,”
Journal of Experimental Marine Biology and Ecology, vol. 300,
no. 1-2, pp. 217–252, 2004.

[43] J. Gómez, “Self Adaptation of operator rates in evolutionary
algorithms,” in Proceedings of the Genetic and Evolutionary
Computation (GECCO ’04), vol. 3102 of Lecture Notes in Com-
puter Science, pp. 1162–1173.

[44] P. W. Poon and J. N. Carter, “Genetic algorithm crossover oper-
ators for ordering applications,” Computers and Operations
Research, vol. 22, no. 1, pp. 135–147, 1995.

[45] S. Chen and C. Chien, “Solving the traveling salesman problem
based on the genetic simulated annealing ant colony system
with particle swarm optimization techniques,” Expert Systems
with Applications, vol. 38, no. 12, pp. 14439–14450, 2011.

[46] S. S. Ray, S. Bandyopadhyay, and S. K. Pal, “Genetic operators
for combinatorial optimization in TSP and microarray gene
ordering,” Applied Intelligence, vol. 26, no. 3, pp. 183–195, 2007.

[47] M. Hollander and D. A. Wolfe, Nonparametric Statistical Meth-
ods, New York, NY, USA, JohnWiley & Sons, 2nd edition, 1973.

[48] S. Khanna, M. Sudan, L. Trevisan, and D. Williamson, “The
approximability of constraint satisfaction problems,” SIAM
Journal on Computing, vol. 30, no. 6, pp. 1863–1920, 2001.

[49] R. Battiti and M. Protasi, “Approximate algorithms and heuris-
tics for MAX-SAT,” in Handbook of Combinatorial Optimiza-
tion, vol. 1, pp. 77–148, Kluwer Academic, Boston, Mass, USA,
1998.

[50] P. Garca-Daz, S. Salcedo-Sanz, A. Portilla-Figueras, and S.
Jiménez-Fernández, “Mobile network deployment under elec-
tromagnetic pollution control criterion: an evolutionary algo-
rithm approach,” Expert Systems with Applications, vol. 40, no.
1, pp. 365–376, 2013.

[51] M. A. Lackner and C. N. Elkinton, “An analytical framework for
offshore wind farm layout optimization,”Wind Engineering, vol.
31, no. 1, pp. 17–31, 2007.

[52] C.N. Elkinton, J. F.Manwell, and J.G.McGowan, “Optimization
algorithms for offshore wind farm micrositing,” in Proceedings
of the WINDPOWER Conference and Exhibition, Los Angeles,
Calif, USA, 2007.

[53] C. N. Elkinton, J. F. Manwell, and J. G. McGowan, “Algorithms
for offshore wind farm layout optimization,”Wind Engineering,
vol. 32, no. 1, pp. 67–83, 2008.

[54] R. A. Rivas, J. Clausen, K. S. Hansen, and L. E. Jensen, “Solving
the turbine positioning problem for large offshore wind farms
by simulated annealing,” Wind Engineering, vol. 33, no. 3, pp.
287–297, 2009.

[55] M. Zhao, Z. Chen, and J. Hjerrild, “Analysis of the behaviour of
genetic algorithm applied in optimization of electrical system
design for offshore wind farms,” in Proceedings of the 32nd
Annual Conference on IEEE Industrial Electronics (IECON ’06),
pp. 2335–2340, November 2006.

[56] http://www.awsopenwind.org/.

