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Phospholipase D (PLD) enzymes play a double vital role in
cells: they maintain the integrity of cellular membranes and they
participate in cell signaling including intracellular protein traf-
ficking, cytoskeletal dynamics, cell migration, and cell prolifer-
ation. The particular involvement of PLD in cell migration is
accomplished: (a) through the actions of its enzymatic product
of reaction, phosphatidic acid, and its unique shape-binding
role on membrane geometry; (b) through a particular guanine
nucleotide exchange factor (GEF) activity (the first of its class
assigned to a phospholipase) in the case of the mammalian iso-
form PLD2; and (c) through protein-protein interactions with a
wide network of molecules: Wiskott–Aldrich syndrome protein
(WASp), Grb2, ribosomal S6 kinase (S6K), and Rac2. Further,
PLD interacts with a variety of kinases (PKC, FES, EGF receptor
(EGFR), and JAK3) that are activated by it, or PLD becomes the
target substrate. Out of these myriads of functions, PLD is
becoming recognized as a major player in cell migration, cell
invasion, and cancer metastasis. This is the story of the evolu-
tion of PLD from being involved in a large number of seemingly
unrelated cellular functions to its most recent role in cancer
signaling, a subfield that is expected to grow exponentially.

Phospholipase D (PLD)2 hydrolyzes phosphatidylcholine
(PC) to yield phosphatidic acid (PA) and free choline (1). PLD is
necessary for normal maintenance of cellular or intracellular
membranes (2, 3), and it also participates in several physiolog-
ical cellular functions, such as intracellular protein trafficking,
cytoskeletal dynamics, membrane remodeling, and cell prolif-
eration in mammalian cells and meiotic division and sporula-
tion in yeast (4).

An important characteristic feature of members of the phos-
pholipase D superfamily is the presence of two HKD motifs

with the consensus amino acid sequence HXKX4DX6GSXN.
However, there are exceptions where some of the PLDs lack
these motifs and some have only one HKD motif. In Fig. 1,
phospholipases are classified as follows: (a) active phospho-
lipases with HKD motifs; (b) phospholipases with HKD motifs
that lack lipase activity; and (c) non-HKD phospholipases.

Mammalian PLDs

The two best characterized mammalian isoforms are PLD1
and PLD2 (5– 8). Their genes share about 50% homology
including two highly conserved phosphatidyltransferase HKD
catalytic motifs that are requisite for catalytic activity. PLD1
and PLD2 also have phox homology (PX) and pleckstrin homol-
ogy (PH) domains (2). A unique characteristic of PLD2 is that it
possesses guanine nucleotide exchange factor (GEF) activity for
the small GTPases Rac2 and Rho (9 –11) (Fig. 2).

The existence of isoforms PLD3, PLD4, PLD5, and PLD6 has
been recently reported. All of these PLD isoforms lack PX and
PH domains and, therefore, are termed as “non-classical PLDs”
(Fig. 1). However, all but PLD6 do have two HKD motifs,
whereas PLD6 has only one such motif. PLD3 was originally
identified as viral K4L homologue and, hence, named as Hu-K4.
Despite the presence of two HKD motifs, no similarity with
PLD1 or PLD2 was been found. SAM9 is a murine orthologue of
Hu-K4, which is expressed in brain and localized in the endo-
plasmic reticulum (12), as is PLD4. No activity has been
assigned for the products of PLD3 or PLD4 so far (13). PLD6
(also termed mitoPLD) is localized in mitochondrial outer
membranes. It is required for mitochondrial fusion during
which PLD6 located on one mitochondrion dimerizes with
PLD6 located on a second mitochondria and hydrolyzes cardio-
lipin to generate PA (14, 15).

PLD and Its Product of Reaction, PA, Affect Intracellular
Signaling Dramatically

PLD enzymes are involved in a large variety of physiological
cellular functions, and I will consider here three molecular
mechanisms by which this occurs through their lipase action,
through the GEF activity (in the case of PLD2), and through
protein-protein interactions that initiate signaling indepen-
dently of the enzymatic activities. PA is the catalytic product of
the lipase reaction with phospholipids in the cell membrane,
particularity PC. The biggest dilemma concerning the function
of PLD is the lack of clarity over a PA binding site on target
proteins and thus understanding of the mechanism of down-
stream action. This is particularly concerning given the pleth-
ora of PA-binding proteins that have been identified. Three
studies can be cited where it is indicated that PA binds to the
positively charged amino acid residues or surface-exposed
hydrophobic residues or both in the target proteins (16 –18),
but clearly a specific PA binding site is lacking, and once found,
the field should advance considerably. Related to this, the inte-
gration of PA and PLD has been addressed only in one review by
Jang et al (19). The authors found that 9 out of 50 binding
partners are common between PA and PLD. Based on this, the
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authors suggested a complex regulation patterns between PLD,
PA, and their binding partners. This paucity of intersection
indicates that indeed, PLD is an enzyme that cannot be con-
fined to the sole actions derived from its enzymatic activity and,
as I will discuss later, the protein-protein interactions involving
the whole PLD or parts of the PLD molecular are central to PLD
signaling, particularly in cell migration.

A further interest in this PA-PLD topic has become high-
lighted by the discovery of PLD2 as a GEF that makes more
challenging a demarcation between lipase-mediated and/or
GEF-mediated functions of PLD2 (9). However, the finding
that PA regulates the GEF activity of PLD2 adds a further
level of sophistication in the regulation of this enzyme that is
necessary considering the key role it has in cellular functions

FIGURE 1. Classifications of PLDs. A, phospholipase D enzymes with HKD domains and intact lipase activity. B, phospholipase D enzymes with HKD domains
that lack lipase activity. C, phospholipase D enzymes that lack HKD domains but are dependent on divalent cations for action. Parts of this panel are based on
Ref. 99. Abbreviations: Phospholipase D activity, lipid phosphodiesterase toward PC (also phosphatidylethanolamine, phosphatidylserine, and cardiolipin)
releasing PA and polar head; Ce, Caenorhabditis elegans; Dm, Drosophila melanogaster; Dr, Danio rerio; MLS, mitochondrial localization signal; mPLD5, mouse
PLD5; sc, Streptomyces chromofuscus; GPI, glycosyl phosphatidyl inositol. Red boxes marked with TM, transmembrane domains; black boxes, HKD motifs
(HXKX4DX6GSXN); yellow box, C2 domain.
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(20). Further, with the discovery of the GEF catalytic site, it is
now possible to use lipase-inactive or GEF-inactive mutants
to determine lipase or GEF-mediated functions (11).

PLD Signaling as a Phosphoprotein and Its Interaction
with Tyrosine Kinases

PLD is a phosphoprotein whose phosphorylation is regulated
by kinases and phosphatases (Fig. 3). Protein kinase C (PKC)
interacts with both PLD1 and PLD2 and enhances lipase activ-
ity (21, 22). PKC� phosphorylates PLD2 by direct association,

thereby aiding in the localization of PLD2 at lamellipodia and
promoting integrin-mediated cell spreading (23). A physical
association between PLD2 and PLC� occurs in an EGF-depen-
dent fashion and enhances PLD activity (24). Cdk5-mediated
phosphorylation and activation of PLD2 is responsible for EGF-
dependent insulin secretion (25). Phosphorylated PLD2 forms a
ternary complex with both PTP1b and Grb2, a critical signal
transducer of EGFR, which links PLD2 to cellular proliferation
and the MAPK and Ras/Erk pathways (26).

FIGURE 2. Regulation of PLD enzymatic activities. A, list of specific regulation(s) of PLD1 and PLD2, the most studied mammalian isoforms. PIP2, phosphati-
dylinositol 4,5-bisphosphate; CRIB motif, Cdc42/Rac interactive binding motif. B, phospholipase D2 is a dual enzyme that catalyzes a lipase activity, as well as a
guanine nucleotide exchange. Shown are the N-terminal PLD2-PX (where part of the GEF activity resides) and the C-terminal HKD1/2 domains (where lipase
activity resides). For the GEF reaction, PLD2 causes Rac2-based GDP dissociation upon interaction with Rac2-GDP. In a second step, PLD2 stabilizes nucleotide-
free Rac2 until GTP binds, after which PLD2 is released from the complex, leading to the activation of Rac2. For the lipase reaction, the catalytic HKD motifs of
PLD2 fold around the substrate phosphatidylcholine (P-Cho). In the first step, a phosphatidyl-histidine intermediate is generated due to a nucleophilic attack
of the histidine of the lipases on the phosphate of phosphatidylcholine. In the next step, the hydroxyl group of water attacks the phosphatidyl-histidine
intermediate, leading to the formation of phosphatidic acid, at which time the enzyme is regenerated for the next cycle of PC breakdown. C–E, schematic
drawings of main domains in the PLD2 structure. C, ribbon model of PLD2-PX domain noting key amino acids needed for the GEF activity. D, ribbon model of
PLD2-PH domain that includes CRIB-1 and CRIB-2 needed for interaction with small GTPases (e.g. Rac2). E, ribbon model of PLD2-HKD domain. Serine residues
that are mutated for inhibitor studies but that retain lipase activity are highlighted. The structures in C–E were generated by using protein prediction servers
such as I-TASSER and Phyre (52). Once the structures were obtained, they were validated using biochemistry data available from both my laboratory and those
of published authors in the field.

MINIREVIEW: Phospholipase D in Cell Signaling

AUGUST 15, 2014 • VOLUME 289 • NUMBER 33 JOURNAL OF BIOLOGICAL CHEMISTRY 22559



Although PLD2 can be phosphorylated by the serine/threo-
nine kinase AKT at residue Thr-175, which serves to up-regu-
late DNA synthesis, more typically PLD is known as a substrate
for many receptor (EGFR and PDGFR) and non-receptor tyro-
sine kinases (Src and JAK3). Choi et al. (27) have found that
PLD2 is specifically phosphorylated on residues Tyr-11, Tyr-
14, Tyr-165, and Tyr-470. Phosphorylation targets within the
PLD2 molecule have been mapped that are vital to its regulation
as a lipase and thus correlated in vitro to at least three different
tyrosine kinases, EGFR, Src, and Janus kinase 3 (JAK3) (28), that
target Tyr-296, Tyr-511, and Tyr-415, respectively, and that
yield either positive or negative effects on the lipase.

Elevation of either PLD1 or PLD2 has the potential to trans-
form rat fibroblasts and contribute to cancer progression of the
malignant phenotype in cells that also have elevated levels of
EGFR or Src tyrosine kinases (29). Contrarily, it has been
hypothesized that PLD2 activity in certain breast cancer cell
lines is comparatively low when compared with non-cancerous
cells or other breast cancer cell lines because it is down-regu-
lated by tyrosyl phosphorylation at Tyr-296 via EGFR (28). This

low level of PLD activity can be increased by in vitro treatment
with either JAK3 or Src. Src participates in the activation of
PLD through the Ras pathway and the kinases Fyn and Fgr but
not Lyn (27).

There are also protein-protein interactions between PLD2
and JAK3, as well as with another tyrosine kinase, FES, which is
implicated in the proliferation of breast cancer cells (30). The
PLD2-JAK-FES inter-regulation of this lipase and these kinases
is implicated in the high proliferation rate of MDA-MB-231
breast cancer cells (30). Additionally, PLD interacts with
type-Ia phosphatidylinositol-4-phosphate 5 (PI4P5) kinase. In
turn, phosphatidylinositol 4,5-bisphosphate (PIP2) generated
by phosphatidylinositol-4-phosphate 5 kinase is essential for
PLD activity (31).

The Complex Interaction between Small GTPases with
PLD

GTPases regulate PLD activity, and PLD in turn regulates
GTPases (32). For GTPases regulating PLD, it was found ini-
tially that Arf1 and RalA directly interact with and activate

FIGURE 3. Multiple signaling pathways result in PLD2 contributing to many different steps in this process. As shown in the schematic drawing, PLD2 has
many functions in the cell. The invasive phenotype of MDA-MB-231 cells is mediated by PLD2 under control of JAK3 and EGFR. Serum deprivation of cells results
in an up-regulated EGFR/JAK3/PLD2-PA system, which is extremely sensitive to JAK3 and PLD2 inhibitors. JAK3 and FES greatly enhance PLD activity following
protein-protein interaction through the SH2 domain and the Tyr-415 residue of PLD2. PA enhances FES activity in cancer cells, which provides a positive
activation loop between FES and PLD2. PLD2 anchors WASp at the phagocytic cup through Grb2 following protein-protein interactions and also activates it,
making key lipids available locally. The heterotrimer PLD2-Grb2-WASp then enables actin nucleation at the phagocytic cup and phagocytosis, which are at the
center of the innate immune system function. PLD2 binds to the small GTPase Rac2, which results in a PLD2-GEF activity that switches Rac2 from the
GDP-bound to the GTP-bound states, which impacts actin and cell motility. PLD-derived PA binds to ribosomal S6 kinase (S6K), whose enzymatic activity
regulates the activation of actin nucleation, and to nuclear receptors (NR) in the nucleus, which contributes to synthesis of EGFR protein and increases cell
proliferation.

MINIREVIEW: Phospholipase D in Cell Signaling

22560 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 289 • NUMBER 33 • AUGUST 15, 2014



PLD1 (33). Several other GTPases, such as RhoA, RhoB, Rac1,
Rac2, and Cdc42, activate PLD. The Switch I region of Rho A
directly interacts with the C-terminal region of PLD1 (34, 35).
These GTPases must be GTP-bound to stimulate/activate PLD
because mutation of the Rho binding site on PLD1 abrogates
PLD1/Arf interaction.

There is a dual (positive and negative) effect of Rac2 on PLD2
activity that is implicated in regulation of chemotaxis. Rac2
localizes in vivo at the leading edge of leukocyte pseudopodia,
with PLD2 being physically posterior to a wave of Rac2. This
impedes the membrane association of PLD2 and thereby inhib-
its the lipase activity (36). Rac2 has a negative effect on PLD2
gene expression as well (37). Regulation of PLD2 activity by the
small GTPase Sar1p is implicated in COPII-mediated endo-
plasmic reticulum export (38) (39). Further, PLD2 acts as a
GTPase-activating factor (GAP) for dynamin (40).

PLD2 Is a GEF

Not only is PLD2 regulated by small GTPASES, as just dis-
cussed, but PLD2 also regulates GTPases; in fact, PLD2 is a GEF
for small GTPases (Fig. 2). PLD2 but not PLD1 is upstream to
small GTPases, such as Rac1, RhoA, and Rac2 via its GEF activ-
ity or via a PA-dependent manner (9, 10, 23). PLD2 possesses a
GEF activity for the small GTPase Rac2 or RhoA (9, 10). After
the discovery of the GEF activity of PLD2, PLD2-mediated

functions are more challenging in terms of demarcating the
lipase- or GEF-mediated functions of PLD2. By extensive muta-
tional analysis, my laboratory discovered the essential amino
acid residues for GEF catalysis: Phe-107, Phe-129, Leu-166,
Arg-172, and Leu-173 (Fig. 2C) (11). This information is valua-
ble in using either the mutant lipase-inactive PLD2 or the
mutant GEF-inactive PLD2 to differentiate between varieties of
PLD2-mediated functions. PLD2-GEF activity correlates with
Ras activation in highly proliferative and metastatic breast can-
cer cells (41). This is a very important area to be pursued fur-
ther, as not only mutations in Ras, but also hyperactivation of
Ras, promote tumorigenesis (42).

PLD2 is a dual enzyme with GEF and lipase activities embed-
ded in the N- and C-terminal regions, respectively. Very inter-
estingly, for the dual GEF/lipase activity, the products of the
lipase and the GEF reactions regulate the alternate activity. This
involves the dual effect of PA on PLD2-GEF activity and a tem-
poral switch in lipase and GEF activities (20).

WASp, Grb2, and Rac2: The Mechanism by Which PLD
Acts on Cell Migration

PLD is an important player in the regulation of actin cyto-
skeletal regulation and, as such, a key element for cell migration
(Fig. 4). A component of this effect is due to the product of its
reaction, PA, and another is through protein-protein interac-

FIGURE 4. Role of PLD in cell migration. PLD is a key component of cell migration of both cancer and inflammatory cells that includes a variety of different
intracellular events (such as cytoskeletal organization, vesicle trafficking, endocytosis/exocytosis, etc.) using both PA-mediated mechanisms and protein-
protein interactions. The figure shows that PA provides a curvature in the cell membrane that is conducive to formation of lamellipodia. On the other hand, PA
is a second messenger on its own right, and carries the signal from the membrane to several proteins in the cytoplasm and in the nucleus. The GEF function of
PLD2 targets small GTPases involved in cell migration, such as Rac2. Lastly, multiple protein-protein interactions have been described with PLD2 and motility
proteins, such as Grb2-WASp.
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tion with the intracellular motility machinery. PA regulates
actin and leukocyte cell migration because lamellipodia struc-
tures and membrane ruffles can be hindered if PLD is inhibited
(43). PLD activation plays a vital role in actin cytoskeleton for-
mation (4). ARF6 activation by ARNO stimulates epithelial cell
migration through Rac1 and PLD (44), and PLD is necessary for
actin localization and actin-based motility in Dictyostelium via
phosphatidylinositol 4,5-bisphosphate (45). PLD2 mediates
adhesion via regulation of cell surface integrins (46) and is
involved in cytoskeletal organization, macrophage phagocyto-
sis and neutrophil recruitment (43, 47, 48). In leukocytes, PA is
a chemoattractant that acts via ribosomal S6 kinase (S6K) (49)
and Fer (17), and 5-fluoro-2-indolyl des-chlorohalopemide
(FIPI) is a PLD inhibitor that alters cell spreading and inhibits
chemotaxis (50). DOCK2 is controlled by PLD during neutro-
phil chemotaxis (51) and, conversely Rac2 controls PLD2 reg-
ulation during the onset and termination of chemotaxis (36).

There are at least two ways by which PLD is connected to cell
migration. The first involves Rho family GTPases (10, 53). The
second way is through PLD-mediated cell migration, which is
also regulated by specific protein-protein interactions, such as
Grb2, which is a docking protein for PLD2 that is dependent on
the SH2 domain of Grb2 and involves Tyr-169 and Tyr-179 of
PLD2 (26). Upon interaction, Grb2 promotes lipase activity and
regulates the localization of PLD2 (54). PLD2 recruits WASp to
the plasma membrane and enhances phagocytic cup formation
via Grb2 (55) (Fig. 4C). PLD activity and Rac2 cooperation are
increased in macrophages following binding of PLD2 to Grb2,
which stimulates actin polymerization and membrane ruffling
(56). PLD2/Grb2-mediated chemotaxis and phagocytosis of
RAW264.7/LR5 macrophages is dependent upon Grb2 inter-
acting with other proteins, such as Rac2, PTP1b, and especially
WASp (54, 57).

PLD Close Interaction with Other Lipid Enzymes

PLD-derived PA binds to and regulates sphingosine kinase 1
(SK1) (58). The product of SK1, sphingosine 1-phosphate, acts
as a survival signal in cancer and also mediates tumorigenesis
(59, 60). More importantly sphingosine-1-phosphate is also
involved in transactivation of various growth factors (61) that
are upstream of PLD activity. This suggests the possibility of
cross-talk between SK1/sphingosine-1-phosphate and possibly
PLD/PA pathways that might play a crucial role in cancer
progression.

Lipid phosphate phosphatases (LPPs) hydrolyze a variety of
phospholipids including PA (62). LPPs possess an inhibitory
effect on lysophosphatidic acid-mediated PLD activity (63).
Although LPP expression is low, PLD levels are high in a variety
of cancers (64). In addition to the PLD inhibitors, the cross-
signaling between LPPs and PLD/PA thus seems to be an area of
interest in cancer perspective.

PLD in Tumor and Cancer Metastasis

PLD2 overexpression leads to elevated adhesion invasion
and metastasis in a lymphoma cell line (65). Further, elevated
PLD activity, as well as expression, has been reported in a wide
variety of cancers, such as gastric, colorectal, renal, stomach,
esophagus, lung, and breast. In addition, a PLD2 gene polymor-

phism was shown to be prevalent in colorectal cancer, where it
was demonstrated that a C3T mutation resulting in Thr3 Ile
is associated with colorectal cancer. However, lipase activity
was not affected with this mutation (66). A clear correlation was
observed between PLD2 expression and the tumor size, as well
as patient survival, and it has been proposed that PLD2 might be
a prognostic indicator in colon cancers (67).

PLD also acts as a survival signal for cancers, such as renal
cancer cells where PLD regulates hypoxia-inducible factor 1a
(HIF-1a) at the translation level, in a von Hippel-Lindau (vHL)-
independent fashion, and promotes cancer cell proliferation
(68). In ovarian cancer cells, PLD is shown to be essential for
agonist-induced lysophosphatidic acid production and pro-
motes motility, growth, and proliferation (69). PLD2 enhances
the expression of anti-apoptotic proteins such as Bcl-2 and
Bcl-xL in lymphoma cells (70).

PLD signaling with other cancer regulators (Ras, PDGF,
TGF, and kinases) provides survival signals, thereby promoting
tumorigenesis (71). PLD2 is linked to the progression of EWS-
Fli sarcoma due to its cross-talk with PDGF-mediated signaling
(72). A transmodulation between PLD2 and the oncogenic
kinase RET is evident in thyroid cancer cells where PLD2
enhances STAT3 phosphorylation and transcriptional activa-
tion (73). A role for kinase-mediated regulation of PLD2 was
seen in cell proliferation (74).

Recent Developments in Cancer and PLD Research

Some important clues indicating a role for PLD in cancer
were given by the fact that PLD was involved in cell prolifera-
tion and in cell invasion. Additionally, it has been demonstrated
that active PLD enhances lymphoma cell metastasis, and inac-
tive PLD2 inhibits metastasis (75), MMP-2 expression, and gli-
oma cell invasion (76). PLD2, EGFR, and JAK3 are involved in
common pathways that maximize cancer cell invasion (77, 78).
Several PLD-specific inhibitors interfere with cancer cell inva-
sion (79). Because of this role of PLD in cell migration, che-
motaxis, and cell invasion, the role of PLD in cancer has been
significantly expanded.

The last 5– 6 years have witnessed an exponential growth in
research in PLD and cancer. PLD inhibitors have a negative
effect on tumor growth in mice (75, 80, 81). A PLD2-specific
inhibitor (ML298) and a dual PLD1/PLD2 inhibitor (ML299)
were both found to have a potential role in treating brain cancer
(82). FES and JAK3 were found to elevate PLD2 expression, and
this interaction was found to be a reason for the elevated pro-
liferation rate of MDA-MB-231 cells (30).

Elevated levels of PA are observed in colorectal tumors,
which are driven by the Wnt/�-catenin pathway. In the same
study, it has been reported that PLD1 and PLD2 are targets of
the Wnt/�-catenin pathway (83– 85). A potential therapeutic
target for osteolytic bone metastases in lung cancer patients has
been proposed (86). PLD inhibitors inhibit the invasion of
breast cancer cells in culture or their proliferation (87, 88).

Cell Invasion and Metastasis, Central to the Tumorigenic
Potency of PA

As indicated earlier, PLD2 has a direct role in cell migration,
and it is also key to cell invasion and metastasis (65, 75, 80).
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Knowledge of the particular molecular mechanisms of PLD in
cancer tissues now enable us to take advantage of the many new
biological tools, and these mechanisms are only now coming to
light. A tumorigenic role for PLD2 was established by xeno-
transplantation of human breast cancer cells into SCID mice
(80). Primary tumors from xenotransplanted mice were larger,
grew faster, and developed more lung metastases. Micro-os-
motic pumps that delivered PLD-specific small-molecule
inhibitors were implanted into xenotransplanted SCID mice,
which inhibited primary tumor growth and lung metastases.
Ablation of PLD1 in the tumor environment compromised the
neovascularization and growth of tumors (81). PLD1 deficiency
reduced tumor angiogenesis in a xenograft model. In addition,
mice lacking PLD1 or treatment with 5-fluoro-2-indolyl des-
chlorohalopemide incurred fewer lung metastases than did
wild-type mice.

Very recent studies have indicated that PLD1 specific inhib-
itors prefer (S)-configuration on the methyl carbon adjacent to
the amide linkage, whereas PLD2 selective inhibitors prefer
spiro ring fused with lactam. Based on these factors, 4-amin-
opyrazolopyrimidines (used as kinase inhibitors) have been
developed, which have IC50 values of 5 and 15 nM for PLD1 and
PLD2, respectively (89). Although targeting PLD isoforms is the
main focus for abrogating the effects of PLD on cancer growth,
using indirect inhibitors of upstream regulators of PLD is
another approach. Rebamipide, an antiulcer drug, has been
shown to inhibit Helicobacter pylori-induced PLD1 expression
and activity in gastric cancer cells (90).

Inhibition of PLD2 but not PLD1 or diacylglycerol kinase
(DGK) inhibited nuclear ERK activity in a variety of cancer
cells, causing a reduction in ERK-targeted gene expression.
This suggests that PLD2 is upstream of ERK and that targeting
PLD2 will further suppress ERK-mediated cancer cell growth
factor signaling (91). Breast cancer cells expressing an onco-
gene FAM83B have been shown to possess high PLD1 but not
PLD2 activity. In addition, PLD1 activity is an essential factor
required for the transformation mediated by Ras and FAM83B
(92).

One of the major problems in cancer treatment is resistance
of cancer cells to chemotherapy and radiation. Radiation in
combination with PLD inhibition (PLD1 and PLD2) has been
shown to be an efficient way to improve radiosensitivity of the
human breast cancer cell line, MDA-MB-231 (93). In agree-
ment with the involvement of PLD in inducing resistance of
cancer cells, it has been shown in laryngeal cancer cells that
membrane-associated estrogen receptor �36 (ER�36) activates
PKC, which in turn enhances PLD activity via estradiol (E2)
(94).

Unresponsiveness of cancer cells to upstream chemokines
makes them more aggressive. In this context, PLD1/Arf signal-
ing has been demonstrated as one of the key factors that con-
tribute to this unresponsiveness of leukemia cells (95). The acti-
vation of PLD improves chemotherapeutic sensitivity via
reducing the gene expression of multidrug resistance (96).

The involvement of PLD in inhibiting multidrug resistance
(99) is in contradiction with other studies that support the role
of PLD in making the cancer cells resistant (98). One possibility
might be that this phenomenon of PLD might be cell/tissue- or

cancer-dependent mechanism rather than a general mecha-
nism. However, it is essential to confirm the chemotherapeutic
sensitivity-promoting nature of the otherwise cancer-promot-
ing PLD2. At any rate, a more conclusive explanation awaits.
This is important because a compelling case will be needed for
use of PLD inhibitors in the treatment of cancer, even if such
information is used to determine which cancers are likely to
respond to such inhibitors in a manner that has therapeutic
utility, i.e. leading to a stratified approach.

Cancer, Autophagy, and PLD

Despite its role in promoting cancer, the mechanism behind
PLD-mediated cancer is not clearly understood, and some sub-
topics are not entirely settled yet. Take for example the role of
PLD in autophagy and cancer. On the one hand, PLD appears to
inhibit autophagy (97) because PLD/PA has been shown to acti-
vate mammalian target of rapamycin (mTOR), which is an
inhibitor of autophagy. Therefore, PLD inhibitors increase
autophagy, which in this case leads to cell death. In contrast,
another group of researchers (98) has indicated that PLD acti-
vates autophagy as inhibition of PLD reduces autophagy, lead-
ing to a decrease in cell viability, whereby autophagy might be a
protective cell survival mechanism. In addition, these cancers
might have different dependence on AKT or mTOR for regu-
lating the cellular outcome of the autophagic response in a par-
ticular cancer. This discrepancy might be a result of depen-
dence on cell or cancer type. Because the research on the effects
of PLD on autophagy is novel, it is very important to investigate
the same in various types of cancers and determine whether it is
a general phenomenon or cancer type-dependent.

Remaining Challenges

At least four challenges remain for the immediate future.
First, there is no crystal structure of mammalian PLD2 cur-
rently. To understand the mechanism underlying the multiple
roles of PLD2 as a lipase, GEF, and as a signaling protein by itself
via protein interactions, it is essential to obtain a three-dimen-
sional structure of PLD2. This will further facilitate the investi-
gation of PLD2-mediated biochemical functions and develop
novel PLD molecule-specific inhibitors or modulators that can
be developed to regulate PLD activities/protein interactions.

Second, although PLD2 activity is shown to be necessary for
cellular processes like chemotaxis and phagocytosis, deregu-
lated PLD2 levels were reported in several cancers such as
breast, colorectal, and renal cancers. All this suggests increasing
demand for the understanding of the in vivo mechanisms for
which there is an abundant amount of information regarding in
vitro and cultured cells, but it remains to be seen which of those
are applicable to in vivo cancer studies.

Third, and as studies with autophagy and ARF have amply
demonstrated, PLD might be cell/tissue- or cancer-dependent
mechanism rather than a general mechanism. Genome se-
quencing of specific cancer cells derived from patients at sev-
eral stages of the disease should clarify this, and this should
provide a better understanding of which PLD inhibitor (or
appropriate therapy) should be followed.

Fourth, it is becoming evident that several lipid enzymes are
deregulated in cancer tissues. It will probably not come as a
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surprise that the effects of PLD are not alone, but rather, they
are the result of cooperation with other lipid enzymes, particu-
larly sphingosine kinase and/or lipid phosphate phosphatases.

In conclusion, further study of the pathways and mecha-
nisms in which PLD is key to cancer will be developed from
patients representing the different stages of breast cancer (0 to
IV). In addition, more studies on PLD inhibitors will need to be
conducted in order for PLD inhibitors to be possibly used clin-
ically in cancer.
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