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ABSTRACT: Proposed in this contribution is a protocol for calculating fine-physics
(e.g., ab initio QM/MM) free-energy surfaces at a high level of accuracy locally (e.g.,
only at reactants and at the transition state for computing the activation barrier) from
targeted fine-physics sampling and extensive exploratory coarse-physics sampling. The
full free-energy surface is still computed but at a lower level of accuracy from coarse-
physics sampling. The method is analytically derived in terms of the umbrella
sampling and the free-energy perturbation methods which are combined with the
thermodynamic cycle and the targeted sampling strategy of the paradynamics
approach. The algorithm starts by computing low-accuracy fine-physics free-energy
surfaces from the coarse-physics sampling in order to identify the reaction path and to
select regions for targeted sampling. Thus, the algorithm does not rely on the coarse-
physics minimum free-energy reaction path. Next, segments of high-accuracy free-
energy surface are computed locally at selected regions from the targeted fine-physics
sampling and are positioned relative to the coarse-physics free-energy shifts. The positioning is done by averaging the free-energy
perturbations computed with multistep linear response approximation method. This method is analytically shown to provide
results of the thermodynamic integration and the free-energy interpolation methods, while being extremely simple in
implementation. Incorporating the metadynamics sampling to the algorithm is also briefly outlined. The application is
demonstrated by calculating the B3LYP//6-31G*/MM free-energy barrier for an enzymatic reaction using a semiempirical PM6/
MM reference potential. These modifications allow computing the activation free energies at a significantly reduced
computational cost but at the same level of accuracy compared to computing full potential of mean force.

■ INTRODUCTION

A valuable theoretical insight on mechanisms and rates of
chemical reactions can be obtained from ab initio QM/MM
free-energy surfaces. One of the main challenges in computing
the free-energy surfaces is high computational cost due to
multiple evaluations of electronic structures during configura-
tional sampling. To overcome this limitation, a class of
computational methods has emerged, which shares the idea
of using a coarse-physics reference potential1 (RP) to compute
the minimum free-energy reaction path, to which a correction is
added to approximate the ab initio QM/MM free-energy
surface and(or) the corresponding activation barrier. While the
computational cost can be reduced, by up to two orders2 with
one-dimensional (1D) reaction coordinate, obtaining reliable
estimates for the ab initio QM/MM activation free-energy with
these approaches still remains challenging.3 Perhaps, one of the
main reasons is approximating the fine-physics reaction path
with the coarse-physics counterpart. The coarse-physics free-
energy surface can be substantially different from the ab initio
QM/MM free-energy surface. A possible solution to this
problem is to reweight the distribution of the reaction
coordinate, using, for instance, the umbrella sampling4 or
some alternative5 approach. Reweighting in fact was an early

implementation of the method.1a,c However, it was found that
obtaining convergent free energies is problematic due to a poor
overlap between the RP and the ab initio QM/MM target
potential (TP), what leads to the regime where the umbrella
sampling becomes inefficient.4 The second reason is obtaining
convergent estimates for the free-energy perturbation (FEP),
which is often used to estimate the ab initio QM/MM free-
energy correction to the coarse-physics reaction path. A popular
solution to latter problem involves fixing the reacting fragments
in a configuration from a predetermined reaction path, which
essentially boils down to evaluation of a higher level-of-theory
solvation free energy for a given solute configuration.1f,g,6 An
alternative approach involves refinement of the RP,1b which,
however, can be a relatively time-consuming operation, since, in
general, it is not a trivial automatic procedure. The third
approach involves performing a limited sampling with the TP,1d

thus improving the FEP estimates by the multistep trans-
formation (it is important not to confuse the efficiency of a
method with the efficiency of the multistep perturbation,
involving sampling from, at least, both the fine-physics and the
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coarse-physics ensembles). Two latter strategies have been
gradually introduced and realized in the paradynamics
model2,3b which relies on refined empirical valence bond RP7

and evaluates the ab initio QM/MM correction using a two-
step linear response approximation (LRA).8

Described in this work is a protocol which is based on the
dual sampling (from both ensembles) and on the thermody-
namic cycle of the paradynamics approach but is novel
conceptually and algorithmically. The main idea of this method
is to exactly compute the ab initio QM/MM free-energy surface
locally, without relying on (and even computing) the reference
free-energy surface. In other words, the coarse-physics solution
is used as the initial guess for the fine-physics solution. Here
these solutions are not the actual free-energy surfaces but the
free-energy penalties of introducing the bias at reactants and at
the transition state to the coarse-physics potential and to the
fine-physics potential. Once the free-energy penalty of biasing
the ab initio QM/MM is known, the umbrella sampling is used
to provide a reliable estimate of the free-energy surface locally
using the biased potential. While computing potential of mean
force (PMF) with the umbrella sampling method, one has to
calculate these penalties with the fine-physics potential in a
multistep transformation. Here instead, it is computed using a
thermodynamic cycle with the coarse-physics potential by
introducing the bias to the coarse-physics potential and then
switching the force law to the fine-physics potential. Another
modification is that the actual fine-physic reaction path is
located using a low-accuracy fine-physics free-energy surface
obtained from the coarse-physics sampling.
The paper is organized as follows: in Methods, the

techniques used in this work for computing the free change
of altering the potential are reviewed: the exponential
configurational average,9 the linear response approximation,
and the thermodynamic integration. Furthermore, the equiv-
alence of the LRA method to the TDI method for considered
applications is demonstrated analytically and relation to the
free-energy interpolation is shown. Next, the umbrella sampling
method and the weighted-histogram analysis method10

(WHAM) are reviewed in the section dedicated to computing
PMF. Finally, these methods are applied to derive the main
equations of the presented approach, which is also shown to
yield other formulations of the RP-based strategies as private
cases while approximating the umbrella sampling equation. The
algorithm for solving is formulated as an iterative strategy for
improving accuracy of the target free-energy surface at selected
regions to the level achieved in computing PMF. In Examples,
the application of the considered method is provided with a
comparison to the PMF results.

■ METHODS

Computing Free-Energy Change of Altering the
Potential. FEP: Free-Energy Perturbation. The free-energy
change of moving from one potential to another (altering the
force law) is calculated using the FEP method.9,11 It involves
evaluating the exponential average of the energy gap between
two potentials. For instance, the free-energy of moving from a
reference state described with a coarse-physics RP to the state
defined by a fine-physics TP, EREF → ETGT, is

∫
∫

β
β β

β

Δ →

= −
− Δ −

−
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Here β−1 = kT (Boltzmann constant multiplied by absolute
temperature); ΔE(x) = ETGT − EREF is the energy gap; x is the
coordinate vector; and N is the number of particles
The configurational average can be computed over time or

over ensemble using molecular dynamics or Monte Carlo
simulations, respectively:

β βΔ → = − ⟨ − Δ ⟩−F E E E( ) ln exp( ) EREF TGT
1

REF (2)

Here and further on ⟨...⟩Ei indicates that sampling is performed
with the potential Ei, while obtaining the Helmholtz free energy
for the canonical (NVT) ensemble. This formulation can be
easily generalized to the Gibbs free energy (NPT) and other
thermodynamic ensembles.5,12

The free-energy change can be computed for the reverse
process by taking the configurational average with the TP:

β βΔ → = − ⟨ − Δ ⟩−F E E E( ) ln exp( ) ETGT REF
1

TGT (3)

Ideally (in the limit of infinite sampling or infinitesimal
perturbation):

Δ → = −Δ →F E E F E E( ) ( )REF TGT TGT REF (4)

However, in practice the forward FEP and the backward FEP
of eqs 2 and 3 can show a hysteresis, and the corresponding
average is a way to obtain a more reliable estimate.13

LRA: Linear Response Approximation. The perturbation in
eqs 2 or 3 can be expanded in the power series and truncated14

to the linear free-energy expansion. While such an expansion
can be done for both eqs 2 and 3, what would lead to the linear
response approximation (LRA), the computational power of
LRA was revealed from inspecting free-energy functions of the
energy gap:8

Δ = ⟨Δ ⟩ + ⟨Δ ⟩F E E
1
2

( )E ELRA REF TGT (5)

Multistep Free-Energy Transformation. It was demonstra-
ted in the context of the various free-energy calculations8,15 and
for the RP approach in particular3b that a more reliable estimate
of the corresponding free-energy change is obtained from
averaging on both end-point potentials (RP and TP). Similar
conclusion was made in derivation of the acceptance ratio
method by Bennett, who also noted that this can be seen from
the Gibbs−Bogolyubov inequality:16

⟨Δ ⟩ ≤ Δ ≤ ⟨Δ ⟩E F EE ETGT REF (6)

To further improve the free-energy convergence, the
perturbation is computed in a multistep manner by creating a
series of n intermediate mapping potentials between the end
points potentials EREF and ETGT:

λ λ= − +E E E(1 )m m mREF TGT (7)

This is achieved by changing the perturbation parameter λm
from 0 to 1 with an increment of δλ. The multistep
implementation of eq 7 involves sequentially applying the
FEP scheme for adjacent simulation windows, so that the
average of the forward FEP and the backward FEP is given by
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TDI: Thermodynamic Integration. Alternatively, the same
free-energy change can also be estimated by the thermody-
namic integration (TDI) approach, which, however, requires
analytical partial derivative of the free energy with respect to
some perturbation parameter λ.
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Here, the integral in eq 9 is computed numerically using a
trapezoidal numerical integration. Substitution of the corre-
sponding derivative of eq 7 with respect to the perturbation
parameter to eq 9 yields

∑ λΔ = ⟨Δ ⟩ + ⟨Δ ⟩ Δ
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2

m m 1
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Multistep LRA, its Equivalence to TDI, and Relation to
Free-Energy Interpolation. Finally, the multistep FEP of eq 7
can be computed with the multistep LRA approach,3b which is
just the generalization of the LRA to the multistep trans-
formation:
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Note that Em+1 − Em = Δλ·ΔE, and therefore, the multistep
LRA and the multistep TDI eqs 10 and 11 are, in fact, identical.
In the limit of a big n, all the approaches give the same result;

however, to minimize the computational cost, a small value of n
is desired. The questions of statistical efficiency of analyzing
data in free-energy calculations with aforementioned and the
acceptance-ratio based schemes (as well as its relation with
aforementioned methods) are discussed in great detail
elsewhere.16,17 In ref 16, it is mathematically shown that in
the case of overlapping distribution (histograms) of the energy
gap the acceptance ratio method (which is not covered here) is
statistically very efficient, while in the case of a poor overlap
between two energy gap distributions, the free-energy
interpolation (the curve-fitting method) has an advantage. In
Appendix 1, the relation of the LRA scheme to the curve-fitting
method is analytically demonstrated. Thus, this relation
provides theoretical support for using the LRA to compute
the free-energy change while moving from RP to TP (when one
expects a poor overlap of distributions) and additionally
provides a possible recipe for improving the LRA estimate. The
choice of the LRA and multistep LRA techniques was already
validated by comparing to the average FEP with the multistep
transformation3b in the study which also showed that the most
important part in computing the free-energy perturbation is to
include sampling from both ensembles.
Computing High-Accuracy Free-Energy Surface. Map-

ping Free-Energy Surface by Sampling with Biased Potential.
In order to efficiently sample the elevated regions of the
reaction free-energy surface, the potential is modified by

introducing a harmonic bias, centered at a particular value of
reaction coordinate:

ξ ξ= + −E E K( )m mQM
0 2

(12)

Here ξ designates a chosen reaction coordinate; ξm
0 is the center

of the harmonic bias, and the original potential is EQM. In order
to sample along the whole range of the reaction coordinate
values, a set of harmonic biases is created by changing the
mapping (coupling) parameter λm incrementally from 0 to 1:

ξ λ ξ λ ξ= − +(1 )m m m
0

LB
0

UB
0

(13)

Here ξLB
0 and ξUB

0 correspond to the values of the selected ξ at
the lower and the upper boundaries. Since the convergence of
FEP depends on the energy gap between the two potentials,
implementation of eq 7 might give a faster convergence when
there is a large energy gap between the two potentials.13 But
the multistep approach of eq 13 provides more control in
sampling the free-energy surface along the RC.
When reaction coordinate is represented by a two-dimen-

sional vector, with ξ1 and ξ2 components, the corresponding
mapping potentials include two harmonic biases, Em =
Em(ξ1,ξ2):

ξ ξ ξ ξ= + − + −E E K K( ) ( )m QM 1 1 1
0 2

2 2 2
0 2

(14)

The choice of the RC is problem-dependent, common
examples include the energy gap RC (for empirical valence
bond7 and similar potentials18) and nuclear RC (for molecular-
orbital-based potentials).

Free-Energy Penalty of Introducing Bias to Potential. The
reference state for the FEP methods is defined as the original
potential, while the target state can be defined as the biased
potential. This formulation is used for the mapping potentials
Em given by eq 12 in eqs 8, 10, and 11 to evaluate the relevant
free-energy changes of introducing the bias. While applying
FEP and LRA approaches to estimate the free-energy
perturbation is similar to the previously considered case, the
TDI approach requires calculation of a new partial derivative,
since the perturbation parameter now is given by eq 13. The
corresponding derivative for eq 9 (with the fixed force
constant) is given by

λ
ξ ξ ξ ξ∂

∂
= − −F

K2 ( )( )0
LB
0

UB
0

(15)

By expanding the LRA eq 11 using eq 12 and eq 13 one arrives
at

λ ξ ξ ξ ξ ξ ξ− = Δ − − + −+ +E E K( )( )m m m m1 LB
0

UB
0 0

1
0

(16)

In Appendix 2, it is shown that with the perturbation
parameter given by eq 13, the multistep LRA formulation is
equivalent to the result of numerical thermodynamic
integration using a trapezoidal rule with the derivative given
by eq 15.
As was already mentioned, the multistep formulation of eq

13 provides an effective way of improving the efficiency of
sampling along the reaction coordinate, which is crucial in PMF
calculations. The efficiency of sampling can be monitored by
creating a distribution function (histograms). For the best
sampling efficiency, one should try to achieve a uniform
distribution, which can be done by adjusting the force
constants. However, increasing the force constant will require
increasing the number of simulation windows to ensure the
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even sampling distribution (histogram overlap) along the whole
range of the reaction coordinate. Special care should be taken
when the initial system configuration is far from the minimum
on the mapping potential, since it might create strong biasing
forces. One way to solve this is to gradually increase the force
constant while monitoring, in parallel, the deviation of the
reaction coordinate from the center of bias.
Umbrella Sampling Method. The ultimate goal in the free-

energy simulation, however, is to obtain the probability
distribution (and the corresponding PMF) with unbiased
potentials. Therefore, it is necessary to recover the correspond-
ing Boltzmann probability distribution from the sampling
obtained with mapping potentials. The target PMF obtained
with a TP is given by

ξ β ρ ξ= − ⟨ ⟩ +−F ( ) ln ( ) constTGT
1

TGT (17)

where the probability distribution function of the reaction
coordinate is

∫
∫
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In order to improve the sampling efficiency, a bias is
introduced to the original potential (e.g., see eqs 12 and 14).
The unbiased probability distribution of eq 18 is related to the
configurational averages computed with the modified (biased)
target potential given by eqs 12 or 14, which is further called
Tm, through the umbrella sampling formula:4
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Rewriting this equation in terms of the free-energy19 changes
gives two terms:

ξ

β δ ξ ξ β

= Δ →
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m

m T
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The first right-hand side (rhs) term (the denominator of eq
19) is the free-energy penalty for introducing a bias (cf. eq 2),
which can be calculated by any FEP method with a multistep
scheme. The second rhs term is the numerator of eq 19, and it
arises from the probability distribution of the reaction
coordinate.
Combining the result of several mapping potentials when

calculating the PMF can be done by overlaying points20

generated with all mapping potentials using eq 20. Also, the
free-energy functions can be obtained by calculating the weight-
average among different mapping potentials, which is called the
weighted PMF (w-PMF):21

∑ξ
ξ

ξ
ξ̅ =

∑
F

N
N
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( )
( )i

i
i

frames frames (21)

Within the umbrella sampling formulation of eq 19, the bias
to the original potentials can also be represented by Gaussians,
EVB mapping potential, etc.3b Once the free-energy levels,
corresponding to denominators of eq 19, are known, one can
immediately evaluate multiple distributions [e.g., two-dimen-
sional (2D) projections from 1D mapping].

Weighted Histograms Method. Another tool, employed to
combine results of simulations is weighted histograms analysis
method, WHAM:10a,22
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i ,CONS (23)

WHAM equations provide both the PMF and the free-energy
penalties of introducing the bias.

Reducing Computational Cost of Computing Free-
Energy Surfaces. Low-Accuracy PMF from Reweighting.
The methodology described in the previous section is a
conventional way of calculating the PMF. However, mapping
the reaction free-energy surface with a fine-physics TP is
extremely computationally expensive, particularly in a many
dimensional reaction coordinate space, since one has to
perform a long configurational sampling with multiple mapping
potentials. While using the coarse-physics sampling significantly
reduces the computational cost, the main question becomes
how to use this sampling to obtain reliable estimates for the
fine-physics model.
A straightforward implementation of the RP approach

involves performing sampling exclusively with the RP, followed
by applying a reweighting strategy such as umbrella sampling1a

or WHAM-based reweighting strategy.5

From sampling performed with a biased reference potential
given by eq 12 (which is further called Rm), the fine-physics
distributions are recovered with eq 19, which becomes

δ ξ ξ

δ ξ ξ β
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=
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With the use of the free-energy representation eq 20, the
denominator of eq 24 can be represented as two free-energy
terms:

Δ → = Δ →

+ Δ →

F E R F E E

F E R

( ) ( )

( )
m

m

TGT TGT REF

REF (25)

But ΔF(ETGT → EREF) does not depend on the bias ξm
0 and

the dependence on the reaction coordinate is integrated out, it
is a constant free-energy shift, which can be subtracted from the
free-energy shifts for all mapping potentials Rm, whereas the
second term is accurately evaluated from sampling with the RP
using the multistep FEP.
Thus, evaluation of the numerator in this approach is the

most problematic step due to a poor overlap in the
configurational space (the regime in which the umbrella
sampling is inefficient). In other words, configurations
generated with the RP are, mostly, unlikely configurations for
the TP. The corresponding sampling is not representative for
the TP, and the PMF convergence is slow, thus providing a
low-accuracy estimate.

Low-Accuracy PMF from FEP. An alternative to computing
the low-accuracy target free-energy surface with the reweighting
approach of eq 24 is based on computing the vertical free-
energy perturbation from the high-accuracy coarse-physics
PMF. The free-energy perturbation is calculated with the RP
averages only, that is using eq 1 or its linear expansion. This
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method of computing the perturbation is very similar to a
number of other reference-potential based strategies.1h,23 The
reaction coordinate distribution is evaluated with the RP only.
Mathematically it is equivalent to the approximation:

δ ξ ξ β

δ ξ ξ β

⟨ ′ − − − ⟩

≈ ⟨ ′ − − − ⟩

E T

E R

( )exp[ ( )]

( )exp[ ( )]

m T

m R

TGT

REF

m

m (26)

Note that ETGT − Tm = ETGT − Tm = −K(ξ − ξm
0 )2. Then the

denominator of eq 19 which is the free-energy of introducing
the bias to the target potential is computed via the
thermodynamic cycle ΔF(ETGT → Tm) = ΔF(ETGT → EREF)
+ ΔF(EREF → Rm) + ΔF(Rm → Tm), where the first two terms
are discussed in the previous section and the last term is
computed using the linear expansion, thus

δ ξ ξ

δ ξ ξ β

β β
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− Δ → − ⟨Δ ⟩
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E

m R

m R

REF
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m

m

TGT

(27)

While the convergence of eq 27 is limited by convergence of
the denominator, the accuracy of evaluating the activation free-
energy is also limited by the assumption of eq 26, which with
1D representation of the reaction coordinate is additionally
equivalent to the assumption of the same reaction paths.
Paradynamics. In certain cases, the assumption of similarity

of reaction paths can be justified, but it is hard to quantify the
error: it might work in some cases and fail in others. The issue
is addressed using a parametric or functional fitting of the RP to
the TP, what was proposed and implemented in the
paradynamics approach for empirical valence bond method2

(for semiempirical methods, such refinement can be adapted
from other works24). However, performing parametric refine-
ment of the RP is a nontrivial task and requires a good
knowledge of the potential. An alternative strategy3b involves
functional refinement of the RP by adding the difference
between the RP and the TP along the reaction coordinate
approximated by Gaussian functions. In recent works,1h,23a an
implicit refinement strategy is used by choosing a suitable
semiempirical RP, what requires a detailed knowledge on the
parameterization of the potential.
The paradynamics approach assumes that after refinement

the reaction paths on the reference and on the target free-
energy surfaces are very close, and the error is limited by the
denominator in eq 27. To address this issue, the perturbation is
computed using the two-step LRA eq 5. The LRA approach is
applied to compute the free-energy perturbation while
switching from the RP biased at reactants and the TS, ξm

0 ≈
ξREF
≠ , to the TP3b with the same bias, assuming that ξTGT

≠ ≈
ξREF
≠ . Then by virtue of eq 26, the free-energy perturbation
reproduces the difference between two free-energy functions:
ΔF(Rm → Tm) = FTGT (ξTGT

≠ ) − FREF (ξREF
≠ ).

In the case when the transition paths (transition states) are
dissimilar, ξREF

≠ ≈ ξTGT
≠ , reliably computing the activation free-

energy [even if the free-energy perturbation ΔF(Rm → Tm)
converges] would generally represent significant challenges,
since it might not provide the necessary estimate of moving to
the fine-physics path.
In this work, another strategy for improving reliability and

accuracy of the free-energy estimates, alternative to refining the
reference potential, is proposed. It is based on computing the
low-accuracy target free-energy surface using eqs 24 and 27

(both schemes are realized simultaneously). These surfaces are
used only for the purposes of locating the reactants and the
transition state for the subsequent limited sampling with the
TP. Once the reaction path on the target free-energy surface is
located, the fine-physics targeted sampling is performed at
those regions. This is the main difference between the
presented approach and other reference potential-based
approaches, which compute the correction to the reference
PMF, thus relying on relevance of the coarse-physics reaction
path.
It is essential that the coarse-physics sampling is not

restricted along the narrow coarse-physics reaction path (in
order to cover the fine-physics path). This can be generally
achieved by calculating the free-energy surface for the reaction
coordinate representation, which dimensionality is capable of
capturing both paths. One can see the problem of using a 1D
reaction coordinate in movies provided as additional external
files (https://www.dropbox.com/sh/53a4coext3i3ywq/
0f9jxzTruI): the coarse-physics sampling is confined to the
coarse-physics path and the fine-physics path being poorly
sampled. This difference can be even more extreme when the
corresponding reaction paths are more associative and
dissociative. In that case, using a 2D representation of the
reaction coordinate (and mapping the free-energy surface in
two dimensions using eq 14 instead of eq 12) is rather
necessary and would result in a better sampling along the fine-
physics path and a more reliable estimate of the low-accuracy
free-energy surface but at a greater computational cost.

High-Accuracy Local PMF Regions from Targeted
Sampling. In the proposed approach, the accuracy in
evaluating the numerator of eq 19 ⟨δ(ξ′ − ξ)exp[− β(ETGT

− Tm)]⟩Tm
is not reduced compared to PMF calculations by

taking advantage of the limited fine-physics sampling targeted
at the selected regions of the low-accuracy free-energy surface
(computing the low-accuracy free-energy target surface allows
identifying the local PMF regions for the targeted sampling).
However, computing the reaction coordinate distribution from
this sampling provides the full accuracy PMF regions only
locally.
To compute the reaction barrier accurately in PMF

calculations, the denominator in eq 19 is computed using a
multistep FEP procedure (in other words, using many
overlapping histograms in WHAM). This perturbation is
associated with the free-energy penalty of introducing the
bias to the original TP (see Figure 1). Alternatively, this penalty
is computed with the thermodynamic cycle identical to the
paradynamics model:

Δ → = Δ →

+ Δ → + Δ →

F E T F E E

F E R F R T

( ) ( )

( ) ( )
m

m m m

TGT TGT REF

REF (28)

The first rhs term of eq 28 does not depend on the reaction
coordinate and is just a constant shift (same at the reactants
and at the TS), the second term is accurately calculated while
mapping the free-energy surface with the RP. While ξm

0 ≈ ξTGT
≠

can be different from the bias, close to the ξREF
≠ , the

corresponding free-energy penalties ΔF(EREF → Rm) are
computed and well-converged for all biases from mapping
with the RP. The last term can be calculated by any FEP
methods presented above, but the actual estimate is taken from
LRA (which as shown in Appendix 1 is closely related to the
free-energy interpolation approach which provides a more
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reliable estimate when two distributions of the energy gap
poorly overlap16):

Δ → = ⟨Δ ⟩ + ⟨Δ ⟩F R T E E( )
1
2

[ ]m m R Tm m (29)

Note, however, that if the biases are different in Rm and Tm
(e.g., different force constants), the equation should be

Δ → = ⟨ − ⟩ + ⟨ − ⟩F R T T R T R( )
1
2

[ ]m m m m R m m Tm m (30)

In practice, better estimates of the TS and RS regions of the
target free-energy surface are obtained with several mapping
potentials favoring sampling of the respective regions (see
Figure 1), those estimates can be averaged using the procedure
described below for even more accurate estimates. The overall
efficiency of this approach therefore is determined by
convergence of eq 29. For a RP retaining adequate physical
description of changes in electron density of reacting fragments,
the corresponding structural changes in the system upon
moving to the TP biased at the same region of the free-energy
surface are smaller than changes caused by moving the system
on the TP from the reactants to the transition state. In other
words, the perturbation of eq 30 should converge in less
simulation windows than the perturbation associated with
changing the reaction coordinate according to eq 13.
Furthermore, the method computational cost relative to the

conventional PMF approaches will increase as the reaction
coordinate dimensionality increases.

Improving Accuracy of Positioning Local PMF Regions. To
further improve accuracy of positioning the local PMF regions,
the multistep transformation of eq 7 is used3b until the left-
hand side of eq 29 convergence. In practice, the multistep LRA
eq 11 is used since it involves only computing the energy gap.
The difference between three-steps and two-steps LRA
estimates are added to the rhs of eq 28. Once ΔF(Rm → Tm)
is converged by virtue of eqs 28 and 20 the estimate of the
activation free-energy barrier is of the same accuracy as
computing eq 20 with the PMF approach.
The main steps of the proposed algorithm are summarized in

Figure 2.

All methods, reviewed above, are implemented in the PD-M
program. It is currently available from the author upon request.

■ EXAMPLES
To demonstrate application of this method, a computational
study is performed on an enzymatic reaction, which is shown in
Figure 3. The system consists of an enzyme, haloalkane
dehalogenase, with a substrate, 1,2-dichloroethane. The
reaction scheme, which describes nucleophilic substitution,
the SN2 mechanism, is given in Figure 4. The QM region
includes atoms shown in Figure 4, where one of the hydrogen is
a link-atom. A semiempirical PM6/MM25 potential was taken

Figure 1. Calculating the activation free-energy by positioning local
PMF regions relative to the coarse-physics free-energy shifts instead of
computing full PMF from fine-physics sampling. PMF calculations
involve sampling with a series of biased fine-physics potentials T1..TM..
along the reaction coordinate (cyan circles). These mapping points are
sequentially connected using the multistep free-energy perturbation
ΔF(T1 → TM), what is depicted by cyan arrows. An alternative
approach involves computing PMF locally (blue dots) using fewer
fine-physics potentials (blue stars). The free-energy difference ΔF(T1
→ TM) is instead computed from the thermodynamic cycle, shown by
blue and red arrows. Red arrows show connecting a sequence of biased
coarse-physics potentials R1..RM.. using the multistep free-energy
perturbation ΔF(R1 → RM). Blue arrows show the free-energy
perturbation of switching from the coarse-physics potential to the fine-
physics potential (both having the same bias) at reactants and at the
transition state, ΔF(Ri → Ti). This allows for the positioning of two
local PMF regions (blue dots) and to determine the activation free-
energy (shown with a black arrow). Figure 2. Iterative accuracy improvement of the fine-physics free-

energy surface computed from coarse-physics sampling. The first step
involves computing a low-accuracy free-energy surface from the
coarse-physics sampling by reweighting and by free-energy perturba-
tion approaches (red upper block). All ensemble averages are
computed with the coarse-physics reference potential, <···>R. Once
the surface is constructed, the regions of interest (reactants and the
transition state) are identified. In the next step, a limited fine-physics
sampling is performed at those regions. This allows computing the
ensemble averages with fine-physics target potential <···>T, which are
used to calculate a high-accuracy free-energy surface at those regions
(blue medium block). After the second step, the accuracy becomes
limited by positioning the local regions. In the third step, a limited
sampling is performed in the same regions with a linear combination
of the two potentials. With the use of the generated data, the free-
energy perturbation is further improved by including the correspond-
ing average for the intermediate ensemble.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500109m | J. Chem. Theory Comput. 2014, 10, 2987−30012992



as a reference potential and a hybrid density functional theory
B3LYP26//6-31G*/MM as a target potential. To demonstrate
that the proposed approach is capable of delivering the
activation free-energy estimate of the same accuracy as the full
PMF scheme, the target PMF was computed. Next, the
activation free-energy was computed using the developed
algorithm, outlined in Figure 2.
Calculating the Activation Free-Energy from PMF. The

reaction free-energy surface was defined with a 1D reaction
coordinate, represented as a difference between the breaking
(C−Cl) and the forming (C−O) bond lengths: ξ = d(C − Cl)
− d(C − O). The sampling along the reaction coordinate was
performed with a harmonically based PM6/MM potential. This
was also repeated with a hybrid DFT B3LYP//6-31G*/MM
potential. Totally 64 equidistant mapping potential were used
with biases centered at −1.125 ≤ ξm

0 ≤ 2.025, the force constant
value was K = 125 kcal/(mol Å2). The electronic embedding
QM/MM27 protocol implemented in MOLARIS-XG28 with a
file-based interface to MOPAC201229 (for PM6) and to
Gaussian0930 (for B3LYP). The MM part was represented with
a SCAAS31 sphere of solvent (protein and water) described
with ENZYMIX32 force-field of 22 Å radius. The ionizable
protein residues were represented by their neutral states. All
free energies were computed using an in house PD-M program,
which simultaneously process data using all free-energy
perturbation and PMF methods reviewed in corresponding
Methods. The free-energy changes reported below were
computed using the corresponding multistep LRA method
described above. PMFs were computed using the umbrella
sampling approach of eq 19 combined with the multistep LRA
method and compared with the WHAM estimates.

Calculating the Activation Free-Energy from Coarse-
Physics Sampling. Identifying Target Regions from Low-
Accuracy PMF. While carrying out configurational sampling
with the RP, the energy gap with the TP (B3LYP//6-31G*/
MM) was computed for 13000 configurations each 2 fs. The
number of configurations for which the energy gap is evaluated
can be significantly reduced in real simulations (by at least ten
times), and this number was taken to obtain the methods’ best
possible estimate. From the generated data the low-accuracy
target free-energy surfaces were computed using eqs 24 and 27
in combination with the w-PMF, eq 21. The resulting low-
accuracy target PMFs are shown in Figure 5. From these
surfaces, the region of interest (reactants, transition state, and
products) were located (shown with gray-shaded areas).

Computing High-Accuracy PMF Locally. At the identified
regions, a limited sampling using the target potential with the
same biases (see Table 1) was performed for 10000 2 fs MD
steps; simultaneously the energy gap was evaluated. The
reaction coordinate distribution for the obtained sampling is
shown at the bottom in Figure 6. The data was used to
compute the local PMFs (using 3−5 mapping potentials). The
local PMFs are shown at the top in Figure 6. Then the
corresponding free-energy perturbations were computed at
each bias, LRA estimates and the corresponding averaged
energy gaps are reported in Table 1. Also the difference
between the linear expansion and the (2-step) LRA are given in
the last column.
These estimates added to the corresponding free-energy

penalties computed with the reference potential are also shown
in Figure 7. By comparing them to the one-step LRA estimates,
one can see that the two-step LRA estimate improved the
accuracy of eq 28. However, the error with respect to the exact
solution varies among different LRA estimates, therefore, the
average estimate is computed as described below.

Figure 3. Active center of haloalkane dehalogenase. The protein
backbone is shown in green; the catalytic residue, aspartate, and the
substrate are shown as sticks. The dotted red line depicts the direction
of the nucleophilic attack on the substrate, 1, 2-dichloroethane.

Figure 4. Reaction scheme for the studied reaction.

Figure 5. Selecting regions for targeted fine-physics sampling from
low-accuracy B3LYP/MM free-energy surfaces computed from
sampling with PM6/MM reference potential for the benchmark
enzymatic reaction. These surfaces are used for detecting reactants and
the transition state (shown by shaded gray areas). The first surface
(shown in green) is computed by reweighting the reaction coordinate
distribution from PM6/MM sampling using the umbrella sampling
method. Another low-accuracy surface (shown in black) is calculated
by adding the linear expansion of the free-energy perturbation to the
PM6/MM high-accuracy PMF.
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From local (targeted) sampling with n biased target
potentials at each identified region, the algorithm computes
PMF locally and connects these windows using the multistep
LRA eq 11 ΔF(Tm → Tm+i). On the other hand LRA provides
an estimate of ΔF(Ri → Ti) at each ξm+i

0 . The LRA and local
free-energy shifts are however related:

Δ → + Δ →

= Δ → + Δ →
+ + +

+

F R R F R T

F R T F T T

( ) ( )

( ) ( )
m m i m i m i

m m m m i

LRA

LRA (31)

Table 1. Averages of the Energy Gap Computed from Biased
B3LYP (T) Sampling and from Biased PM6 (R) Sampling,
the Corresponding Free-Energy Perturbation Computed
with LRA and the Difference between Two-Step LRA and
One-Step LRAa

ξm
0 ⟨ΔE⟩T ⟨ΔE⟩R ΔFLRA(Rm → Tm) ΔFLRA − ⟨ΔE⟩Rb

Reactants
−1.125 20.25 33.11 26.68 0.22
−1.075 19.31 33.64 26.47 −0.51
−1.025 19.30 32.36 25.83 0.12
−0.975 19.85 32.66 26.26 0.25
−0.925 19.86 30.37 25.11 1.39

Transition State
0.025 17.71 34.02 25.86 −1.51
0.075 17.31 32.35 24.83 −0.87
0.125 17.19 33.46 25.32 −1.49
0.175 16.61 32.80 24.70 −1.44
0.225 16.87 30.13 23.50 0.02

Products
1.925 4.84 15.93 10.38 1.11
1.975 6.95 17.28 12.11 1.49
2.025 6.58 17.44 12.01 1.22

aThe bias is in Angstroms, energies are in kcal/mol. bΔFLRA − ⟨ΔE⟩R
− Δ − ⟨Δ ⟩F E RLRA

Figure 6. Improving the accuracy of probability distributions of the reaction coordinate at selected regions of the reaction path by performing local
sampling with B3LYP/MM potential for the benchmark system. The upper plot shows local regions of the free-energy surface computed from the
targeted sampling: green and magenta triangles show free-energy penalties of incrementally moving along the reaction coordinate relative to the first
(leftmost) bias at each region. They are generated with multistep linear response approximation (M-LRA) and with WHAM, respectively. Red and
blue lines are the local PMF computed using the weight-averaged umbrella sampling approach (red) and WHAM (blue), respectively. The lower plot
shows biased distributions of the reaction coordinate for the data points used in calculations.

Figure 7. Improving accuracy of the free-energy shifts associated with
changing the center of bias ξm

0 while moving along the reaction
coordinate. All changes are computed relative to the leftmost (first)
bias. Red stars correspond to free energies computed from sampling
with biased PM6/MM reference potential (R) using a multistep free-
energy perturbation. The cyan circles represent the exact searched
solution and correspond to free energies computed from sampling
with a biased B3LYP/MM target potential (T) using a multistep free-
energy perturbation. Green stars correspond to the PM6/MM free-
energy shifts to which the linear expansion of the free-energy
perturbation to B3LYP/MM potential is added (at corresponding
biases). This perturbation is computed as PM6 ensemble average of
the energy gap between B3LYP and PM6, ΔE. These shifts are used in
constructing the low-accuracy B3LYP free-energy surface. After
performing a limited fine-physics sampling with B3LYP target
potential (T), a more-accuracte estimate for these shifts is computed
(purple ▲) using two-step linear response approximation. These
estimates are used for positioning the local PMF regions (see the main
text). Next, the estimates are improved further with a three-step
perturbation (blue ▲), which involves computing the average energy
gap with intermediate potentials M = 0.5R + 0.5T.
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Therefore, one can compute the average free-energy
perturbation over n simulation windows at each local region:

∑Δ → = Δ →

+ Δ → + Δ →
=

+

+ + +

F R T
n

F R R

F R T F T T

( )
1

[ ( )

( ) ( )]

m m
i

n

m m i

LRA m i m i m i m

LRA
1

(32)

and use this estimate to position the local PMF region. This will
further improve the accuracy of eq 29. Computed values are
reported in Table 2.

Estimates computed with eq 32 were used to position the
transition state and products regions relative to the reactants, as
shown in Figure 8.
Improving Accuracy of Positioning High-Accuracy PMF

Segments. In the next step, a limited sampling at the same
regions (and using the same biases as in the previous part) was
performed with a linear combination of the reference and of the
target potential, Mm = 0.5Rm + 0.5Tm. From eq 11, it follows
that to increase the accuracy of the free-energy perturbation,
one has to compute the energy gap between the target and the
reference potential. Thus, this step constitutes a three-step
perturbation approach (Δλ = 0.5), which is estimated using

Δ = ⟨Δ ⟩ + ⟨Δ ⟩

+ ⟨Δ ⟩ + ⟨Δ ⟩

−F E E

E E

1
4

( )

1
4

( )

R M

M T

3 LRA m m

m m (33)

Now by estimating the average difference between two-step
LRA and three-step LRA, and their average over the simulation
potentials at corresponding local regions, a higher accuracy
estimate is obtained (see Table 3). The 3-step LRA correction
for positioning the transition state PMF region (relative to the
reactants) is only 0.19 kcal/mol. The updated positioning is
shown in Figure 8, from which one can see that the positioned
local PMFs essentially coincide with the full PMF.

■ ANALYSIS
While the barrier for the forward reaction in Figure 8 is in
excellent agreement with the estimate drawn from the
conventional PMF, the reverse reaction barrier is about 3

Table 2. Positioning Local PMF Regions Using Averaged
LRA Estimates by Eq 32a

ξm
0

ΔF(T1
LOC →

Tm)
ΔF(R1

LOC →
Rm)

ΔFLRA(Rm →
Tm) Δ →F R T( )m mLRA

Reactants
−1.125 0.00 0.00 26.68 26.17 (0.00)b

−1.075 −0.01 0.05 26.54
−1.025 0.00 0.13 25.96
−0.975 0.06 0.23 26.43
−0.925 0.15 0.27 25.23

Transition State
0.025 0.00 0.00 25.86 25.11 (−1.06)b

0.075 0.29 0.45 24.99
0.125 0.47 0.75 25.60
0.175 0.52 0.93 25.11
0.225 0.44 0.90 23.97

Products
1.925 0.00 0.00 10.38 11.66 (−14.51)b

1.975 −0.01 0.16 12.29
2.025 0.04 0.33 12.30

aThe first column (in Angstroms) is the bias center. The second and
third columns are free energies of changing the bias, relative to the
smallest (the most negative) bias in the group. The third column
shows LRA estimates. All energies are given in kcal/mol. bRelative to
the reactants region.

Figure 8. Increasing accuracy of the B3LYP activation free-energy
barrier computed by positioning the local PMF regions from the
targeted sampling and its comparison to the full PMF. Full B3LYP/
MM PMF (dashed gray line) is computed from 64 molecular
dynamics B3LYP trajectories. Black line is a low-accuracy PMF
computed from 64 PM6 trajectories using the averaged energy gap
with the B3LYP potential. It is used to identify regions for targeted
sampling with B3LYP. Local B3LYP PMFs are computed from this
targeted sampling, which includes 5 trajectories at reactants, 5
trajectories at the transition state, and 3 trajectories at products
(blue line), but the relative positions of these regions is not known.
They are found by computing the free-energy perturbations of
switching from PM6 reference potential (R) to B3LYP target potential
(T), shown by black arrows. The local PMF regions, positioned using
a two-step linear response approximation, are shown in red. Three-
step free-energy perturbation slightly further improves the positioning,
and the activation free-energy estimate (shown in green). The three-
step estimate involves additional targeted sampling at the same regions
with 0.5R + 0.5T potential.

Table 3. Positioning Local PMF Regions using Averaged 3-
Step LRA Estimate of eq 33a

ξm
0 ⟨ΔE⟩M

ΔF3−LRA (Rm →
Tm)

ΔF3−LRA −
ΔFLRAb ΔΔF3LRA

Reactants
−1.125 24.20 25.44 −0.33 −0.15 (0.00)c

−1.075 23.88 25.18 −0.39
−1.025 23.79 24.81 −0.11
−0.975 23.34 24.80 −0.55
−0.925 24.56 24.83 0.63

Transition State
0.025 23.61 24.74 −0.22 0.04 (0.19)c

0.075 23.19 24.01 0.09
0.125 23.34 24.33 −0.08
0.175 22.98 23.84 0.05
0.225 22.45 22.97 0.38

Products
1.925 10.66 10.52 1.04 0.18 (0.33)c

1.975 9.68 10.90 −0.31
2.025 9.78 10.90 −0.21

aAll energies are given in kilocalories/mol. bΔF3−LRA − ΔFLRA −
Δ − Δ−F F3 LRA LRA

cRelative to the reactants region.
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kcal/mol higher than the PMF estimate. This is believed to be
the result of an insufficient amount of simulation windows in
PMF calculations for the high reverse barrier (big spacing in eq
13). To understand the methodological advantage of position-
ing locally computed PMF regions over computing the fine-
physics correction to the coarse-physics reaction path, it is
instructive to inspect movies provided as additional external
files. File movie1.mov shows two high-accuracy free-energy
surfaces, PM6 and B3LYP, and the minimum free-energy
reaction paths computed from 1D PMF and projected on a 2D
representation of the reaction coordinate. One can easily note
the difference in the corresponding reaction paths. The other
two files, movie2.mov and movie3.mov, show low-accuracy
B3LYP free-energy surfaces computed from PM6 sampling
using the umbrella sampling reweighting of eq 24 and one-step
LRA correction of eq 27, correspondingly, for 2D representa-
tion of the reaction coordinate. From comparison of these
surfaces with the high-accuracy B3LYP surface, one can see that
the minimum free-energy reaction path on the low-accuracy
surfaces is not the one on the high-accuracy surface. File
movie4.mov shows high-accuracy local regions of B3LYP
computed from limited B3LYP sampling and positioned
using 2-step free-energy perturbation. The reaction paths are
identical.
While the goal of this work is to provide a proof of the

proposed concept, and not to study dehalogenase, it is
important to make sure the calculations are consistent. This
system was studied earlier with other reference potential
approaches,1d,3a and the authors of those works came to
different conclusions on the applicability (due to the accuracy
limitation) of the approach. The B3LYP//6-31G*/MM free-
energy barrier calculated for the catalyzed reaction in protein
with full PMF and with the proposed approach are 8.8 and 8.7
kcal/mol, which are drastically lower than the experimental
estimate of 15.3 kcal/mol.1d However, it is important to analyze
the source of the error. The applied computational protocol
was earlier verified by calculating the reference reaction in
water, and the corresponding catalytic effect with PM3/MM,
PM6/MM, and B3LYP//6-31G*/MM models.33 The PMF
protocol employed here fairly closely reproduced the
experimental catalytic effect of 11.7 kcal/mol using PM6/MM
activation free energies computed from PMF in the reference
reaction in water (19.0 kcal/mol + the solvent cage effect34)
and in the protein (10 kcal/mol). Both potentials (PM6/MM
and B3LYP//6-31G*) are known to underestimate the
activation free-energy barrier in the gas phase, with B3LYP//
6-31G* reportedly underestimating by as much as 8 kcal/mol
compared to the MP2//6-311G** results.35 Additional source
of error can be in the way charges for QM atoms are derived;
for instance, for a similar type of reaction in water between
methyl chloride and chloride, using Mulliken charges with
PM3/MM potential leads to about 3 kcal/mol lower barrier
than using the charges fitted to the electrostatic potential.3b

While reproducing the absolute energetics for the reaction
barriers is challenging, the relative catalytic effect leads to the
error cancellation and, therefore, is considered to be a reliable
tool for checking the consistency of calculations for enzymatic
reactions.34

While analyzing the computational cost of elevating the PMF
regions compared to building the full PMF, one should note
that for the second and third steps of the algorithm, sampling
can be performed with a single mapping potential at each
region (even though it would decrease reliability of the

estimates). Thus, in the case of the 1D reaction coordinate, the
second iteration (for two-step LRA) requires propagating a
minimum of two (three if the products region is included)
simulations with the TP, the third (and subsequent) iterations
add one extra simulation for each region. Considering that the
full PMF for the 1D case required more than 60 simulations,
local PMF elevated with the paradynamics’ LRA approach
requires 60/3, 60/6, and 60/12 times less fine-physics sampling
simulations (trajectories) for the two-, three-, and five-
multistep FEP correction, respectively. When the mapping of
the reaction free-energy surface is performed with a two-
dimensional reaction coordinate, the number of simulation
windows with the conventional PMF approach increases
quadratically, and the local PMF with positioning using the
multistep LRA approach becomes almost 2 orders of magnitude
less expensive than the full PMF in terms of the number of
required trajectories. Thus, the proposed scheme will be
particularly computationally efficient for calculating the free-
energy surfaces with 2D representation of the reaction
coordinate).

■ CONCLUDING DISCUSSION

The focus of the current contribution is to improve accuracy of
calculating the fine-physics activation free-energy from coarse-
physics sampling, up to the level achieved in computing PMF
from the fine-physics sampling. The proposed solution is to
compute and to position the fine-physics local PMFs using the
fine-physics sampling targeted to selected regions identified on
the low-accuracy free energy surface computed from extensive
exploratory coarse-physics sampling.
Limited sampling with the target potentials has been used

earlier in the paradynamics model2,3b and with other LRA-
based models1d for improving accuracy of the free-energy
perturbation. Here the sampling is targeted more precisely
using the low-accuracy fine-physics free-energy surface and is
also used for computing the distribution of the reaction
coordinate. Further modifications and improvements intro-
duced in this contribution include the following. (1) Instead of
computing the free-energy perturbation correction to the
coarse-physics minimum free-energy reaction path, the
proposed method computes the fine-physics free-energy surface
locally, and positions these segments relative to the free-energy
shifts computed with the coarse-physics potential. (2) The
segments of the fine-physics reaction path are found from a
low-accuracy fine-physics free-energy surface. This surface is
obtained from sampling with the coarse-physics potential using
the umbrella sampling reweighting of eq 24 and the free-energy
perturbation approximation of eq 27. (3) No explicit
parametric or functional refinement of the reference potential
(along the reaction path) to the target potential is performed.
(4) The distribution of the reaction coordinate is computed
with the target potential from the local targeted sampling,
which is analogous to computing PMF locally. (5) Locally
computed PMF regions are positioned using the averaged LRA
eq 32 to minimize the error, which limits the accuracy of the
approach. (6) The accuracy of positioning of the local PMF
regions is further improved by computing three-step free-
energy perturbation. (Which also can be done over several
simulation windows locally, see eq 33).
These advances allow for reaching accuracy of the full PMF,

what is demonstrated analytically from the umbrella sampling
equation and is showed numerically on a benchmark reaction
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by computing the B3LYP PMF locally (using the sampling with
the PM6 potential).
These advances can be viewed as a recipe for computing the

fine-physics solution from the initial conditions generated with
the coarse-physics model. The searched solution in fact is not
the free-energy surface, but the free-energy penalty of
introducing a bias to the target potential. Unlike in the PMF
calculations, where this penalty is computed in a multistep
transformation of eq 13, this approach computes the penalty
through the free-energy perturbation by switching the reference
potential to the target potential at the same bias location. The
convergence of the perturbation will be reached in fewer
multistep transformations than in PMF mapping along the
reaction coordinate if the corresponding structural changes are
less extensive. This might require a more careful choice of the
reaction coordinate. A particularly common and illustrative case
in chemistry is the associative versus concerted versus
dissociative pathways. The constraint on the 1D representation
of the reaction coordinate (similar to one used for the
numerical example) can satisfy both the associative and the
dissociative pathways. Thus, if the reference potential and the
target potentials favor two different pathways, the perturbation
of eq 30 would involve extensive structural changes while
switching from the RP to the target potential at the same bias
location. In the case of the 2D representation, this problem will
not be encountered. The same argument applies to the
structural changes caused by different coordination numbers, if
the metal center is included, or by structural deformations by
mechanical stimuli unaccounted for in the reaction coordinate
and not fixed by the bias.
Successful and efficient use of sampling with the RP in

calculating the activation free-energy involves overcoming three
key challenges: (1) choosing a good RP, (2) choosing an
efficient strategy for sampling rare events, and (3) choosing a
good reaction coordinate and an efficient scheme for relevant
free-energy calculations.
Choosing a Good RP. The choice of the RP is, perhaps,

the most important factor, which determines the overall
method computational cost and therefore its efficiency. First,
the proximity of the RP to the TP, or their overlap, determine
how representative (efficient) sampling with the RP for the
fine-physics minimum free-energy reaction path, that is how
often the most probable configurations of the TP are generated
while sampling with the RP. This, in turn, influences the
decision for the third problem, since convergence of the free-
energy change while moving to the TP greatly depends on its
overlap with the RP. Second, the difference in computational
cost between the TP and the RP is what essentially determines
efficiency of the RP approach. Thus, the RP should be orders of
magnitude less expensive to compute, and yet it should capture
enough physics to roughly approximate the TP. There is no
single universal recipe on how to choose the RP. The choice is
system dependent and is affected both by the simulation system
and by the TP. The choice of semiempirical potential as a RP is
motivated by their abundance, popularity of the free-energy
based studies of chemical reactions in the condensed phase
with semiempirical potentials,3a,23,36 and with recently emerged
SCC-DFTB potentials.1h,37

While the choice of the RP is problem-dependent, it should
be noted that the method described in this work is problem
independent, still the strategies considered above can be
applied for two models of the same dimensionality. Trivially,
the number of degrees of freedom for a higher level of theory

model is higher, thus the number of degrees of freedom should
be normalized to the coarser model. Here the number of
degrees of freedom is reduced at each molecular dynamics steps
to 3N for the expense of the electronic degrees of freedom
which are condensed in the Born−Oppenheimer approxima-
tion to the atomic degrees of freedom via energy gradients
acting on nuclei in a particular configuration. Another example
of reduction of dimensionality is the centroid38 molecular
dynamics approach which reduces dimensionality of the ring
polymer to its central distribution.39 An alternative approach to
the normalization is the centroid-based quantized classical
particle approach,40 which increases dimensionality of a
classical molecular dynamics trajectory to the ring-polymer
type approach in order to describe the nuclear quantum
tunneling effect. At least in principle, similar approaches can be
extended to normalize dimensionality of atomistic simulations
to supra-atomistic coarse grained models,41 what allows for
application of the methods presented in the paper to a wide
spectrum of problems in addition to chemical reactions.
This approach can also be used to improve accuracy of the

activation free-energy by moving from a lower level of theory
ab initio QM (e.g., HF, DFT) to a higher level of theory QM
[e.g., CCS(D), hybrid DFT] what is routinely done in the
energy minimization studies. Furthermore, it can be used to
increase the QM region in QM/MM, up to moving to a full ab
initio QM description.
While the presented method removes the need of having the

same minimum free-energy reaction path, and therefore of
careful refinement, the reference potential still must be
physically appropriate for modeling a particular chemical
reaction.

Choosing an Efficient Strategy for Sampling Rare
Events. The choice of the sampling strategy to construct the
free-energy surface is identical to choosing the rare event
sampling method. The proposed approach is currently
formulated for a common strategy of mapping the free-energy
surface with a grid of harmonically biased potentials and
combining data from multiple ensembles using free-energy
perturbation and umbrella sampling approaches. One thing that
needs to be considered in this aspect is the force constant for
the harmonic bias. In general, the problem can be that the force
constant used to keep the reference potential might not be
optimal for the target potential. This issue can be resolved by
adjusting the force constant on the fly to make sure that the
deviation from the bias center is small. This would improve the
umbrella sampling efficiency by reducing the gap between the
mapping and the target potentials. Then the free-energy
penalties would almost exactly reproduce the PMF. This idea in
fact is used in the metadynamics model,42 where the free-
energy surface is not computed from the probability
distribution but is approximated by the cumulative bias. The
proposed algorithm can be generalized to include other
sampling schemes, for instance the metadynamics approach.
The basic strategy is outlined in Appendix 3.

Choosing a Good Reaction Coordinate and an
Efficient Scheme for Relevant Free-Energy Calculations.
Generally, the choice of the reaction coordinate should ensure
that the perturbation depends approximately equally on all
degrees of freedom, that is, that other degrees of freedom (on
which the perturbation depends strongly) are included in the
reaction coordinate, which is kept fixed by the same bias in eq
30. This condition also ensures good convergence of the free-
energy interpolation16 and of LRA (see Appendix 1).
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The presented algorithm for computing the activation free-
energy is formulated in order to construct a high-accuracy fine-
physics free-energy surface locally at selected regions of the
reaction path. It is derived and is shown to reproduce the full
PMF computed with fine-physics sampling. These regions are
positioned using the multistep LRA approach, which is chosen
based on the analysis in Appendices 1 and 2.
The presented algorithm is conceptually similar to another

multistage method43 of computing the target free-energy
surface (and improving its accuracy), which computes a low-
accuracy (high-dimensional) free-energy surface with the TP
using the metadynamics42 approach and then refines the surface
to a high-accuracy (low-dimensional) free-energy surface using
the metadynamics potential as a bias in the umbrella sampling.
In this approach, however, both the metadynamics and the
umbrella sampling steps require sampling with the target (fine-
physics) potential, and the improvement of accuracy is achieved
by reducing the dimensionality and by increasing the sampling
accuracy (and computing the reaction coordinate distribution)
with the umbrella sampling. A similar idea was also proposed in
the paradynamics-based model3b in the sense that both the
reference and the target low-accuracy free-energy surfaces were
computed using the energy minimization approach and fitted
with Gaussians. The difference was additionally used to refine
the original reference potential, which was used in the umbrella
sampling method (thus avoiding sampling with the target
potential), while computing a higher-accuracy free-energy
surface estimate.
The ideology of this work is to use a coarse-physics sampling

to construct a low-accuracy fine-physics free-energy surface,
which is used for targeting the fine-physics sampling,
computing the fine-physics free-energy surface regions locally
and positioning them relative to the coarse-physics free-energy
shifts. The use of the coarse-physics reference potential
sampling is thus the key to reducing the computational cost
of calculating the fine-physics activation barrier or the reaction
path (in many dimensions). Obtaining accurate fine-physics
activation free energies is achieved by, first, identifying the
actual fine-physics minimum free-energy path on a low-
accuracy fine-physics free-energy surface (which is computed
from the coarse-physics sampling) and by, second, refining
accuracy of selected regions of the reaction path (rather than by
correcting the coarse-physics path) using targeted fine-physics
sampling at those regions.

■ APPENDIX 1. CONNECTION BETWEEN LRA AND
FREE-ENERGY INTERPOLATION

The umbrella sampling equation written for the probability
distribution of the energy gap between the target potential and
the reference potential is

δ
δ β

β
⟨ Δ − ⟩ =

⟨ Δ − − Δ ⟩
⟨ − Δ ⟩

E x
E x E

E
( )

( )exp( )

exp( )E
E

E
TGT

REF

REF (A1.1)

where ΔE = ETGT(r) − EREF(r) and x = ETGT − EREF is a
particular value of the energy gap.
Since ⟨f(x)δ(x − x0)⟩ = f(x0)⟨δ(x − x0)⟩, eq A1.1 becomes

δ β δ
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which is eq 19 in ref 16. Taking the log:
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where pi(x) = ⟨δ(ΔE − x)⟩Ei.
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Ref 16 suggests that the free-energy change can be
determined graphically from the vertical distance between
two functions:

β
= − +y x p x

x
( )

1
ln ( )

2REF REF (A1.5)

and

β
= − −y x p x

x
( )

1
ln ( )

2TGT TGT (A1.6)

Further it suggested fitting ln p with a polynomial, which can
be extrapolated to the region between two distributions.
Another approach is to fit the distributions with Gaussians
instead p(x) = exp[−α(x − μ)2], where μi = ⟨ΔE⟩i. Then ln p
would be two parabolas:

α
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The vertical distance between these two parabolas can be
estimated most accurately at the centers of two distributions:
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The average of eqs A1.9 and A1.10 yields the best estimate of
the free-energy:
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The first right-hand side term is the LRA equation and the
last two terms are the correction for the unequal curvature of
parabolas.
If the width of two distributions is similar (αREF ≈ αTGT)

then eq A1.11 becomes the LRA equation. If the width is not
similar, then the LRA error gets larger with the separation
between two energy gap distributions.
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■ APPENDIX 2. RELATIONSHIP BETWEEN
MULTISTEP LRA AND THERMODYNAMIC
INTEGRATION

Below the equivalence between two multistep FEP techniques
is shown using the mapping potential and its analytical
derivative:

ξ ξ= + −E E K( )m mQM
0 2

(A2.1)
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The free-energy change computed with the multistep LRA

ξ ξ= + −E E K( )m mQM
0 2

(A2.5)
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0 2
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The only difference is in the bias location:
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but from eqs A2.7 and A2.8:
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Substitution of eq A2.11 into eq A2.10 yields

λ ξ ξ ξ ξ ξ ξ

λ ξ ξ ξ ξ ξ

⟨ − ⟩

= ⟨ Δ − − + − ⟩

= Δ − ⟨ ⟩ − +

+

+

+

E E

K

K

( )( )

( )[2 ( )]

m m E

m m E

E m m

1

LB
0

UB
0

1
0 0

LB
0

UB
0

1
0 0

m

m

m (A2.12)

Similar is true for the average over the ensemble described
with the potential A2.6:
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On the other hand, computing the average free-energy
derivatives given by eq A2.2:
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Substitution of eqs A2.12 and A2.13 into A2.4 gives the same
result as substitution of eqs A2.14 and A2.15 into eq A2.3.

■ APPENDIX 3. ON ADAPTING THE METADYNAMICS
SAMPLING

The idea of this paper on using the coarse-physics potential for
computing the low-level of accuracy fine-physics free-energy
surface can be extended to other rare events sampling strategies
(e.g., to the metadynamics approach).42 Metadynamics can be
initially used to compute the potential wMTD, which flattens the
reference free-energy surface. The negative of this potential
provides a good approximation for the reference free-energy
surface:

∑ ∑ α ξ ξ− = Γ = − −w A exp( [ ] )
m i

im im mMTD REF
0 2

(A3.1)

Next it can be used for sampling with the flat reference
potential, EREF − ΓREF, from which the energy gap with the
target potential is evaluated, and by using eqs 24 and 27 with
Rm = ΓREF, the low-quality target free-energy surface is
computed. The surface can be fitted with Gaussians3b

∑ ∑ α ξ ξΓ = − −A exp( [ ] )
m i

im im mTGT
0 2

(A3.2)

and used as bias Tm = ΓTGT in eq 19, with the umbrella
sampling approach as suggested in ref 43 (and also localizing
sampling with the target potential at selected regions of the
free-energy surface).
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Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500109m | J. Chem. Theory Comput. 2014, 10, 2987−30013000



Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09,
revision D.01; Gaussian, Inc: Wallingford, CT, 2009.
(31) King, G.; Warshel, A. A surface constrained all-atom solvent
model for effective simulations of polar solutions. J. Chem. Phys. 1989,
91 (6), 3647.
(32) Lee, F. S.; Chu, Z. T.; Warshel, A. Microscopic and
semimicroscopic calculations of electrostatic energies in proteins by
the POLARIS and ENZYMIX programs. J. Comput. Chem. 1993, 14,
161.
(33) Plotnikov, N. V. Advancing ab initio QM/MM free-energy
calculations: Refining, validating and quantifying the reference
potential approach; University of Southern California: Los Angeles,
CA, 2013.
(34) Warshel, A. Computer Modeling of Chemical Reactions in Enzymes
and Solutions; John Wiley & Sons: New York, 1991.
(35) Rosta, E.; Kamerlin, S. C. L.; Warshel, A. On the interpretation
of the observed linear free-energy relationship in phosphate hydrolysis:
A thorough computational study of phosphate diester hydrolysis in
solution. Biochemistry 2008, 47 (12), 3725.
(36) (a) García-Meseguer, R.; Martí, S.; Ruiz-Pernía, J. J.; Moliner,
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