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ABSTRACT: An extension of the recently developed PRIMO coarse-grained force
field to membrane environments, PRIMO-M, is described. The membrane
environment is modeled with the heterogeneous dielectric generalized Born
(HDGB) methodology that simply replaces the standard generalized Born model in
PRIMO without further parametrization. The resulting model was validated by
comparing amino acid insertion free energy profiles and application in molecular
dynamics simulations of membrane proteins and membrane-interacting peptides.
Membrane proteins with 148−661 amino acids show stable root-mean-squared-
deviations (RMSD) between 2 and 4 Å for most systems. Transmembrane helical
peptides maintain helical shape and exhibit tilt angles in good agreement with
experimental or other simulation data. The association of two glycophorin A (GpA)
helices was simulated using replica exchange molecular dynamics simulations yielding the correct dimer structure with a crossing
angle in agreement with previous studies. Finally, conformational sampling of the influenza fusion peptide also generates
structures in agreement with previous studies. Overall, these findings suggest that PRIMO-M can be used to study membrane
bound peptides and proteins and validates the transferable nature of the PRIMO coarse-grained force field.

1. INTRODUCTION

Membrane proteins play significant roles in many cellular
processes, such as intercellular communications, molecular
transports, and signal transductions.1,2 About 8000 membrane
proteins are encoded in the human genome (∼25% of all
genes), and they are also the targets of about 60% of the
currently available drugs.3,4 Hence, understanding their
structures, dynamics, and functions are of the utmost
importance in the biological and pharmacological sciences.5

However, a detailed study of membrane proteins is
challenging.6−8 Because of the complexity of lipid bilayers, it
has proved difficult to map details of protein−membrane
interactions using experimental techniques.9 Molecular dynam-
ics simulation can serve as a complementary tool to illustrate
the structural and dynamic details of proteins at the atomistic
level.9−12 All-atom simulations with explicit lipid and solvent
are the most accurate, but they are often limited to simulation
lengths that are short compared to the slow relaxation kinetics
of lipid bilayers, and hence convergence of such simulations is
often a concern. To overcome such limitations, a common
strategy involves the use of either coarse-graining or implicit
solvent techniques.
In coarse-grained (CG) models, the idea is to reduce the

degree of freedom by grouping several atoms together into
single sites to reduce the degrees of freedom of the system. A
wide range of CG models for biomolecules and lipids have been

developed in the past decade to study protein folding,
aggregation, and design;13−18 bilayer structure and dynam-
ics;19−26 and protein interactions with lipid bilayers.27−31 The
most popular and widely used coarse-grained model for
membrane-bound proteins and peptides is MARTINI,21,27,32

which has been employed to a wide range of applications. The
MARTINI model is based on a four-to-one mapping; i.e., on
average four heavy atoms plus associated hydrogens are
represented by a single CG site that interacts through an
empirical interaction potential. The MARTINI model
represents both lipids and the surrounding solvent in an
explicit, coarse-grained fashion. This provides some degree of
transferability between membrane and water environments, but
the model is overall too coarse to accurately reflect amino-acid
specific secondary structure propensities and requires knowl-
edge-based secondary structure constraints. Other available CG
models suffer from similar limitations.22,30,33−38 Following the
mapping scheme of MARTINI, Dal Peraro and co-workers39−41

have developed a coarse-grained model for proteins in which
they have introduced an explicit dipole defined by three
consecutive Cα beads along with the treatment of nonradial
dipole−dipole interactions in dynamics. This model can
maintain stable secondary structure elements of unspecific
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proteins and sample conformational transitions. In order to
improve the ability to accurately sample peptide conformations
in the context of membranes, some groups have explored
multiscale strategies where the peptides are represented at
higher levels of resolution,31 for example with united-atom
protein models interacting with MARTINI CG lipids and
solvent.42

Implicit membrane models focus on eliminating the solvent/
lipid degrees of freedom entirely. Because of the slow relaxation
of lipids in response to peptide/protein dynamics, this
approach can lead to significantly accelerated sampling. In the
past, implicit membrane models have been used primarily in
conjunction with atomistic representations of membrane-
interacting peptides or proteins.43−46 In some cases, implicit
models have also been combined with CG models, but typically
they are used to model only the aqueous solvent while
maintaining an explicit representation of the lipid bilayer.47−49

Here, we are presenting a new model where a CG
representation of the peptides is integrated with a fully implicit
membrane model. Such a model combines the computational
speedup of CG models with the kinetic acceleration in the
absence of explicit lipids. The CG model is our recently
introduced PRIMO force field that performs similar to all-atom
force fields in aqueous solvent but with a third to a fourth of the
number of particles.50,51 PRIMO is designed as a transferable
model that does not require system-specific parametrization or
constraints. It relies on a generalized Born (GB) term to
describe solvation effects in aqueous solvent. This makes it
possible to switch to membrane environments by simply
replacing the standard GB term with an implicit membrane GB
model. Here, we are describing the result of combining PRIMO
with the heterogeneous dielectric generalized Born (HDGB)
model52 (PRIMO-M) to describe the energetics and dynamics
of membrane-bound peptides and proteins.
In the next section, the PRIMO force field is described briefly

along with the heterogeneous dielectric generalized Born
implicit membrane model and the simulation methods
employed in this study, followed by a presentation and
discussion of results.

2. MODEL

2.1. PRIMO Force Field. Since the PRIMO force field and
its parameters are described in detail in our previous paper,50,51

we limit ourselves to a brief introduction. The CG interaction
sites in PRIMO were chosen to allow an analytical
reconstruction of all-atom model based on molecular bonding
geometries to near-atomistic accuracies.50,53 In order to
preserve the backbone hydrogen bonding interactions, the
backbone in PRIMO is represented with N, Cα, and a
combined carbonyl site (CO) placed at the geometric center
of the carbonyl C and O atoms. This is particularly crucial for
an accurate description of the secondary structures of a protein.
Nonglycine side chains (SC) are represented with one to five
CG sites.
The PRIMO energy function follows an all-atom-like

physically motivated force field with additional terms for a
combined generalized Born/atomic solvation parameter (GB/
ASP) implicit solvent, an explicit angle- and distance-based
hydrogen bonding interaction potential, and spline-based
bonded potentials to maintain correct bond geometries at the
coarse-grained level. The PRIMO force field is expressed as in
eq 1.
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Bonded interactions between PRIMO sites correspond to
both real covalent bonds and virtual bonds. Standard harmonic
potentials are employed to model the real covalent bonds, such
as 1−2 (bond) and 1−3 (angle) interactions. Otherwise,
distance-dependent spline-interpolated potentials are used to
reproduce nonharmonic functions and multiple minima. The
bonded interactions between virtual sites and the primary CG
sites are described by standard harmonic potentials. It should
be noted here that the virtual atoms do not participate in
nonbonded interactions, and they are reconstructed on the fly
to improve local molecular geometries. In addition to the one-
dimensional 1−4 terms, PRIMO also uses two-dimensional
spline-interpolated CMAP potentials54 to couple the sampling
of CO−N−CA−CO and N−CA−CO−N torsions, and thereby
the sampling of φ/ψ backbone torsions is controlled in PRIMO
as in the atomistic CHARMM force field. Nonbonded terms in
PRIMO consist of Lennard-Jones, electrostatic interactions, and
an explicit hydrogen bonding term, which is the only
knowledge-based term in the PRIMO force field. The force
field is mainly parametrized based on direct comparison with
all-atom simulations in a bottom-up fashion as described in our
previous paper.51

2.2. HDGB Model. The HDGB model is based on the
GBMV method, and as the details of the HDGB model have
been described elsewhere,52,55 we limit ourselves to a brief
summary of the relevant features here. The solvation free
energy of a solute in any solvent environment can be
decomposed into the electrostatic contribution ΔGsolv

GB and
the nonpolar contribution ΔGsolv

np.

Δ = Δ + ΔG G Gsolv solv
GB

solv
np

(2)
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In the HDGB model, the following modified expression for the
polar component of the solvation free energy is used to
introduce a heterogeneous dielectric environment
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where qi are charges of CG beads, n is the total number of CG
particles, rij are distances between particles i and j, αi are the
effective Born radii, and F is a dimensionless quantity set to be
8. The effective dielectric constant (ε) for each atom varies as a
function of the membrane insertion depth (distance from the
membrane center), along the membrane normal. The ε profile
was generated initially by solving the Poisson equation for a
monovalent spherical probe ion that is moved across the
heterogeneous multicontinuum dielectric environments52 and
subsequently optimized by Sayadi and Feig56 to match free
energies of insertion for amino acid side chain analogues from
experiment and explicit membrane simulations.
For heterogeneous environments, such as biomembranes, the

nonpolar component of the solvation free energy is especially
important as it allows molecules to remain in the interior of
biological membranes (i.e., low dielectric regions) by
compensating the polar solvation free energy. In the HDGB
formalism, the nonpolar component of the solvation free
energy is described by the solvent accessible surface area model
along with variable surface tensions:

∑ γΔ =
=

G S z A( )
i

n

i i inonpolar
1 (4)

where Ai is the solvent accessible surface area of the ith atom, zi
is the distance of atoms i from the membrane center along the
membrane normal, γi is the coefficient of surface tension for
different atom types, and S(zi) is a switching function that is
used to reflect the change of the surface tension along the
membrane normal. The switching function S(zi) was
determined initially by matching the free energy profile of
insertion of O2 into lipid bilayers obtained from explicit lipid
simulations and later optimized along with the ε profile to
match insertion free energies for amino acid side chain
analogues.52,56

2.3. PRIMO-M. In the membrane version of PRIMO,
PRIMO-M, the standard GB term is simply replaced by the
HDGB model, and the SASA term is scaled in a z-dependent
fashion according to eq 4. No further changes were made in the
parameters of the original PRIMO model and, as in the original
PRIMO model, the radii used in the solvation terms are the
PRIMO Lennard-Jones radii.

2.4. Simulation Methods and Test Systems. PRIMO-M
was applied to a number of test cases to evaluate its
performance and applicability. We studied the stability of 13
membrane proteins (see Table 1) by carrying out MD
simulations in the membrane environment. Furthermore, we
carried out simulations of WALP peptides that have been
widely studied both experimentally and theoretically and two
other helical peptides (see Table 2). We paid particular
attention to the tilt angle of these peptides in the membrane
bilayer. We also studied the dimerization of glycophorin A
(GpA), and finally, we examined the conformational sampling
of the membrane-bound influenza fusion peptide (IFP) using
replica exchange molecular dynamics simulations.

Table 1. List of Membrane Proteins Simulated Using PRIMO-M Methodology

no protein name PDB ID code resolution (Å) TM sec. struct. residues

1 bacteriorhodopsin 1QHJ BRD7 1.9 21 228
2 V-ATPase 2BL2 VATP 2.1 4 156
3 rhomboid intramembrane protease 4H1D GlpG 2.9 6 173
4 lactose permease 2CFQ LacY 3.0 12 417
5 nucleobase-cation-symport 1 transporter 2JLN Mhp1 2.9 12 463
6 Na+/H+ antiporter 1ZCD NhaA 3.5 14 376
7 human aquaporin 5 3D9S AQP5 2.0 8 245
8 adhesion/invasin 1K24 opcA 2.0 10 249
9 β1-adrenergic receptor GPCR 2VT4 adr 2.7 7 276
10 outer membrane protease 1I78 ompT 2.6 10 297
11 outer membrane protein X 1QJ8 ompX 1.9 8 148
12 outer membrane transporter 1KMO FecA 2.0 22 661
13 intramembrane protease 2IC8 GlpG 2.1 6 182

Table 2. Overview of PRIMO-REMD Simulations of Helical Peptides

system sequence time (ns) replicas temp. range (K) time for analysis (ns)

WALP23 GWW(LA)8LWWA 50 8 300−400 20−50
WALP19 GWW(LA)6LWWA 50 8 300−400 20−50
GWALP23 GGALW(LA)6LWLAGA 50 8 300−400 20−50
KWALP23 GKALW(LA)6LWLAKA 50 8 300−400 20−50
AChR M2 GSEKMSTAISVLLAQAVFLLLTSQR 50 8 300−400 20−50
NMDA M2 GSNGDALTLSAMWFSWGVLLNSGIGE 50 8 300−400 20−50
IFP GLFGAIAGFIENGWEGMIDG 100 8 300−500 20−100
GpA EITLIIFGVMAGVIGTILLISYGIR 400 12 270−500 200−400
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In this study, periodic dielectric and nonpolar profiles were
used as described previously.57 This ensures a finite peptide
concentration along the membrane normal. Furthermore, if a
peptide dissociates and diffuses away from the membrane
interface, because of the periodic nature of the membrane, it
eventually interacts with the membrane. The thickness of the
membrane was chosen to be 25 Å, measured as the distance
between the center of the membrane (z = 0) and where ε = 80
is reached.
All the proteins and transmembrane peptides were capped

with an acetyl group on the C-terminus and an N-methyl amide
group on the N-terminus. MD simulations with PRIMO-M
were carried out with the latest version of the heterogeneous
dielectric generalized Born (HDGB) implicit membrane model
to reflect the membrane environment52 using GB parameters
described in detail previously.55,56 We downloaded the initial
structures from the Protein Data Bank and then energy-
minimized to release the side-chain strains before beginning the
simulations. The minimized structures were then placed so that
its principal axis coincided with the bilayer normal (z-axis) and
its center of the mass was at the origin of the membrane bilayer.
The Langevin thermostat with a friction coefficient of 10 ps−1

was employed to maintain a temperature of 300 K. The time
step for leapfrog Verlet integrator was set to 4 fs. Nonbonded
interactions were cut off at 18 Å, with smooth switching to zero
starting at 16 Å. The nonbonded interaction list was maintained
up to 20 Å. A similar protocol was followed for simulations with
PRIMO in an implicit aqueous environment.51 It should be
noted here that it was previously found that the simulation of
the bacteriorhodopsin monomer (PDB code 1QHJ) with the
HDGB model and a short cutoff of only 16 Å led to serious
artifacts.55 In that case, the protein adopted a horizontal
orientation during the simulation from its vertical trans-
membrane orientation. However, simulations of the bacterio-
rhodopsin monomer with larger cutoff distances of 18 and 38 Å
did not lead to rotation of the monomer. Hence, we used a
cutoff value of 18 Å for the nonbonded interactions in PRIMO-
M simulations which did not result in any apparent artifacts
(see below).
The equilibration protocol for all of the PRIMO-M/MD

simulations generally consisted of initial minimization followed
by stepwise heating to 300 K. The heating phase for each of the
13 membrane proteins consisted of six stages, and in each
equilibration stage, the temperature of the peptide or proteins
was increased by 50 K, and 40 ps MD simulations were carried
out. During the heating phase, a harmonic constraint was
employed to keep the Cα heavy atoms fixed. However,
production simulations were carried out completely unre-
strained.
To increase conformational space sampling efficiency, we

have carried out replica exchange molecular dynamics (REMD)
simulations of peptides listed in Table 2. For all but the GpA
dimer, eight replicas were employed that were distributed over
a temperature range of 300 to 400 K or 300 to 500 K, spaced
exponentially. In the case of the GpA dimer, 12 replicas were
used spanning a temperature range from 270 to 500 K.
Langevin dynamics with a friction coefficient of 10.0 ps−1 was
used to maintain the target temperatures and ensure random
drifts of the peptide. In all cases, exchange moves between
adjacent replicas were attempted every 5 ps, leading to an
acceptance ratio for successful exchanges of 60−65%. Each
replica was simulated for 50 to 400 ns for different peptides,

and only the final 30 to 200 ns data were used for analysis for
different peptides (see Table 2).
PRIMO-M simulations were carried out using version c36a4

of the CHARMM macromolecular modeling package58 where
the PRIMO model is implemented. The MMTSB (Multiscale
Modeling Tools for Structural Biology) Tool Set59 in
combination with CHARMM was employed for all analyses.

3. RESULTS AND DISCUSSION

The PRIMO-M model was implemented as described above
and applied to a number of membrane-related test cases as
detailed in the following.

3.1. Solvation Free Energy Profiles for Membrane
Insertion of Amino Acids. The performance of the PRIMO/
HDGB model was first tested by comparing amino acid
insertion free energy profiles for an ideal alanine-based
transmembrane (TM) helix of the type A49XA50 with the
corresponding all-atom CHARMM/HDGB profiles. As dis-
cussed previously,52,56,60 CHARMM/HDGB is in good agree-
ment with the explicit lipid results for most residues except for
the charged amino acids where membrane deformations play a
dominant role. Therefore, we focus the comparison here on
reproducing the profiles obtained from CHARMM/HDGB
with PRIMO-M.
In the past, amino acid side chain analogues were used in

explicit simulations for evaluating transfer free energies.
However, contributions of the peptide bonds should be
included in the hydrophobicity scale for the obvious reason
that whole residues, not just side chains, partition into
membranes.61 This means that the scales must be whole-
residue scales. The advantage of choosing a TM helix instead of
side chain analogues is that such an approach allows us not only
to account for the effect of the protein environment but also to
include the contribution of peptide bonds, which have been
shown to influence the transfer free energy.61 Another reason
for adopting such an approach is the parametrization strategy
used in optimizing the PRIMO force field. PRIMO was
parametrized against the CHARMM force field by using a
variety of short peptides, rather than amino acid side chain
analogue molecules where the use of a CG model becomes
problematic.51

The HDGB dielectric and nonpolar profiles are homoge-
neous in the x−y plane and affect only the sampling in the z
direction. Taking this into consideration, a decoy set consisting
of a transmembrane helix of type A49XA50 spanning the entire
membrane is constructed for each residue. We have employed
100 configurations for each residue. The free energy of
insertion (ΔGinsertion) was first calculated for all the structures
with the CHARMM force field with default HDGB parameters.
Later, this step was repeated for PRIMO-M. The free energy of
a residue (X) for a given insertion depth is calculated by
subtracting the free energies ΔGinsertion (A49XA50) from
ΔGinsertion (A100) of an equivalent A100 at the same insertion
depth.

Δ = Δ − ΔG G G(X) (A XA ) (A )Z Z Z
insertion insertion 49 50 insertion 100

i i i

(5)

The free energy profiles were generated by placing the center of
mass of the initial structure at the center of the membrane, and
then translating it along the bilayer normal until membrane
surface (0, 0, 30) in steps of 0.5 Å. The resulting profiles are
shown in Figure 1 for both the CHARMM/HDGB and
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PRIMO-M methods. The profiles obtained with PRIMO-M are
generally quite similar to the results obtained with the
CHARMM/HDGB model. There are only three residues
where PRIMO-M deviates significantly from CHARMM/
HDGB. For phenylalanine (Phe), the free energy decreases
by 1 kcal/mol upon membrane insertion with PRIMO-M vs a
slight increase with CHARMM/HDGB. For histidine (HSD/
HSE), PRIMO-M shows ∼3 kcal/mol less of a penalty to reside
at the membrane center compared to the all-atom CHARMM/
HDGB model, and for glycine (GLY), PRIMO-M is less
favorable in the center of the membrane by about 0.6 kcal/mol.
In all other cases, the agreement is exceptionally good. In
general, polar residues, such as histidine, may be more
challenging because of the reduced charges in PRIMO.
However, it should be noted here that the dielectric and the
nonpolar profiles were highly optimized for the all-atom
CHARMM force field. A further optimization of these two
profiles for the PRIMO force field may improve the overall
agreement with CHARMM/HDGB. Parameterization of
PRIMO-M could also improve the agreement with the all-
atom model, especially for histidine, but we decided to proceed
without modifying the underlying PRIMO model in order to
preserve its overall balance and transferability.
3.2. Transfer Free Energies of Amino Acids Compared

to Simulation and Experiment. Transfer free energies from
water to the membrane were computed as the difference
between the average solvation free energy at the center of
membrane (z = 0 Å) and the average energy in the aqueous
environment (z = 30 Å). We used 10 neighboring structures for
each averaging. Figure 2 compares the computationally derived
scales (CHARMM/HDGB and PRIMO-M) with experimental
apparent free energies. The PRIMO-M and CHARMM/HDGB
results are correlated remarkably well (r = 0.93), again with
histidine and phenylalanine being the major outliers. The
accuracy of the calculated transfer free energies exemplifies the
transferability of the PRIMO model. PRIMO-M values also
correlate well with the biological scale62 (r = 0.93) and with
transfer free energies of side chain analogues into cyclohexane63

(r = 0.91). The CHARMM/HDGB model also yields similar
correlation with the biological and cyclohexane scales (Figure
S1, Supporting Information). Interestingly, PRIMO-M histidine

transfer free energies agree better with the experimental scales
than with CHARMM/HDGB, suggesting that the disagreement
between PRIMO-M and CHARMM/HDGB may be in part
due to uncertainties in the all-atom energetics. In other studies,
Ulmschneider et al.64 also obtained similar correlations for both
experimental scales with their Monte Carlo based GB
membrane model using the OPLS-AA force field.
Transfer free energies for charged residues are given in Table

3. Both CHARMM/HDGB and PRIMO-M, while agreeing
with each other, greatly overestimate the experimental values.
This is a result of the fixed membrane geometry in HDGB and
fixed ionization states that does not consider membrane
deformations or the possibility of charge neutralization upon
membrane insertion. Explicit lipid simulations have shown that
upon burial in the hydrophobic membrane core, a charged
residue is likely to be either neutralized or accompanied by a
shell of water molecules, which will lower its insertion energy
significantly.64 Tieleman et al. calculated pKa values of ionizable
groups in DOPC using an all-atom model.65 Asp and Glu were
found to be neutral in the lipid core, whereas Lys and Arg
prefer the charged state.
Water defects effectively constitute membrane deformations

that can be taken into account with a deformable implicit
membrane model such as in the DHDGB model that was
recently developed by us.60 We see a considerable decrease in
the transfer free energy of the charged residues when the
DHDGB model replaces the HDGB model in PRIMO-M to
allow dynamic membrane deformations. The resulting insertion
profiles for Arg, Lys, Asp, and Glu are shown in Figure 3, and
the corresponding transfer free energies are reported in Table
3. The PMFs for all of the charged residues continue to

Figure 1. Amino acid insertion free energy profiles with PRIMO-M
(solid, orange) compared to results from CHARMM/HDGB (dashed,
green) simulations.

Figure 2. Insertion energy of the designed peptides: CHARMM/
HDGB versus PRIMO-M (A), experimental transfer free energies of
side-chain analogues from water into cyclohexane versus PRIMO-M
(B), and biological hydrophobicity scale versus PRIMO (C). The
corresponding correlation coefficients (r) are also provided. Charged
residues were excluded from the scale since their insertion free
energies are considerably overestimated by both CHARMM/HDGB
and PRIMO-M methodologies.
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increase until the center of the membrane as observed in
previous explicit membrane simulations.65 Tieleman and co-
workers have estimated a free energy barrier of ∼14 kcal/mol
for the side chain analogue of Arg at the center of the DOPC
bilayer, while we estimate a value of ∼9 kcal/mol, which is 5
kcal/mol lower. However, PRIMO-M/DHDGB results for Asp,
Glu, and Lys are comparable to explicit simulation data. We
obtained a value of 8.7, 8.4, and 8.1 kcal/mol for Asp, Glu, and
Lys, respectively, while the corresponding values from the
explicit simulations are 7.4, 5.1, and 4.7 kcal/mol, respectively.
Furthermore, PRIMO-M/DHDGB results are also comparable
to CHARMM/DHDGB results for amino acid side chain
analogue insertion.60 The agreement is quite reasonable
considering that DHDGB was used “as-is” without further
optimization. However, since DHDGB is optimized for the
atomistic CHARMM force field and the current model is only
valid for single spanning helical structures, this model was not
employed for subsequent studies in this paper.
3.3. Structural Stability and Dynamic Properties of

Membrane Proteins. PRIMO-M was designed with a major
goal of running stable molecular dynamics simulations of
arbitrary membrane-protein systems. In contrast to other
coarse-grained protein models, PRIMO does not require any
bias toward known secondary structures or other structural
constraints to model a given protein system. A set of 13
membrane proteins with 148 to 661 amino acids (see Table 1)
and different topologies was tested. All protein simulations in
the implicit membrane environment were started from the
experimental structures and simulated with blocked termini for
50 ns. We analyzed the simulations with respect to
thermodynamic stability and dynamic properties in comparison
with experiments.
Figure 4 shows the time evolution of Cα RMSD of all the

membrane proteins with respect to their initial structures. It is
evident from the figure that stable conformations for most of
the proteins are reached within the first 10 ns and thereafter the
Cα RMSDs are kept within 4.0 Å for most proteins. However,
in the case of the β1-adrenergic receptor (PDB code 2VT4),
the RMSD increases steadily after 20 ns and reaches
equilibrium plateau at 30 ns, fluctuating around 4.3 Å for the

last 20 ns of the simulation. Table 4 lists average Cα RMSD
values for all proteins during the simulation as well as Cα

RMSD of the average structure over the entire trajectory. It is
evident from Table 4 that the RMSD of the average structure is
lower than the average instantaneous RMSD values as it
corresponds more closely to the experimental scenario.
Therefore, we focus our discussions on those values. Table 4

Table 3. Bulk-Solvent-to-Membrane-Center Transfer Free Energies of Charged Amino Acids Integrated into an α-Helical
Conformation Compared with the CHARMM/HDGB Model and the Biological Scalea

amino
acid

ΔGtransfer
CHARMM

(kcal/mol)
ΔGtransfer

PRIMO

(kcal/mol)
ΔGtransfer

PRIMO/DHDGB

(kcal/mol)
biological scale
(kcal/mol)

water to cyclohexane
(kcal/mol)

Arg 34.9 38.8 8.9 2.6 14.9
Asp 44.8 44.7 8.7 3.5 8.7
Glu 45.7 50.7 8.4 2.7 6.8
Lys 38.6 42.9 8.1 2.7 5.6

aExperimental water to cyclohexane transfer free energies of side chain analogues are also shown. The transfer free energy is computed as the
difference between the average solvation free energy at the center of membrane and the average energy in the aqueous environment (ε = 80).

Figure 3. Insertion free energy profiles for charged amino acids (Arg,
Asp, Glu, and Lys) obtained with PRIMO/DHDGB.

Figure 4. Time evolution of Cα RMSD during PRIMO MD
simulations using the HDGB methodology for selected proteins
from their respective crystal structure.

Table 4. Root Mean Square Deviations from Experimental
Structures in PRIMO MD Simulations in Membrane
(PRIMO-M) and Aqueous (PRIMO) Environmentsa

PRIMO-M PRIMO

PDB

number
of

residues

avg. Cα
RMSD
(Å)

Cα RMSD of
avg. struct.

(Å)

avg. Cα
RMSD
(Å)

Cα RMSD of
avg. struct.

(Å)

1QHJ 228 3.9 (0.6) 3.6 6.8 (1.0) 6.5
2BL2 156 3.4 (0.5) 3.2 3.5 (0.4) 3.3
4H1D 173 3.3 (0.3) 3.2 4.0 (0.4) 3.7
2CFQ 417 4.3 (0.4) 3.9 6.5 (0.8) 6.2
2JLN 463 4.2 (0.6) 3.9 5.9 (0.8) 5.7
1ZCD 376 3.6 (0.3) 3.4 5.3 (0.7) 5.1
3D9S 245 3.7 (0.5) 3.4 7.5 (1.1) 7.2
1K24 249 4.3 (0.6) 3.9 6.7 (1.0) 6.3
2VT4 276 3.8 (0.6) 3.4 5.6 (1.1) 5.3
1I78 297 5.1 (1.1) 4.4 6.2 (1.1) 5.7
1QJ8 148 3.4 (0.6) 3.2 4.1 (0.5) 3.9
1KMO 661 4.7 (0.7) 4.5 9.7 (1.8) 9.3
2IC8 182 2.5 (0.3) 2.2 4.1 (0.7) 3.7
avg. 3.9 (0.7) 3.6 (0.6) 5.9 (1.7) 5.5 (1.7)

aStandard deviations are provided in parentheses.
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shows that the RMSD of average structures varies between 2.2
and 4.5 Å. On the other hand, Tanizaki and Feig found the
RMSD of the average structures varies between 1.7 to 2.3 Å for
relatively short simulations (5−10 ns) with CHARMM/HDGB
of bacteriorhodopsin and BtuCD.55 Out of the 13 proteins, the
RMSD is found to be between 2 and 4 Å for 11 systems and
only two systems show RMSDs above 4 Å. The smallest RMSD
(2.2 Å) is obtained for the intramembrane protease, 2IC8,
while the largest RMSD (4.5 Å) is obtained for the outer
membrane transporter protein (FecA), 1KMO. A similar drift
in RMSD is also obtained for the outer membrane protease
(ompT), 1I78. Interestingly, both FecA and ompT are beta
barrels. The membrane proteins with channels, such as ompT
and FecA, contain water molecules inside the channel, which is
neglected because the HDGB model used here assumes the
presence of lipids wherever there is no solute in the membrane
region. This may cause destabilization of the protein resulting
in larger RMSD. Furthermore, the presence of long, more
mobile loops at the extracellular part may cause somewhat
higher RMSD values. To circumvent this problem, the current
HDGB formalism would need to be extended to allow different
dielectric environments, not just perpendicular to the
membrane bilayer but also along the bilayer. One possibility
would be to limit the application of a varying dielectric only to
atoms facing outward while atoms facing an internal cavity
would be assumed to be in an aqueous phase. While it is
straightforward to implement such an approach within HDGB,
this would have to be based on structural knowledge rather
than first principles. Therefore, we did not pursue this option
here.
We also conducted PRIMO-M MD simulations of four

proteins, namely 4H1D, 2BL2, 2IC8, and 1QJ8 with larger
cutoff distances of 36/38 Å. The time evolutions of Cα RMSD
for these four membrane proteins with respect to their initial
structures are shown in the Supporting Information (see Figure
S2). We found that the RMSD of the average structure for each
protein remains close to the value that is observed with the
simulations with the shorter cutoff values of 16/18 Å.
The final structures obtained from our PRIMO-M MD

simulations are superimposed with the corresponding exper-
imental structure and are shown in Figure 5. In general, the
structural variations for all proteins in PRIMO-M are small, and
only minor rearrangements of loops and helices, most notably
at the flexible N- or C-termini, are observed. Overall, these
results suggest that, in general, PRIMO-M can maintain
experimental structures of proteins well in the membrane
environment. For all proteins, stable trajectories were generated
that remained close to the starting experimental structures.
In addition to thermodynamic stability, we also examine

dynamic properties of the simulated membrane proteins. B-
factors of Cα atoms were calculated from the PRIMO-M
simulations and compared with data from the experiment.
Figure 6 shows the result for the monomeric bacteriorhodopsin
system (PDB: 1QHJ) while other data are shown in the
Supporting Information (see Figure S3). Qualitatively, the B-
factors obtained from the coarse-grained PRIMO-M MD
simulations agree very well with the experimental data, nicely
reproducing the alternation between rigid secondary structure
elements and flexible loop regions. In one loop region between
residues 191 and 200 of bacteriorhodopsin, the calculated
values are substantially larger, suggesting extensive motion. This
is because the loop is completely exposed to the solvent and
undergoes a conformational transition during the simulation.

3.4. Effect of Implicit Membrane Environment. In
order to see the effect of the implicit membrane environment,
we have carried out another set of simulations for the above-
mentioned proteins with just an implicit aqueous environment
using the GBMV model as in the original PRIMO model. The
simulation protocol was the same as described in our previous
paper.51 Average Cα RMSD values during the simulation as well
as Cα RMSD of the average structure over the entire trajectory
are reported in Table 4. It is evident that the inclusion of the
membrane is essential in maintaining stable structures in the
simulations. With the aqueous environment, the RMSD values
are larger for all of the cases, often much larger, corresponding
effectively to denaturation. The time evolution of Cα RMSD of
all proteins in aqueous solution with respect to their initial

Figure 5. Superposition of the final structure (green) for selected
proteins obtained from PRIMO-MD simulations onto the correspond-
ing crystal structures (red).

Figure 6. B-factors of the Cα atoms were calculated from their root-
mean-square fluctuations. The red line is from the PRIMO-M
simulation while the green line is from the PRIMO simulation in an
aqueous environment. The blue line is from the experiment.
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structures are shown in the Supporting Information (see Figure
S4).
Figure 6 shows the B-factors of Cα atoms calculated from the

implicit aqueous solvent simulation for bacteriorhodopsin. The
qualitative features of B-factors in the BRD7 aqueous solvent
simulations are notably different from the experimental values.
Furthermore, the qualitative agreement in the aqueous solvent
simulation is not as good as in the PRIMO-M simulation. In
particular, the first and second helices have relatively large B-
factors compared to those of other helices. The trend in the B-
factors indicates increased flexibility with the aqueous solvent
environment relative to the result of the implicit membrane
simulation. However, the region 191−200 shows similar B-
factors to that in the HDGB simulation.
3.5. Tilting of Helical Peptides in a Membrane Bilayer.

In the previous section, we showed that PRIMO-M is capable
of maintaining the native structure of membrane proteins in
MD simulations. Here, we evaluate the applicability of the force
field in predicting the insertion angle of helical transmembrane
(TM) peptides into the membrane bilayer.
Significant variations of the tilt angle are observed for

different TM peptides in membrane bilayers due to hydro-
phobic mismatch, which is defined as the difference between
the lengths of the hydrophobic core of the helix and the
hydrophobic width of the membrane. The hydrophobic
mismatch is thought to affect the orientations of TM helices
in membrane proteins and therefore their structures and
functions.66 When the lipid hydrophobic thickness is shorter
than the peptide hydrophobic length (positive mismatch), the
peptide tilts from the membrane normal to decrease its
hydrophobic length to allow it to have better interactions with
the lipids and lesser exposure of hydrophobic residues to the
solvent. However, smaller tilting is observed for peptides with
the hydrophobic length smaller than the hydrophobic thickness
of the lipid (negative mismatch).67 Peptides may adopt a
surface orientation if the mismatch is excessively negative.
In this work, we investigated the tilting of WALP23,

WALP19, GWALP23, KWALP23, AChR M2, and NMDA
M2 peptides, comparing results obtained with the CG model
both to experimental data and to simulations performed with
various atomistic and CG force fields. We note, though, that the
exact tilting of the WALP peptides is still debated, as
experimental and simulation results differ. The starting
structures of the peptides were fully α-helical and oriented
exactly parallel to the bilayer normal. The sequences of these
peptides are provided in Table 2. The tilt angle was measured
as the angle between the membrane bilayer normal and the
principal axis of the helix. We noticed that WALP19 sometimes
left the membrane and adopted an interfacial orientation. While
we are not sure about the exact origin of that behavior, we
applied a weak restraint along the z-axis to keep WALP19
within the membrane since the focus here was on determining
tilt angles of the membrane-inserted peptides.
Tilt angles and their distributions were calculated and are

shown in Figure 7. In all cases, there is a large variation in the
tilt angle. Figure 8 depicts the conformation with the most
probable insertion angles of these peptides obtained from our
simulations. We did not see any kink or distortion in our
simulated structures. The mean tilt angles obtained from
PRIMO-M are compared with experimental and PACE results
in Table 5. All peptides investigated have their center of
geometry close to the core of the membrane (1.0−2.8 Å) and
low tilt angles (8.6°−10.5°) as reported in Table 5.

The WALP model peptides were designed by Killian and co-
workers to investigate the hydrophobic mismatch in different
membrane environments.68−70 Figure 7A compares the
distribution of tilting of different WALP peptides. The
calculated average tilt angles and fluctuations are 10.5° ± 6.0°
and 9.1 ± 5.0° for WALP19 and WALP23, respectively. This
shows that both peptides respond to this hydrophobic
mismatch by tilting its helical access relative to the membrane
normal.
Our result for WALP23 agrees very well with other CG

simulations and experiments also. In DMPC, a tilt angle of
about 12° was measured by ATR-FTIP spectroscopy.68 Koeppe
et al. found a tilt angle of 8.1° in DLPC using the GALA
method.71 On the contrary, a recent study by fluorescence
spectroscopy yielded a large tilt angle for WALP23 in DOPC
(23.6°).72 Tilt angles of WALP23 in DMPC and DLPC have
been found to be 7° and 15°, respectively, by the GALA
method using the dynamical model.73

Figure 7. Distributions of insertion angles of transmembrane helical
peptides at 300 K obtained from REX−PRIMO-M simulations.

Figure 8. Dominant structures of helical peptides with most probable
tilt angle.

Table 5. Average Tilt Angles of WALP23, WALP19,
GWALP23, KWALP23, AChR, and NAMDR Compared to
Experiment (DOPC) and PACE (DOPC)a

peptide
PRIMO
(deg)

PACE42

(deg)
experimental

(deg) avg. z (Å)

WALP23 9.1 (6.0) 7.5 (5.0) 11.073 1.3 (1.0)
WALP19 10.5 (6.0) 8.0 (5.7) 4.0103 1.4 (0.9)
GWALP23 9.6 (5.0) 6.5 (5.3) 6.078 1.4 (0.9)
KWALP23 10.3 (5.2) 7.5 (5.7) 7.378 1.0 (0.7)
AChR 8.6 (4.6) NAb 11.079 1.7 (1.2)
NMDAR 10.1 (5.0) NAb NAb 2.8 (1.8)

aThe mean displacement of the center of mass with respect to the
membrane center (z) is also reported. The membrane center is located
at z = 0, and negative z values correspond to shifts toward the
extracellular side, whereas positive z values correspond to shifts toward
the cytoplasm. Standard deviations are provided in parentheses. bNot
available.
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It is interesting to compare our result with other CG and all-
atom results. In a hybrid molecular dynamics study by Wan et
al., a moderate tilting in DOPC (7.5°) and DLPC (17.5°) was
found.42 A tilt angle of 14° was found for WALP23 in DPPC
using the MARTINI CG force field and Bond and co-workers’
protein model,74 while the MARTINI protein and lipid model
showed a tilt angle of 11.4° in DOPC.75 Kim and Im observed a
tilting of 14.9° in explicit solvent simulations of the peptide in a
POPC bilayer.76 Finally, with the CHARMM/HDGB simu-
lations, Panahi and Feig found that the most probable insertion
angles are located at 10.8° and 16.3° with the smaller angle
being slightly more favorable.60 However, with CHARMM/
DHDGB simulations, the second peak was shifted to 26.4°, and
the first peak was observed at 9.2°. The bimodal distribution of
the tilt angle in their simulations could be due to the
insufficient sampling of the peptide as they had conducted 32
independent short simulations of 20 ns using the Nose-́Hoover
thermostat.
We found a larger tilt angle for WALP19 (10.5° ± 6.0°) than

the experimental result (4.0°) obtained from the GALA
method without considering the dynamic motion of peptides.
This apparent discrepancy can be solved through a different
interpretation of the result obtained with the GALA method.
However, our result for WALP19 agrees very well with what
was determined with the PACE force field42 (8.0° ± 5.0° in
DOPC) and the explicit membrane simulations with the
CHARMM22 force field76 (12.1° in DMPC). The GBSW
implicit membrane also predicted a larger tilt angle (15.5°) for
WALP19 and compared fairly with our result.77 On the other
hand, Bond et al. predicted larger tilting for shorter peptides
(22° for WALP19 versus 14° for WALP23).74

The effect of hydrophobic mismatch is also observed for
another family of peptide, GWALP. The average tilt angles of
GWALP23 and its mutant, KWALP23 (with Lys residue at the
two ends), were found to be 9.6° ± 5.0° and 10.3 ± 5.2°,
respectively. Our results again match the experimental findings
very well.73 Tilt angles of 6.0° and 7.3° were determined in an
experiment for GWALP23 and KWALP23, respectively.78 Wan
et al. obtained a tilt angle of 6.5° ± 5.3° and 7.5° ± 5.7° for
GWALP23 and KWALP23, respectively, with their hybrid force
field, PACE.42 Vostrikov et al. suggested that there is no
significant difference in the tilt angle between KWALP23 with a
Lys residue at the both ends and GWALP23.78 The tilt angle
difference is 1.3° in the experiment. We have also obtained a
similar tilt angle difference, and our result supports this finding
from the experiment.
Apart from studies of artificial transmembrane peptides, we

have also investigated the tilting of M2 channel-lining segments
from the nicotinic acetylcholine receptor (AChR, PDB ID:
1A11) and of a glutamate receptor of the NMDA subtype
(NMDAR, PDB ID: 2NR1).79 The distribution of tilt angles is

shown in Figure 6B. The average tilt angles were found to be
8.6 ± 4.6° and 10.1 ± 5.0° for AChR and NMDAR,
respectively. The mean tilt angle for AChR M2 obtained
from our simulation compares well to the experimental value
(11.0°)79 as well as to the previously calculated value (11.0° ±
5.0°) for a generalized Born implicit membrane.64

In the case of NMDAR, solid-state NMR experiments point
to an inserted TM orientation, but the exact tilt angle could not
be determined.79 In our simulation, the peptide partitions into
the membrane bilayer and assumes a transmembrane
orientation with a tilting angle of 10.1°. Our simulations
suggest that the center of mass of this peptide is located at z =
2.8 Å from the membrane center, confirming the experimental
finding of TM orientation. On the contrary, Ulmschneider et al.
obtained parallel surface-bound orientations with their implicit
membrane model.80

3.6. Conformational Sampling of Influenza Fusion
Peptide. Significant effort has been put into determining the
membrane bound structure of the influenza fusion peptide
(IFP). In micelles, IFP was found to be an inverted V-like
helix−break−helix configuration, in which both the N- and C-
termini insert into the membrane.81 Computer simulations
have also been employed to study the configuration adopted by
the IFP in a membrane environment, and a wide variety of
results are obtained. Panahi and Feig predicted57 a predom-
inantly helical hairpin conformation of the native influenza
fusion peptide in the membrane environment using
CHARMM/HDGB simulations, which was later experimentally
validated by Lorieau et al.82 Similar structural insights were
revealed by a recent solid-state NMR (ssNMR) experiment.83

Here, we have conducted a replica exchange molecular
dynamics simulation study of the monomeric IFP (PDB ID:
1IBN) using an implicit environment description (HDGB) and
coarse-grained representations of the peptide. Each replica was
simulated for 100 ns, and the last 80 ns of data were used for
the analysis (see Table 2). The insertion angle was calculated as
the angle between membrane normal (z axis) and the vector
that connects the N (i + 4) and O (i) atoms of the backbone
for i from 3 to 6.57 The N-terminal insertion angle and
insertion depth (the distance of center of mass from the
membrane center along the membrane normal) are determined
at 300 K and their distributions are shown in Figure 9. The
focus on the N-terminal part of the peptide was chosen to
match computational results based on CHARMM22/HDGB.57

Figure 9 indicates that most of the conformations adopted
insertion angles between 80 and 100° and insertion depths
between 19 and 21 Å. This means that peptides with parallel
membrane orientations and an interfacial location dominate the
conformational ensemble. Other less-populated similar struc-
tures have more obliquely inserted N-termini with angles of
∼110°.

Figure 9. Distribution of insertion angle (A) and insertion depth (B) of IFP at the lowest temperature 300 K.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500443v | J. Chem. Theory Comput. 2014, 10, 3459−34723467



It is interesting to compare our results with other data. The
parallel membrane orientation matches results from previous
simulations.57,84,85 The heteronuclear triple resonance NMR
study suggested that the influenza fusion peptide adopts a tight
helical hairpin conformation at the membrane−water inter-
face.82 Furthermore, previous studies suggest that the structure
of the influenza fusion peptide in membranes could be a kinked
helix, a straight helix, and a tight shaped helical hairpin.
Interestingly, in our PRIMO-M simulations, all of these three
conformations were observed. These three states were also
visited in the simulations conducted by Larsson and Kasson.84

A total of ∼19% of structures were found to be helical hairpins
in our simulations (Figure 10). Nearly 60% of the total
structures were found to be predominantly flat α-helical, while
20% of the total conformations were of kinked helix. Overall,
our results rather agree very well with findings from recent
simulations57,84 or experiments.82,83

3.7. Helix−Helix Association of Glycophorin A.
Oligomerization of transmembrane (TM) helices is a key
stage in the folding of membrane proteins.86 The two-stage
folding model has been proposed for the association of TM
helices: each TM helix is inserted into the membrane
independently followed by the assembling of helices.87 Here,
we have investigated the association of two Glycophorin A
(GpA) helices, which has served as an excellent model system
for studying TM membrane protein structure and stability,
from both an experimental87−89 and a computational29,46,90−97

perspective. The GpA dimer contains a seven-residue motif
(L75I76xxG79V80xxG83V84xxT87) that has been found to be
important in the packing and dimerization of GpA helices.98

Previous CG simulations were conducted to study such
processes,86,99 and GpA is an obvious test case for PRIMO-M.
The single TM domain of GpA consists of ∼25 residues that

adopt an α-helical conformation and are sufficient for
dimerization. The sequence of the monomeric TM domain is

show in Table 2. Two GpA helices were inserted into the
implicit lipid bilayer in a parallel fashion with an interhelix
separation of ∼30 Å. We performed a REMD simulation with
16 replicas spanning a temperature range of 270−500 K. Each
replica was simulated for 200 ns. The final 100 ns were used for
the analysis of the structural features of the GpA dimer.
A well-defined structural feature of the GpA dimer is the

crossing angle (Ω) between the two helices and is found to be
right-handed with a negative Ω. The experimental crossing
angles were reported to be −40° and −35° for the DPC micelle
and the DMPC bilayer, respectively.89,100 The extent of
crossing angle and its distribution were calculated and are
shown in Figure 11. A large variation in Ω compared to

atomistic simulation90,91 was seen in Figure 11. This reflects the
soft nature of the coarse-grained free energy landscape but may
also reflect the nature of the HDGB implicit membrane model.
In our simulations, the probability distribution of the crossing
angle shows a symmetric bimodal distribution. The most
probable crossing angles were located at ±42°, and they are
almost equally favorable. This result compares well with the
previous study by Bu et al.101 using the GBSW membrane

Figure 10. Representative structures of IFP at the lowest temperature (300 K).

Figure 11. Distribution of the crossing angle of GpA dimer at 300 K
obtained from the PRIMO-REMD simulation.
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model. They found that the most probable crossing angles were
located at −50° and 50° with −50° being more favorable. The
MARTINI protein force field102 was also found to yield a large
distribution of Ω. Previous CG simulations reported an average
value of −20° to −25°, which is lower than the experimental
values by 15°−20°. A positive crossing angle as observed in
PRIMO was sampled with the MARTINI lipid force field and
Bond and Sansom’s protein model.99 Han et al. found that the
average crossing angles vary between −32.5° and −43.5° with
their hybrid coarse-grained force field.42

Figure 12A and B show the distribution of Cα RMSD of the
simulated dimer from the solution NMR structure in a DPC

micelle and interhelix separation at the lowest temperature
(300 K) during the REMD simulation. The RMSD and the
interhelical distance are well correlated with the interhelical
crossing angle, Ω. On the basis of the distribution of crossing

angles, the GpA dimer could be clustered into two distinct
families of conformations: a right-handed dimer (Ω at −42°)
and a left-handed dimer (Ω at 42°). The right-handed dimer
has a most probable RMSD and interhelical distance value of
4.2 and 8.2 Å, respectively, whereas the most probable RMSD
and the interhelical distance value of the left-handed dimer are
5.6 and 9.5 Å, respectively. The interhelical distance between
two helices for the right-handed dimer conformation matches
very well to an explicit solvent simulation of the GpA dimer in
the DPPC bilayer, the membrane modeled here with HDGB
(8.2 Å in PRIMO versus 8.1 Å in DPPC).90 Sengupta and
Marrink102 also found in their CG-MD simulations that the
optimum interhelical distance was 7.5 Å, along with a second
population with an interhelical distance of 9.5 Å. The average
Cα RMSD was measured to be 3.6 Å in their simulations. With
the PACE force field, an interhelical distance of ∼10 Å was
obtained.42 A similar result was obtained by Psachoulia et al.99

with the MARTINI force field and Bond−Sansom protein
model. To further evaluate the structural features of the
simulated GpA dimer, the contact map was calculated and
shown in the Supporting Information (Figure S5). It is evident
from the figure, barring a few, that all the native contacts
present in the crystal structure tend to form in our simulations.
The PRIMO simulations also suggest, as in previous studies,
that the interactions are dominated by the key residues of the
(L75I76xxG79V80xxG83V84xxT87) motif. Overall, our result
overlaps with experiments and compares well with other
computational studies.42,99

3.8. Efficiency of PRIMO-M Compared to CHARMM/
HDGB. For a CG model to be attractive, computational
efficiency is essential. Given its rather high resolution, it could
be expected that the PRIMO-M methodology is not extremely
fast compared to atomistic simulations with the HDGB
methodology. In order to compare the computational
efficiency, all of the above-mentioned 13 proteins were
simulated for 1 ns with PRIMO and CHARMM using
HDGB methodology. In the all-atom simulations, the
CHARMM36 force field parameters were employed with the
CMAP correction term. The bond lengths involving hydrogen
atoms were fixed by using the SHAKE algorithm, so that a
simulation time step of 2 fs could be used. Furthermore, both
PRIMO-M and CHARMM/HDGB simulations were carried

Figure 12. Distributions of Cα RMSD relative to the NMR structure
in DPC micelle (A) and interhelix separation distance (B) at 300 K
obtained from the REX−PRIMO-M simulation.

Table 6. Efficiency of Simulations of 13 Proteins with Two Different Simulation Methodologiesa

timing (ns/day)

sites no cutoff cutoff (16/18 Å) PRIMO speedup

PDB Res CHARMM PRIMO CHARMM PRIMO CHARMM PRIMO no cutoff cutoff

1QHJ 228 3599 1207 0.15 2.49 0.26 3.28 16.6 12.6
2BL2 156 2319 784 0.31 4.63 0.46 4.95 14.9 10.8
4H1D 173 2798 928 0.23 3.28 0.38 4.05 14.3 10.7
2CFQ 417 6632 2204 0.05 1.00 0.14 1.40 20.0 10.0
2JLN 463 7245 2420 0.05 0.85 0.12 1.03 17.0 8.6
1ZCD 376 5814 1940 0.07 1.21 0.15 1.47 17.3 9.8
3D9S 245 3712 1246 0.14 2.35 0.27 3.18 16.8 11.8
1K24 249 3926 1354 0.13 1.85 0.23 2.47 14.2 10.7
2VT4 276 4480 1493 0.18 1.74 0.21 2.34 9.7 11.1
1I78 297 4591 1617 0.10 1.42 0.20 2.12 14.2 11.4
1QJ8 148 2235 787 0.31 4.19 0.46 4.69 13.5 10.2
1KMO 661 10 094 3549 0.03 0.42 0.08 0.91 14.0 11.4
2IC8 182 2919 973 0.22 3.30 0.33 3.74 15.0 11.3

aThe simulations were carried out with or without the nonbonded cutoff distances. CPU times are provided in ns/day.
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out with cutoff distances of 16/18 Å and without cutoff
distances. All the PRIMO-M and CHARMM/HDGB simu-
lations were performed in serial on an Intel E5−2680 processor
(2.7 GHz). The CHARMM/HDGB simulations were carried
out with a time step of 2 fs, while a time-step of 4 fs was used in
the case of PRIMO-M. Table 6 lists the corresponding
simulation time. In both cases, the simulation time is
proportional to the system size. Compared to CHARMM/
HDGB simulations, PRIMO-M can achieve about 10- to 20-
fold speedups provided the simulations are carried out without
any nonbonded cutoff distances. However, about 9−13
speedups are achieved with PRIMO-M with respect to the
CHARMM/HDGB simulations when the simulations are
conducted with the nonbonded cutoff distances of 16/18 Å.
A similar speedup is achieved over all-atom explicit lipid/water
simulations. A main bottleneck in PRIMO is the use of the
GBMV methodology for modeling the membrane environ-
ment. Nearly 80% of the total simulation time is spent for GB
calculations. One possibility for further accelerating the
PRIMO-M model is to replace the GBMV-based implicit
membrane model with a computationally more efficient GB
implementation.

4. DISCUSSIONS AND CONCLUSION
Many biologically interesting phenomena, such as the dynamics
of large proteins and self-assembly of biomolecules that occur
on a time scale that is too long to be studied by fully atomistic
simulations. Coarse-graining can drastically cut down the
necessary simulation times. Further acceleration is obtained
with implicit models of the environment, especially for
membrane environments. In the present paper, we are
demonstrating the performance of such a model, PRIMO-M,
in the context of a number of test cases. The amino acid
insertion free energy profiles obtained with the PRIMO-M
model are very similar to those obtained with the CHARMM/
HDGB model. The free energy of insertion for amino acids is
highly correlated to the biological and water-to-cyclohexane
scales. It was shown that the model could be applied
successfully to obtain stable and dynamically well-behaved
trajectories of membrane proteins. Simulations of membrane
proteins of varying complexity remained close to the starting X-
ray structure after 50 ns of simulation time, while B-factors
calculated from the simulations are in good agreement with the
experiment. The force field is further validated by correctly
predicting the tilt angle of several transmembrane peptides,
association of the GpA homo dimer, and conformational
sampling of an influenza fusion peptide (IFP) using replica
exchange molecular dynamics simulations. Our simulations
reproduce related experimental or theoretical observations
quite well, which implies that the environment in PRIMO is
interchangeable between aqueous and membrane environ-
ments.
PRIMO-M was obtained by simply swapping the GBMV

implicit solvent model for the HDGB implicit membrane
model without any reparameterization of the underlying
PRIMO model. This implies that further advances in the
implicit membrane model would also directly benefit PRIMO-
M. In particular, membrane proteins with internal cavities or
channels remain a challenge that needs to be addressed.
Another issue is a better description of the nonpolar interaction
that can be addressed by separating the cost of cavity formation
from solute−membrane van der Waals interactions. PRIMO
(and PRIMO-M) is also especially attractive in the context of

AA/CG schemes because of the close structural and energetic
correspondence between PRIMO and fully atomistic models,
and exploring such models to optimize the balance between
accuracy and computational efficiency will be the subject of
further studies.
PRIMO-M relies on PRIMO and HDGB, both of which are

implemented in CHARMM c38a2 and newer versions. The
PRIMO force field files are available from the authors upon
request.
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