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ABSTRACT: A theoretical model of electroosmosis through a
circular pore of radius a that traverses a membrane of thickness h is
investigated. Both the cylindrical surface of the pore and the outer
surfaces of the membrane are charged. When h ≫ a, end effects are
negligible, and the results of full numerical computations of
electroosmosis in an infinite pore agree with theory. When h = 0,
end effects dominate, and computations again agree with analysis.
For intermediate values of h/a, an approximate analysis that
combines these two limiting cases captures the main features of
computational results when the Debye length κ−1 is small compared
with the pore radius a. However, the approximate analysis fails when
κ−1 ≫ a, when the charge cloud due to the charged cylindrical walls
of the pore spills out of the ends of the pore, and the electroosmotic flow is reduced. When this spilling out is included in the
analysis, agreement with computation is restored.

1. INTRODUCTION

Electroosmosis in a circular cylindrical pore of finite length h
differs from that in an infinitely long pore due to end effects. If the
cylinder length h = 0, then the pore consists of a hole in a charged
membrane of zero thickness, and electroosmosis can be
considered to be entirely due to end effects. This case was
considered by us previously.1 When the cylindrical pore is
infinitely long, end effects are negligible, and the computation of
the electroosmotic volumetric flow rate Q, for arbitrary Debye
lengths and surface charge densities, is standard2,3 (with similar
results available for infinitely long planar channels4−7). Here, we
are interested in intermediate values of h.
Full numerical computation of the Poisson−Nernst−Planck

(PNP) equations for ionic motion is, of course, possible, and
some typical results were reported by Mao et al.1 Such numerical
computations, however, do not identify the mechanisms
underlying the qualitative features of the physical system. Here,
we discuss how simple models, based on continuity of electric
current and volumetric flow rate, can be combined in order to
estimate end effects for pore lengths h > 0. We assume that the
zeta potential on the surface of the membrane is small, so that the
Poisson−Boltzmann equation governing the equilibrium charge
cloud can be linearized, and the electroosmotic velocity can be
determined by an analysis equivalent to that of Henry8 for
electrophoresis, i.e., fluid motion is generated by the effect of the
applied electric field acting on the equilibrium charge cloud
(which is not deformed either by the applied electric field or by
fluid motion). In this limit, the electroosmotic volumetric flow

rate Q through the hole in the membrane can be determined by
means of the reciprocal theorem.1

Figure 1 shows the axisymmetric geometry that we are
considering. The cylindrical pore CD has radius a and length h.

The cylindrical surface CD of the pore has surface charge density
σc , and the membrane surfaces BC and DE have surface charge
density σm. An electrical potential difference is applied between
the fluid reservoirs at either side of the membrane, and
electroosmotic flow is generated by the resulting electric field
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Figure 1. Cylindrical pore CD, of length h and radius a with surface
charge density σc , passing through the membrane with surface charge
density σm on the two surfaces BC and DE. The reservoirs on either side
of the membrane are large (b ≫ a). The pore and reservoirs are
axisymmetric about the z axis.
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acting on the charge cloud adjacent to the charged surfaces. The
analysis of Mao et al.1 assumed that the external reservoirs on
either side of the pore were unbounded, with radius b = ∞. For
the numerical computations presented in section 3, the external
reservoirs were bounded by uncharged cylinders of radius b≫ a,
sufficiently large that numerical results when h = 0 differed little
from the analytic results for h = 0 and b infinite. There have been
many studies in which flow is generated in cylinders of different
dimensions, connected either in series9 or in networks intended
to represent porous media.10 Here, however, we are interested in
the effect of the surfaces BC and DE of the membrane on
electroosmotic flow within the cylindrical pore, and any
boundaries, AB and EF, of the external reservoirs are so far
away that they can be neglected.
We shall allow the surface charge density σm on the membrane

to differ from the charge density σc on the wall of the cylindrical
pore. There have been previous detailed studies of the effect of a
discontinuity in surface charge density on electroosmosis.11,12

The fine details of the charge cloud and fluid motion around such
a discontinuity will be lost by the simple models presented here.
They are, of course, fully taken into account in the numerical
computations discussed in section 3.
In section 2.2, we set up the approximate analysis of end effects

and compare results to those obtained from full numerical
computations. The analysis is presented from first principles, but
it can alternatively be set within the framework of the reciprocal
theorem, as explained in section 2.6. The agreement between the
approximate analysis and full computation is, in general, good,
except for large Debye lengths κ−1≫ a. In section 4, we consider
this case in more detail in order to evaluate how much of the
charge cloud due to the charged walls of the cylindrical pore lies
within the pore and how much spills out beyond the ends of the
pore. When this overspill is taken into account, the agreement
between the computations and the approximate model is
improved.

2. COMPOSITE ELECTROOSMOTIC COEFFICIENT

2.1. Pore Geometry. The axisymmetric geometry that we
are considering is shown in Figure 1. We use cylindrical polar
coordinates (r,z), with the z axis along the axis of symmetry and
z = 0 at the midpoint of the cylindrical pore, the ends of which are
at z = ±h/2. When h = 0, we shall also use oblate spherical
coordinates (ξ,η), with

ξ η ξ η= =z a r asinh cos , cosh sin (1)

where −∞ < ξ < ∞ and 0 ≤ η < π/2.
The cylindrical pore and the reservoirs at either end are filled

with liquid with electrical conductivityΣ and viscosity μ. The wall
CD of the cylindrical pore is charged, with uniform surface
charge density σc , and the surface charge density over the
membrane surfaces, BC and DE, is σm. The electrical permittivity
ϵs of the membrane will be typically much smaller than the
permittivity ϵ of the liquid, and we assume ϵs = 0. We assume that
the reservoir boundaries AB and EF are uncharged and at infinity.
We shall occasionally refer to the surface potential ζ, which will
not, in general, be uniform, but which is required to be small, with
ζ ≪ kT/e, where e is the elementary charge and kT the
Boltzmann temperature. The electrical potential ϕ0 within the
equilibrium charge cloud therefore satisfies the linearized
Poisson−Boltzmann equation so that

ϕ κ ϕ∇ =2
0

2
0 (2)

where κ−1 is the Debye length, and the charge density in the
equilibrium charge cloud is

ρ ϵκ ϕ= −0
2

0 (3)

2.2. The Applied Electric Field. The applied electric field is
E = −∇χ, where the potential χ satisfies the Laplace equation

χ∇ = 02 (4)

with gradient

χ∇ =n. 0 (5)

normal to the walls of the membrane and of the cylindrical pore.
In z > 0, the electric potential far from the membrane is χ = ϕ1/2,
and the potential far from the membrane in z < 0 is χ = −ϕ1/2.
When the membrane thickness h = 0, the potential can be

expressed explicitly as13

χ
ϕ

π ξ
χ ϕ= − = ̃−

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥ r z

2
1

2
tan

1
sinh

( , )1 1
m 1

(6)

On the plane of the membrane, within the circular opening,

χ ̃ = = < =z r a h0, 0, , 0m (7)

The liquid within the pore has electrical conductivity Σ; we have
assumed that surface charge density (and hence the density of
charge in the cloud of counterions) is small, so that surface
conductivity may be neglected. Indeed, if the mobilities of the
various ionic species are identical, then the surface conductivity
due to the mobile charge cloud given by the linearized model (2)
atO(eζ/kT) is zero. The total electric current Im flowing through
the hole in the membrane is therefore

ϕ
= − =

Σ
I

R
R

a
,

1
2m

1

m
m

(8)

If h > 0, then we assume that the potential within the
cylindrical pore varies linearly and approximate the potential
within the pore as

χ χ ϕ ϕ= ̃ = < | | <z
h

r a z h, , /2c 2 2 (9)

as would be expected in the absence of any end effects. The
potential in z > h/2 is approximated by that outside a membrane
(with a hole) of zero thickness

χ
ϕ

ϕ ϕ χ= + − ̃ −r z h
2

( ) ( , /2)2
1 2 m (10)

with χ(r,z) = −χ(r,−z). This approximation (9) and (10) is
continuous at z = ±h/2 where the potential is assumed to be
±ϕ2/2 across the entire width of the opening (by eq 7). The as
yet unspecified potential ϕ2 is determined by requiring
continuity of the electrical current at z = ±h/2. The current Ic
through the cylindrical pore is

ϕ
π

= − =
Σ

I
R

R
h

a
,c

2

c
c 2

(11)

and the electrical current through the reservoir in z > h/2 is, by
eq 8,

ϕ ϕ
= −

−
I

Rm
1 2

m (12)

Equating Ic (11) and Im (12), we find
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ϕ
ϕ

=
+

R
R R2

c 1

m c (13)

This computation suggests that the system can be treated as two
resistors in series, with composite resistance

= +R R Rcomp m c (14)

However, this estimate assumes a uniform potential over the
ends of the pore at z = ±h/2, and we have effectively inserted
thin, perfectly conducting sheets over the pore ends. Removal of
these sheets can only increase the resistance and henceRcomp is an
underestimate for the true total resistance Rtot. Figure 2a shows
Rtot/(aΣ) computed numerically by means of the Freefem++
finite element package,14 together with Rcomp/(aΣ). The
difference is small and is shown in Figure 2b.
2.3. Electroosmosis through an Infinite Cylindrical

Pore.We assume throughout this article that the perturbation of
the equilibrium charge cloud by the applied electric field and by
fluid motion is negligibly small. The force acting on the ions in
the charge cloud due to the applied electric field−∇χ is therefore
−ρ0∇χ.
The equilibrium potential within an infinite cylindrical pore is

ϕ ζ
κ
κ

σ
ϵκ

κ
κ

= =
I r
I a

I r
I a

( )
( )

( )
( )0 c

0

0

c 0

1 (15)

In the absence of any end effects, if the electric field E0 =−ϕ2/h is
applied along the length of the cylindrical pore, then the fluid
velocity is15

ϵϕ
μ

ζ ϕ= −u
h

( )2
c 0 (16)

and the total electroosmotic volumetric flow rate is2

πσ
μ κ

κ
κ κ

ϕ ϕ= − =
⎡
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⎦⎥Q

a
h a
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H
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2 2 c 2

(17)

where the electroosmotic coefficient

ϕ
πσ
μ κ

π ζ
μ ϵ

κ= ∼ = ≫H Q
a

h
a
h

a/ , 1c ce 2
c

2 2
c

(18a)

πσ
μ

κ∼ ≪
a
h

a
4

, 1.c
3

(18b)

The total current through the cylindrical pore is Ic (11), so the
ratio between volume flux and current is

σ
μκ

ζ
μϵ

κ= − = ∼
Σ

=
Σ

≫K Q I H R a/ , 1c ce c c c
c c

(19a)

σ
μ

κ∼
Σ

≪
a

a
4

, 1c

(19b)

2.4. Electroosmosis through a Membrane (h = 0). It was
shown by Mao et al.1 that if the equilibrium charge density is ρ0,
the imposed electric field is E = −∇χ and the fluid velocity
generated by a pressure difference p1 across a pore (of arbitrary
geometry) is

= pu G1 (20)

then the reciprocal theorem16 for Stokes flows can be used to
show that electroosmotically generated volumetric flow rate
through the pore is

∫ ρ χ= − ∇Q VG. d
V 0 (21)

where the integral is over all the fluid.
The fluid velocity generated by the pressure difference p1

across a circular hole in a membrane of zero thickness is

= pu G1
m

(22)

An explicit expression for Gm(r,z) is available,1,16 and the
potential χ is given by eq 6. The charge density in the equilibrium
charge cloud around a membrane of zero thickness is1

∫ρ σ κ
κ κ

=
+

−κ
κ∞

− +
−⎡

⎣⎢
⎤
⎦⎥a

J as J rs

s
e s

e
a

( ) ( )

( )
ds z

z

0 m
2

0

1 0
2 2 1/2

( )2 2 1/2

(23)

which consists of the charge density adjacent to a uniform
charged surface, from which has been subtracted the charge
density around a uniformly charged disk. The integral (21) can
be evaluated numerically,1 and the electroosmotic flow rate

Figure 2. (a) Nondimensional Ohmic resisistance R/(aΣ) of a hole of radius a in a membrane of thickness h, as a function of h/a. Solid line, Rtot/(aΣ)
computed numerically; dashed line, the approximation Rcomp/(aΣ) (14). (b) The difference (Rtot − Rcomp)/(aΣ).
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through a hole in a membrane of zero thickness can be expressed
in the form

ϕ=Q Hme m 1 (24)

where

κ κ∼ ≪H a H a, 1m 0 (25)

with

σ
μ

=H
a

30

2
m

(26)

The ratio of the electroosmotic volume flux Qme to the electrical
current Im is

= −Q I K/me m m (27)

where
κ κ= ∼ ≪K H R

a
K a

2
, 1m m m 0 (28)

with
σ
μ

=
Σ

K
a

30
(29)

Figure 3 shows a log−log plot of results forHm/H0 obtained by
Mao et al.1 The continuous line shows the analytic result (21)
obtained via the reciprocal theorem, and the asymptote (25) for
aκ ≪ 1 is indicated.
The membrane has zero thickness, so there is always a region

near the edge of the pore where the Debye length κ−1 cannot be
considered small compared with h; Smoluchowski’s analysis for

thin charge clouds, which would predictH = 6H0/(aκ) if ζm took
the uniform value ϵκσm, therefore, cannot automatically be
invoked when aκ≫ 1. However, if we set up a local coordinate s
indicating distance from the edge of the pore, then both the
electric potential χ (6) and the fluid velocity Gm (22) vary as s1/2

when s≪ a (i.e., near the pore edge). The charge cloud density
ρ0 decays over a length scale κ−1, and only counterions of
membrane surface charge within a distance κ−1 from the edge
contribute to ρ0 within the hole. The contribution of the edge to
the integral (21) is therefore O((aκ)−1), as was similarly found
for the electrophoretic velocity of a charged disk.17 We therefore
expect Hm ∼ H0/(aκ) when aκ≫ 1. The data in Figure 3 do not
extend to sufficiently high values of aκ to allow us to estimate the
asymptote with any accuracy, and for the figure, we simply
indicate the line Hm/H0 = 6/(aκ) suggested by the
Smoluchowski analysis. A similar reduction in the broadside
electrophoretic velocity of a disk below the value predicted by
Smoluchowski was noted by Sherwood and Stone.17 Individual
points in Figure 3 indicate results obtained from full numerical
solutions of the Poisson−Nernst−Planck equations in a
symmetric electrolyte at low applied potential and low surface
charge. In the computations, the length of the reservoirs in the z
direction was equal to their radius b, with b = max(10a,10κ−1).
Other details of the computations are reported in section 3.

2.5. Composite Electroosmotic Coefficient Hcomp.When
h > 0, it is natural to suppose that the electric field outside the
membrane pumps fluid toward the cylindrical pore at a rate

ϕ ϕ≈ −Q H ( )me m 1 2 (30)

Figure 3. Electroosmotic coefficientHm, scaled byH0 (26), for a membrane of thickness h = 0, as a function of aκ. Solid line, analytic result (21); dashed
line, asymptote (25) for aκ≪ 1; triangles, full PNP numerical computation (h = 0). The dot−dashed line shows Hm/H0 = 6/(aκ) with the expected
slope for large aκ. Squares and circles show electroosmotic coefficientsH/H0 for nonzeromembrane thickness h > 0, computed by numerical integration
of the full PNP equations: solid circles, h/a = 0.06; open squares, h/a = 0.1.
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and the electric field within the cylindrical pore pumps fluid
through the pore at a rate

ϕ≈Q Hce c 2 (31)

However, in general,Qme (30) andQce (31) differ, and a pressure
±p2/2 builds up at z = ±h/2 (i.e., at the entrance and exit to the
cylindrical pore) in order to ensure that the volumetric flow rate
is continuous. We now determine this pressure p2.
Consider a membrane of zero thickness (h = 0), with pressure

p = p1/2 (above the reference ambient pressure) at infinity on the
side z > 0 and with p = −p1/2 at infinity on the other side. The
pressure within the hole in the membrane is

= = < =p z r a h0, 0, , 0 (32)

The fluid velocity generated by the pressure difference p1 across
the membrane is u = p1G

m (22), and the corresponding
volumetric flow rate is16

μ
= = −Q G p G

a
,

3mh m 1 m

3

(33)

If h > 0, then we approximate the pressure field in the fluid in
much the same way as we approximated the electrical potential
within the fluid: we patch a linearly varying pressure p(z) within
the cylindrical pore to the pressure field outside a membrane of
zero thickness, and we take the pressure over the two ends z =
±h/2 of the cylindrical pore to be ±p2/2. Thus, the pressure
within the pore is approximated as

= < | | <p
p

h
z r a z h, , /22

(34)

the fluid velocity within the pore is

= pu G2
c

(35)

and the volumetric flow rate within the pore is

π
μ

= = −Q G p G
a
h

,
8ch c 2 c

4

(36)

Outside the cylindrical pore, the fluid velocity is now assumed to
be

= − − >p p r z h z hu G( ) ( , /2), /21 2
m

(37)

with ur(r,z) = −ur(r,−z) and uz(r,z) = uz(r,−z). The volumetric
flow rate outside the membrane is now

μ
= − = −Q G p p G

a
( ),

3mh m 1 2 m

3

(38)

We have ensured that the pressure (but not the fluid velocity or
the volumetric flow rate) is continuous across the ends z = ±h/2
of the cylindrical pore.
When an electric field generates an electroosmotic velocity, the

volumetric flow rates within the cylindrical pore and outside the
membrane are identical if p2 is such that Qmh + Qme = Qch + Qce ,
i.e., if

ϕ ϕ ϕ− + − = +G p p H G p H( ) ( )m 1 2 m 1 2 c 2 c 2 (39)

But the pressure at infinity is zero in the electroosmotic problem,
so p1 = 0, and ϕ2 is given by eq 13. Hence

ϕ=
−

+ +
p

H R H R
G G R R( )( )2

m m c c

m c m c
1

(40)

and the total electroosmotic flow is

ϕ ϕ= + =
+

+ +
=Q Q Q

G R H G H R
R R G G

H
( )
( )( )E me mh

m c c c m m

m c m c
1 comp 1

(41)

An alternative derivation of this approximate composite Hcomp
(41) is given in the next section.
Inserting into eq 41 the various estimates forGm (38),Gc (36),

Rm (8), and Rc (11), we obtain

=
+

+ +

π

π π

( )
( )( )

H
H H

1 1

h
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h
a

h
a

comp

m
16

3

2 8
3

2

2 2

(42)

For small h/a, the approximate composite Hcomp is larger than
Hm if

π>
H
H

a
h

7
8

c

m (43)

Experimental arrangements sometimes involve measurements at
fixed current, and a coefficientKcomp that gives the electroosmotic
flux per unit current is therefore useful. This quantity may be
obtained readily from eqs 11, 13, and 41

= − =
+
+

=
+

+
π

π

( )
( )

K
Q

I
G K G K

G G

K K( )
( ) 1

h
a
h
a

comp
E

c

m c c m

m c

m
8

3 c

8
3

(44)

which changes from Km when h = 0 to Kc when h ≫ a.
2.6. Composite Electroosmotic Coefficient Hcomp

Derived via the Reciprocal Theorem. We now show that
approximations to the electric potential χ and pressure-driven
velocity G within a pore of nonzero length h > 0, when inserted
into the integral expression (21) for the electroosmotic volume
flux, lead to an approximate electroosmotic coefficient identical
to Hcomp (42) obtained in the previous section.
We have already shown that we may approximate the electric

potential by a composite potential (9) and (10) of the form

χ
ϕ

=
+

| | <⎜ ⎟⎛
⎝

⎞
⎠

z
h

R
R R

z h, /2c 1

m c (45a)

ϕ ϕ
χ=

+
+

+
̃ − >

R
R R

R
R R

r z h z h
2( ) ( )

( , /2), /2c 1

m c

m 1

m c
m

(45b)

χ= − − <r z z( , ), 0 (45c)

We now create a similar approximation for the fluid velocity for
flow through a membrane of thickness h subjected only to a
pressure drop p1 but no applied potential drop. We suppose that
in z > h/2 the fluid velocity is given by eq 37, corresponding to
flow outside a membrane of zero thickness, and that within the
cylindrical pore the fluid velocity is given by eq 35. Continuity of
the volumetric flow rates (36) and (38) at the entrance to the
cylindrical pore requires that the pressure ±p2/2 at the two ends
of the pore satisfies

= −G p G p p( )c 2 m 1 2 (46)

so that

=
+

p
G p

G G2
m 1

c m (47)
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Hence, our approximation to the fluid velocity is u = Gp1, with

=
+

| | <
G

G G
r z z hG G ( , ), /2m

c m

c

(48a)

=
+

− >
G

G G
r z h z hG ( , /2), /2c

c m

m

(48b)

The (small) errors involved in this approximation are discussed
by Dagan et al.18

We now use approximations (45) and (48) in integral (21) in
order to compute the electroosmotic volumetric flow rate. But
the integration splits naturally into an integral over the cylindrical
pore and an integral over the regions outside the membrane. The
integral over the cylindrical pore is exactly the integral required to
determine the electroosmotic flow rateHc (17) in a cylinder, and
the integral outside the membrane is exactly that required to
determine Hm (24). Hence, the integral yields the composite
electroosmotic flow rate

=
+ +

+
+ +

=
+

+ +

H
G R H

G G R R
G R H

G G R R
G R H G R H
G G R R

( )( ) ( )( )

( )( )

comp
c m m

c m m c

m c c

c m m c

c m m m c c

c m m c (49)

identical to (41), obtained in section 2.5 by elementary methods.

2.7. Predictions of the Composite Electroosmotic
Coefficient. Figure 4 shows Hcomp (42) as a function of h/a
for four different values of aκ, with σm = σc. Also shown are the
results of full numerical computations based on the Poisson−
Nernst−Planck equations1 and described in section 3. The
coefficient Hc (17) is proportional to h

−1 and is very large when
the pore length h is small, leading to a large electroosmotic
coefficientHcomp. The action of the electric field acting on charge
confined within the cylindrical pore is much more efficient at
creating fluid motion than is the weaker electric field acting on
charge outside the pore. We see that for aκ ≥ 1 the approximate
analysis captures the main features of the full numerical results,
and it is clear from (42) that it also has the correct limits as h/a→
0 and h/a→∞. However, it is also evident from Figure 4d that
the theory is unsatisfactory when aκ ≪ 1.
The results of Figure 4 are presented in terms of the coefficient

Kcomp (44) in Figure 5. Both Kcomp and the full numerical results
now increase monotonically with h, with a final end pointKcomp =
Kc that is independent of h when h ≫ a. Figure 5, like Figure 4,
shows that the theory leading to Kcomp is inadequate when aκ≪
1. We discuss this limit in section 4, where we shall show that
when aκ≪ 1 some of the charge cloud of ions that neutralizes the
surface charge on the cylindrical wall of the pore spills out of the
ends of the pore, where it is less effective at generating
electroosmotic flow. The scenario is shown schematically in
Figure 6.

Figure 4. Electroosmotic coefficientH scaled byH0 (26) for σm = σc , as a function of h/a, for (a) aκ = 10, (b) aκ = 2, (c) aκ = 1, and (d) aκ = 0.1. Solid
line, Hcomp (42); solid circles, full PNP numerical computation.
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3. NUMERICAL SIMULATION

The time-independent PNP−Stokes equations governing the
electrical potential ϕ, the ionic number density of the ith ionic
species ni (i = 1, ...,N), the fluid velocity u and fluid pressure p are

∑ϕϵ∇ + =
=

z en 0
i

N

i
i2

1 (50)

ω ϕ∇· − ∇ + ∇ =n kT n ez nu[ ( )] 0i i i
i

i
(51)

∑μ ϕ−∇ + ∇ − ∇ =
=

p z enu 0
i

N

i
i2

1 (52)

∇· =u 0 (53)

where zi is the valence of the ith ionic species and ωi is its
mobility. Here, we restrict our attention to the caseN = 2, with z1
= −z2 = 1.
We used a finite volume numerical scheme to solve the system

of coupled eqs 50−53 in the axisymmetric geometry depicted in
Figure 1. Thus, we considered a cylindrical pore of radius a and
length h connecting two large cylindrical reservoirs of radius b.
The lengths of AB and EF in our simulation were also taken to be
b, which was kept much larger than either a or the Debye length
κ−1 so that the reservoirs were effectively infinite.

3.1. Boundary Conditions. At A and F, the two ends of the
reservoirs, ion concentrations were set equal to the concentration

Figure 5. Results of Figure 4, presented in terms of the electroosmotic coefficient K =HRtot scaled by K0 (29) for σm = σc , as a function of h/a, for (a) aκ
= 10, (b) aκ = 2, (c) aκ = 1, and (d) aκ = 0.1. Solid line, Kcomp (44); solid circles, full PNP numerical computation.

Figure 6. When the Debye length κ−1 is large compared with the pore
radius a, the cloud of counterions associated with the charged cylindrical
wall of the pore spills out of the ends of the pore.
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in the bulk electrolyte (i.e., ni = n∞
i ); a potential difference ΔV

was applied across the system by setting ϕ to ±ΔV/2,
respectively, at A and F, where the pressures were set equal to
the bulk pressure, p = p∞. At AB and EF, the side walls of the
cylindrical reservoirs, the radial component of the electric field,
ionic flux, and velocity were all set to zero, as was the tangential
shear stress, in order to minimize the effect of these boundaries.
The last condition was imposed as the cylindrical reservoirs
merely represent a convenient computational domain; the walls
of the real physical reservoir are far enough away from the pore to
be essentially irrelevant. At the membrane and pore surfaces, BC,
CD, and DE, a no-flux condition was used for (51), and a no-slip
condition was used for the flow. At solid−fluid interfaces (with
unit normal n̂), the electric potential is continuous, but the
normal component of the electric field undergoes a jump, with
[ϵE·n ̂] = σm at BC and DE and [ϵE·n ̂] = σc at CD.
An electrohydrodynamic solver was implemented to solve the

system described above using the OpenFOAM CFD library,20 a
C++ library designed for computational mechanics. A structured
mesh was constructed by means of the polyMesh meshing tool
within OpenFOAM. The grid was refined near the membrane
and pore surfaces to resolve the Debye layer. Grid independence
was checked in all cases by refining the grid and verifying that the
solution did not change within specified tolerances.
For the finite volume discretization of the governing

equations, central differences were used for all diffusive terms
in (51) and viscous terms in (52). A second-order upwind
scheme was used for the convective terms in (51). The
discretized linear system was solved using a preconditioned
conjugate gradient solver if the matrix was symmetric or a
preconditioned biconjugate gradient solver if the matrix was
asymmetric.21

An iterative scheme was used to solve the PNP−Stokes
equations. Initially, the flow velocity was set to zero. Equations 50
and 51 were then solved sequentially in a loop with under-
relaxation (to ensure stability of the nonlinear PNP system) until
the absolute residual was smaller than a specified tolerance, in our
case, 10−6. The electric force density −∇ϕ∑izien

i was then
obtained from this solution and used as an explicit external
forcing in the solution of the incompressible Stokes flow
problem, (52) and (53), solved by means of the SIMPLE
algorithm. The flow field so computed was then substituted into
(51), and the PNP equations were solved again using the updated
flow field. An outer loop was constructed to iterate over the PNP
loop and Stokes flow module until the solution changed
negligibly between two outer iterations.
Our main object of interest is the volumetric flux, Q. This was

obtained by numerically integrating the axial velocity over the
plane z = 0. At the low voltages employed, the linear relation
found between Q and ΔV leads to the electroosmotic coefficient
H = Q/ΔV, shown as discrete points in Figures 3−5 and 7. The
amount of charge within the pore was determined by numerical
integration and used to obtain the quantities hlost and hgained
reported in Table 1.

4. CHARGEOVERSPILL FROMTHE ENDSOF THE PORE,
aκ ≪ 1

4.1. Overspill of Charge from the End of a Semi-Infinite
Pore. We consider a cylindrical pore of radius a, with surface
charge density σc. When the Debye length κ−1 ≫ a, the
equilibrium potential ϕ0 (15) in an infinitely long cylinder can be
expanded as

ϕ ϕ κ= + + ···
⎛
⎝⎜

⎞
⎠⎟

r
1

( )
4a0

2

(54)

where

ϕ
σ

ϵκ κ
σ

ϵκ κ
= ≈

I a a( )
2
( )a

c

1

c

(55)

Thus, the equilibrium potential ϕ0 and charge density ρ0 =
−ϵκ2ϕ0 within the charge cloud vary little over the cross-section
of the pore. On the other hand, if the cylinder is not infinitely
long and uniform, ϕ0 and ρ0 vary in the axial (z) direction with a
length scale κ−1. We can therefore consider the equilibrium
potential ϕ0 within the cylindrical pore to be a function only of
z.19

We first consider a semi-infinite, charged cylindrical pore
going from z = 0 to z =∞. The equilibrium potentialϕ0 satisfies a
one-dimensional Poisson−Boltzmann equation

ϕ
κ ϕ= −

z

d

d

2
0

2
2

0 (56)

The solution that tends to the uniform potential ϕa within the
pore as z → ∞ far from the pore end at z = 0, is

ϕ ϕ κ= − −A zexp( )a0 (57)

for some unknown constant A. The charge density within the
charge cloud inside the pore is −ϵκ2ϕ0, and when the cylindrical
pore is infinite (and hence uniform) the charge per unit length in
the charge cloud is −πa2ϵκ2ϕa = −2πσca, equal and opposite to
the charge per unit length on the pore walls. When the pore is
semi-infinite, with a nonuniform charge cloud (57), the total
charge that is lost from within the pore is

∫π ϵκ ϕ ϕ π κϵ= − − = −
∞

q a z a A( ) dalost
2 2

0 0
2

(58)

At the end of the pore (z = 0), the potential is ϕ = ϕa − A.
In z < 0, the charge cloud is no longer confined by the walls of

the cylindrical pore and spreads out radially: it is no longer
possible to assume that ϕ0 is a function of z alone. We therefore
need to solve the linearized Poisson−Boltzmann equation in the
half-space z < 0, with ϕ0 = ϕa − A over the region z = 0, r < a and
∂ϕ0/∂z = 0 on z = 0, r > a. At large distances from the end of the
pore, the potential decays as exp(−κR)/R, where R = (z2 + r2)1/2

is a spherical polar coordinate, but in the important region R =
O(a), the potential can be approximated by the electrostatic
potential corresponding to a solution of the Laplace equation
(i.e., κ = 0). Hence, from (6),

ϕ ϕ
π ξ

= − − ⎛
⎝⎜

⎞
⎠⎟A( )

2
tan

1
sinha0

1

(59)

To relate the potential (59) to the amount of charge in the
overspilling charge cloud (in z < 0), we note that the charge on
one side of a charged disk at uniform potential (ϕa − A) in
unbounded space is q = 4aϵ(ϕa − A). Alternatively, one can
argue that far from the plane z = 0, the spherical distance R ≈
a cosh ξ, so that the potential (59) is approximately

ϕ ϕ
π

≈ − A
a
R

( )
2

a0 (60)

In a spherically symmetric geometry this field corresponds to the
far field around a point charge of magnitude 8aϵ(ϕa−A), and the
total surface charge on one side of the disk is q = 4aϵ(ϕa − A), in
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agreement with the charge obtained by considering the
capacitance of the disk. The charge in the overspill charge
cloud in z < 0 is equal and opposite to q and is therefore

ϵϕ ϵ ϕ= − = = − −q a z a A4 ( 0) 4 ( )aoverspill 0 (61)

But the total charge (61) in the overspill outside the end of the
pore must be equal to the charge (58) that has been lost from
within the pore. Hence

ϵ ϕ π κϵ− =a A a A4 ( )a
2

(62)

so that

ϕ
π κ

=
+

A
a1 /4
a

(63)

and the potential at the end of the pore is

ϕ
ϕ

π κ
− =

+
A

a1 4/( )a
a

(64)

The charge that has been lost from the end of the pore is
equivalent to the charge usually found in a pore of length

π σ κ π κ
= − =

+
h

q

a a2
4

4lost
overspill

c
2

(65)

The loss of charge implies that the combined charge cloud and
wall surface charge over a cross-section of constant z are no
longer electrically neutral, as pointed out by Baldessari and
Santiago.4,6

4.2. Overspill from the Two Ends of a Finite Pore. We
can now perform the same analysis for a pore that occupies the
region−h/2 < z < h/2. The equilibrium potential within the pore
has the form

ϕ κ= −C B zcosh( )0 (66)

where we have chosen the solution that is symmetric about the
center of the pore at z = 0. The charge that has been lost from
within the pore is

∫ϵκ π ϕ ϕ

ϵπ κ
κ

κ ϕ

= − −

= + −
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2
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2 2
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2 2

(67)

The total flux of electric field through the two ends of the pore is

π
ϕ

π κ κ∂
∂

= −
=

⎜ ⎟⎛
⎝

⎞
⎠a

z
a B

h
2 2 sinh

2
z h

2 0

/2

2

(68)

Comparing (67) and (68), we conclude that C = ϕa. The
potential over the ends of the pore is

ϕ ϕ ϕ κ= − = −h h B h( /2) ( /2) cosh( /2)a0 0 (69)

The total charge in the two overspill charge clouds is therefore,
by (61),

ϵ ϕ κ= − − ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠
⎤
⎦⎥q a B

h
8 cosh

2aoverspill (70)

and this must be equal to the charge (67) lost from within the
pore. Hence

ϕ
κ π κ κ

=
+

B
h a h

4

4 cosh( /2) sinh( /2)
a

(71)

and

ϕ κ ϕπ κ κ
κ π κ κ

− =
+
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h a h

h a h
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sinh( /2)

4 cosh( /2) sinh( /2)a
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(72)

The total charge that has been lost (from the two ends) is
equivalent to a total lost length

π σ
κ

κ κ π κ κ
= − =

+
h

q

a
h

h a h2
8 sinh( /2)

4 cosh( /2) sinh( /2)lost
overspill
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(73)

κ π κ
κ∼

+
≫

a
h

8
4

, 12 (74)

π κ
κ∼

+
≪h

ah
h

4
4 /2

, 12 (75)

We see from eqs 65 and 74 that when κh ≫ 1 the lost charge is
twice that lost from a single end of a pore. We also note that
h− hlost > 0, and that when the pore is short (κh≪ 1) the amount
of charge remaining within the cloud within the pore is
proportional to

π κ
π κ

κ− ∼
+

≪h h
a h

ah
h

8
, 1lost

2 2

2 (76)

4.3. Overspill from the Membrane Surface into the
Pore. If the cylindrical pore itself is uncharged, but the
membrane surfaces are charged, ions from the charge cloud
adjacent to the membrane surface are able to move into the ends
of the pore.
If the membrane has zero thickness, then the charge density ρ0

in the equilibrium charge cloud is given by (23), and both ρ0 and
the potential ϕ0 = −ρ0/(ϵκ2) vary over the area of the pore.
Nevertheless, we may work out the mean potential over the
circular pore

∫

∫
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where, when aκ ≪ 1

∫ ∫
κ π+
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∞ ∞aJ as J as

s s
s a

J t J t

t
t

a( ) ( )

( )
d
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d
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2
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2
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(78)

Thus, when the membrane has zero thickness (and there is no
cylindrical pore into which ions can escape) the absence of
surface charge over the area of the pore changes the average
potential over the opening from the value ϕ0 = σm/(ϵκ) due to a
uniformly charged surface to βσm/(ϵκ), where

β κ
π

κ≈ − ≪a
a1

8
3

, 1
(79)

We now consider the charge that leaks into a pore of length h >
0 from the charge clouds on either side of the membrane. We
suppose that the potential on the planes z =±h/2 is perturbed by
an amount D and becomes
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ϕ
βσ
ϵκ

= + = ±D z h, /20
m

(80)

Within the pore, the potential obeys the one-dimensional
Poisson−Boltzmann equation (52), with solution
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ϵκ

κ
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(81)

and the additional charge within the pore is

∫ϵκ π ϕ
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(82)

Outside the pore, the perturbed potential (80) is associated with
a total additional charge (61)

ϵ= −q a D8out (83)

on the two sides of the membrane. But the total change in charge
caused by this redistribution must be zero, i.e., qin + qout = 0.
Hence
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i.e.
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(85)

The total charge qin = −qout (83) that leaks into the pore at the
two ends corresponds to the charge inside a uniformly charged
cylinder with surface charge density σm, of length
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π σ

β κ
κ π κ κ

κβ

= − =
+

=

h
a D
a

a h
h a h

a
h

8
2

4 sinh( /2)
4 cosh( /2) sinh( /2)

2

gained
m

lost (86)

κβ κ∼ ≪a h
h

2
, 1

(87)

β
π κ

κ∼
+

≫a
a

h
2

, 1
(88)

Thus, hgained (86) is smaller than hlost (73) by a factor aκβ/2. We
can compare predictions (73) and (86) against results obtained
from full numerical solution of the nonlinear Poisson−
Boltzmann equation with either σm = 0 and aeσc/(ϵkT) =
aκeζc/(kT) = 0.00273 or σc = 0 and aeσm/(ϵkT) = 0.00273:
results for aκ = 0.1 are given in Table 1. We see that there is
excellent agreement between the numerical computations and
the analysis presented above.
4.4. Composite Electroosmotic Coefficient. We first

consider how the electroosmotic coefficients Hc and Hm are
modified by the overspill of the charge cloud from inside the
cylindrical pore to outside the membrane. If a uniform electric
field of strength E = −ϕ1/h is applied between the ends of the
pore, then the Navier−Stokes equations for steady flow yield the
axial velocity profile

μ
ρ= − −
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d
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so that the volumetric flow rate is
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But Q is independent of z (by incompressibility), and the
difference in pressure p between the two ends of the capillary is
zero. Hence, integrating (90) along the length h of the cylindrical
pore and noting that the total amount of charge in the charge
cloud remaining within the pore is 2πaσc(h − hlost), we find
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(91)

which may be compared to the result (18b) which ignores
overspill. The charge cloud outside the pore is enhanced by the
overspill and becomes (in z > 0)
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(92)

with the final term [ϕa−B cosh (κh/2)], corresponding to the
overspill charge cloud (72), being approximately valid in a
volume O(a3) around the pore, but invalid at large distance
O(κ−1) from the pore, where the exponential decay of the charge
density is not captured by the solution (59) of the Laplace
equation. The volumetric flow rate through a pore of zero
thickness created by a potential difference ϕ1 is given by the
integral (21) and was shown by Mao et al.1 to be
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where

∫ ∫ξ
ξ

ξ

π

= =
+

=

∞
−

∞
−⎛

⎝⎜
⎞
⎠⎟I x

x
x

tan
1

sinh
d

cosh
tan

d
1

8

3
0

1

0

1
2

2

(94)

Table 1. Charge Losta,c from the Ends of a Charged Pore
when the Membrane Charge Density σm = 0, and the Charge
Gained Inside an Uncharged Pore (σc = 0) from the Charge
Cloud Adjacent to the Charged Membrane Surfaceb,c

hlost/a hgained/a

h/a hκ theory (73) numerical theory (86) numerical

10.0 1.0 8.9186 8.9249 0.4081 0.4119
1.0 0.1 0.9953 0.9954 0.0455 0.0459
0.1 0.01 0.1000 0.1000 0.0046 0.0046

aIn terms of an equivalent pore length hlost (73).
bIn terms of an

equivalent pore length hgained (86).
caκ = 0.1.
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Hence, the electroosmotic flow rate Q =Hmϕ1 due to the charge
cloud outside the membrane is modified, and Hm becomes
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π κ σ
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a h
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(95)

If σm is comparable to σc , then we saw in section 4.3 that the
change in the charge within the pore due to the charge cloud
outside the membrane entering the pore is O(aκ) smaller than
the loss of charge from the charge cloud within the pore to the
regions outside the membrane. However, this contribution can
be included with very little effort and becomes important in the
limit h → 0, when the gain (87) in charge within the pore from
the outside surface charge density σm is proportional to hgained ∝
h, whereas the charge cloud (due to σc within the pore)
remaining within the pore is proportional to h − hlost ∝ h2, by
(76). The electroosmotic coefficient Hc for the cylindrical pore
(91) becomes

π σ σ σ

μ
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− +
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a h h h

h

( / )
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3
c lost gained m c

2
(96)

and the electroosmotic coefficient Hm for the charge cloud
outside the membrane (95) becomes
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π κ σ κβσ
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(97)

Now that Hc (96) and Hm (97) have been corrected for the
effects of overspill in the two directions, they can be inserted into
expression (42) for the composite electroosmotic coefficient
Hcomp. Results are shown in Figure 7a, together with full
numerical solutions of the Poisson−Nernst−Planck equations.
We see that the agreement between theory and computation is
much better than when overspill is ignored (Figure 4d). Charge
overspill or underspill causes the total charge of mobile ions
within the pore to differ from what might be expected on the
basis of net electroneutrality of the pore. Thus, the driving force
is modified, leading to deviations from the calculated result that
ignores such effects. The “lost length” hlost in (96) restores this
effect. Figure 7b shows the results of Figure 7a expressed in terms

of K, rather than H, and there is again good agreement between
the theoretical Kcomp and full numerical results.
Note that when h≪ κ−1 the effective length of the cylindrical

pore h−hlost ≈ πaκ2h/2, by (76). The approximation (96) for Hc
is therefore dominated by the term hgained and gives Hc ∼
πa4κβσm/(8hμ), with Hc/Hm ∼ 3πaβ/(8h). We conclude from
(43) thatHcomp is a decreasing function of h near h = 0, as seen in
Figure 7a.

5. CONCLUDING REMARKS

The analysis presented here shows that it is possible to use simple
analyses based on continuity of volumetric flow rate and electric
current to estimate electroosmotic end effects in a charged
cylindrical pore traversing a membrane of thickness h > 0. Note
that we have made repeated use of the assumption that surface
charge densities, and corresponding zeta potentials, are small. We
have not only worked with the linearized Poisson−Boltzmann
equation (2), but have also used superposition to combine
various contributions to the charge clouds due to overspill of the
clouds from one region (inside/outside the pore) to the other. At
high potentials, it would also be necessary to keep track of the
fluxes of individual ion species, rather than simply ensuring that
the total electrical current is continuous.9

The assumption of small potentials also justifies our neglect of
other nonlinear electrokinetic effects such as induced charge
electroosmosis (ICEO),22,23 which can produce vortices in the
vicinity of sharp corners24 or near rapid constrictions in
channels25 when the permittivity of the solid ϵs > 0. However,
numerical solutions confirm the expectation that the flow rate is
only weakly affected by such vortices, particularly under
conditions of small potentials.26

In recent experiments27−31 on nanopores, potential differ-
ences Δϕ ∼ 0−200 mV were applied across the pore. Here, we
have assumed that Δϕ ≪ ζ, where ζ itself is assumed small in
comparison with the thermal voltage kT/e ∼ 25 mV. Thus, our
results can only be expected to describe the initial linear part of
the current−voltage and flow−voltage characteristics, even
though numerical simulations seem to show26 that this linear
regime extends to applied voltages ∼100 mV.
Finally, we point out that the correction factor β (79) reminds

us that the hole in the charged membrane removes a circular

Figure 7. (a) Electroosmotic coefficient H scaled by H0 (26) for σm = σc, as a function of h/a, for aκ = 0.1, including the effect of overspilling charge
clouds. Solid line, Hcomp (42), using Hc given by (96) and Hm given by (97); solid circles, full PNP numerical computation (cf. Figure 4d, in which
overspill was neglected). (b) The same results, presented in terms ofK = RtotH scaled byK0 (29). Solid line,Kcomp (44), usingKc = RcHc andKm = RmHm;
solid circles, full computation (cf. Figure 5d).
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region of surface charge and reduces the equilibrium potential at
the entrance to the pore. The introduction of β < 1 improved the
agreement between theoretical and numerical results for hgained in
Table 1. However, the analysis is not rigorous, since the
equilibrium potential across the hole is not uniform. The O(1 −
β) correction to the equilibrium potential corresponds to anO(1
− β) correction to the charge density ρ0. If we use this in the
integral expression (93) in order to determine a correction to the
electroosmotic flow rate through a membrane of zero thickness,
then the analysis suggests that the correction to the leading order
result (25) for aκ≪ 1 should beO((aκ)2), whereas investigation
of the difference (seen in Figure 3) between numerical results
and the asymptote (25) indicates additional corrections O((aκ)2

ln aκ).
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