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Abstract

Two central biophysical laws describe sensory responses to input signals. One is a logarithmic relationship between input
and output, and the other is a power law relationship. These laws are sometimes called the Weber-Fechner law and the
Stevens power law, respectively. The two laws are found in a wide variety of human sensory systems including hearing,
vision, taste, and weight perception; they also occur in the responses of cells to stimuli. However the mechanistic origin of
these laws is not fully understood. To address this, we consider a class of biological circuits exhibiting a property called fold-
change detection (FCD). In these circuits the response dynamics depend only on the relative change in input signal and not
its absolute level, a property which applies to many physiological and cellular sensory systems. We show analytically that by
changing a single parameter in the FCD circuits, both logarithmic and power-law relationships emerge; these laws are
modified versions of the Weber-Fechner and Stevens laws. The parameter that determines which law is found is the
steepness (effective Hill coefficient) of the effect of the internal variable on the output. This finding applies to major circuit
architectures found in biological systems, including the incoherent feed-forward loop and nonlinear integral feedback
loops. Therefore, if one measures the response to different fold changes in input signal and observes a logarithmic or power
law, the present theory can be used to rule out certain FCD mechanisms, and to predict their cooperativity parameter. We
demonstrate this approach using data from eukaryotic chemotaxis signaling.
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Introduction

Biological sensory systems have been quantitatively studied for

over 150 years. In many sensory systems, the response to a step

increase in signal rises, reaches a peak response, and then falls,

adapting back to a baseline level, zst (Fig. 1a upper panel). Consider

a step increase in input signal from I0 to I1, such that the relative

change is RI:
DI

I
~

I1{I0

I0

. There are two commonly observed

forms for the input-output relationship in sensory systems:

logarithmic and power law. In the logarithmic case, the relative

peak response of the system Rz:
Dz

z
~

zmax{zst

zst

is proportional

not to the input level but to its logarithm Rz*log RI . A logarithmic

scale of z versus I, namely Dz~log I , is often called the Weber-

Fechner law [1], and is related but distinct from the present

definition
Dz

z
~log

DI

I
. In the case of a power-law relationship, the

maximal response is proportional to a power of the input Rz*R
b
I

(Fig. 1a lower panel) [2]. In physiology this is known as the Stevens

power law; the power law exponent b varies between sensory

systems, and ranges between b&0:3{3:5 [2]. For example the

human perception of brightness, apparent length and electrical

shock display exponents b~0:33, 1:1, 3:5 respectively.

Both logarithmic and power-law descriptions are empirical;

when valid, they are typically found to be quite accurate over a

range of a few decades of input signal. For example, both laws

emerge in visual threshold estimation experiments [3]. In that

study, the logarithmic law was found to describe the response to

strong signals and the power-law to weak ones. However the

mechanistic origins of these laws, and the mechanistic parameters

that lead to one law or the other, are currently unclear.

Theoretical studies have suggested that these laws can be derived

from optimization criteria for information processing [4,5], such as

accounting for scale invariance of input signals [6]. Both laws can

be found in models that describe sensory systems as excitable

media [7]. Other studies attempt to relate these laws to properties

of specific neuronal circuits [8,9]. Here we seek a simple and

general model of sensory systems which can clarify which

mechanistic parameters might explain the origin of the two laws

in sensory systems.

To address the input-output dependence of biological sensory

systems, we use a recently proposed class of circuit models that

show a property known as fold-change detection [10,11]. Fold

change detection (FCD) means that, for a wide range of input

signals, the output depends only on the relative changes in input;

identical relative changes in input result in identical output

dynamics, including response amplitude and timing (Fig. 1b).

Thus, a step in input from level 1 to level 2 yields exactly the same

temporal output curve as a step from 2 to 4, because both steps

show a 2-fold change. FCD has been shown to occur in bacterial

chemotaxis, first theoretically [10,11] and then by means of
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dynamical experiments [12,13]. FCD is thought to also occur in

human sensory systems including vision and hearing [11], as well

as in cellular sensory pathways [14–17].

FCD can be implemented by commonly occurring gene

regulation circuits, such as the network motif known as the

incoherent feed-forward loop (I1-FFL) [10], as well as certain types

of nonlinear integral feedback loops (NLIFL) [11]. Recently, the

response of an FCD circuit to multiple simultaneous inputs was

theoretically studied [18]. Mechanistically, FCD is based on an

internal variable that stores information about the past signals, and

normalizes the output signal accordingly. We find here, using

analytical solutions, that simple fold-change detection circuits can

show either logarithmic or power law behavior. The type of law,

and the power-law exponent b, depend primarily on a single

parameter: the steepness (effective Hill coefficient) of the effect of

the internal variable on the output.

Results

Analytical solution for the dynamics of the I1-FFL circuit
in its FCD regime

We begin with a common gene regulation circuit [19] that can

show FCD, the incoherent type 1 feed-forward loop (I1-FFL) [10].

In transcription networks, this circuit is made of an activator that

regulates a gene and also the repressor of that gene. More

generally, we can consider an input X that activates the output Z,

and also activates an internal variable Y that represses Z (Fig. 2).

We study a model (Eq. 1, 2) for the I1-FFL with AND logic (that is,

where X and Y act multiplicatively to regulate Z), which includes

ordinary differential equations for the dynamics of the internal

variable Y and the output Z [20–22]. We use standard

biochemical functions to describe this system [23].

_YY~byf (X ){ayY ð1Þ

_ZZ~bzg(X )
Kn

yz

Kn
yzzY n

{azZ ð2Þ

The production rate of Y is governed by the input X according to

a general input function f (X ) (in cases where X is a transcription

factor, X denotes the active state). The maximal production rate of

Y is by. The repressor Y is removed (dilution+degradation) at rate

ay (Eq. 1). We assume here that saturating signal of Y is present, so

that all of Y is in its active form. The product Z which is repressed

by Y and activated by X is produced at a rate that is a function of

both X and Y, denoted G(X ,Y ). An experimental survey of E. coli
input functions suggested that many are well described by

separation of variables: the two-dimensional input function

Figure 1. Input/output relationships of sensory systems can be described by a logarithmic law or a power law. a) In many sensory
systems the dynamical response to a step increase in input signal, I, is a transient increase of output Z followed by adaptation to a lower steady state. The

relative maximal response is Rz:
zmax{zst

zst

. Two laws are often found. The first is a logarithmic law, Rz*log RI . The second law is a power law, Rz*RI
b

with different exponent b for each system. b) Fold change detection (FCD) describes a system whose response depends only on the relative change in
input signal and not the absolute level. Therefore, for a step increase from 1 to 2 and then from 2 to 4 the system response curve is exactly the same.
doi:10.1371/journal.pcbi.1003781.g001

Author Summary

One of the first measurements an experimentalist makes to
understand a sensory system is to explore the relation
between input signal and the systems response amplitude.
Here, we show using mathematical models that this
measurement can give important clues about the possible
mechanism of sensing. We use models that incorporate
the nearly-universal features of sensory systems, including
hearing and vision, and the sensing pathways of individual
cells. These nearly-universal features include exact adap-
tation-the ability to ignore prolonged input stimuli and
return to basal activity, and fold-change detection-
response to relative changes in input, not absolute
changes. Together with information on the input-output
relationship-e.g. is it a logarithmic or a power law
relationship-we show that these conditions provide
enough constraints to allow the researcher to reject
certain circuit designs; it also predicts, if one assumes a
given design, one of its key parameters. This study can
thus help unify our understanding of sensory systems, and
help pinpoint the possible biological circuits based on
physiological measurements.

Biophysical Laws and Fold Change Detection
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separates to a product of one dimensional functions,

G(X ,Y )~g(X )h(Y ) [24], where g(X ) and h(Y ) are Hill functions

(for more explanation see the Methods section). We therefore use a

general form for the X dependence, g(X ), and multiply it by a

repressive Hill function of Y (Eq. 2), with a maximal production

rate bz. The removal rate of Z is az. Here we consider step input

functions in which X changes rapidly from one value to another.

The values of f (X ) and g(X ) is determined by the step size in

input.

For clarity, upper case letters relate to the elements in the circuit

and lower case letters describe normalized model variables. The

two-equation model (Eq. 1, 2) has 6 parameters. Dimensional

analysis (fully described in Methods) reduces this to three

dimensionless parameters (Eq. 3, 4).

The first parameter, c, is the normalized halfway repression

point of the output, defined by c:
Kyz

Y 0
st

, where Y 0
st is the pre-step

steady state level and Kyz is the level of Y needed to half-way

repress Z. The second parameter is the cooperativity or steepness

of the input function, n. The final parameter is the ratio of decay

rates of Z and Y, r:
az

ay

. The normalized variables, y:
Y

Yst
0

and

z:
Z

bz=azg(X ,tv0)
, are the new dimensionless variables in the

model. Table 1 summarizes the parameters in the model for the

I1-FFL.

This model for the I1-FFL describes the response to a step

increase in input, starting from fully adapted conditions. We

consider a change between an input level of I0:f (X ,tv0)~1, to

a new level I1:f (X ,tw0)~F . The step is thus characterized by

the fold change F equal to the ratio between the initial and final

input levels, F~I1=I0.

In order for FCD to hold, the production rate of Z must be

proportional to X n (g(X )!X n), where the power law exponent n

is the same as the Hill coefficient that describes the steepness of the

input function. In this way, the internal variable, Y, can precisely

normalize out the fold change in input (see Methods). The model

thus reads:

_yy~F{y ð3Þ

1

r
_zz~Fn cn

cnzyn
{z ð4Þ

The higher c, the more Y is needed to repress Z. The parameter n
- the Hill coefficient of the input function - is important for this

study, and determines the steepness of the regulation of the output

Z by the internal variable Y (Fig. 2). The higher n the more steep

the repression of Z by Y. The limit n?? resembles step-like

regulation. Biochemical systems often have Hill coefficients in the

range n~1{4 [23]. The ratio between the removal rates, r,

describes the relative time scale between Y and Z. For r~1, Y and

Z have the same removal rates, and for r&1, the output Z is much

faster than Y.

Goentoro et al. [15] showed, using a numerical parameter scan,

that this circuit can perform FCD provided that threshold of the Z

repression, Kyz, is small: that is c?0. We therefore further analyze

the limit of c?0, meaning strong repression of Z, where the

equation for the product Z (Eq. 4) becomes:

1

r
_zz%Fn cn

yn
{z ð5Þ

In this limit, the system exhibits fold change detection since it

obeys the sufficient conditions for FCD in Shoval et al (2010) (see

Methods). We analytically solved the model (Eqs. 3, 5), in the limit

of small c, for all values of n, with initial conditions corresponding

to steady state at the previous signal level, y(0)~1, z(0)~zst~cn

(in the limit c?0). The solution (derived in Methods) is a decaying

exponential multiplied by a term that contains a Beta function

(Fig. 3a):

z(t)

zst

~e{rt(1zr
F{1

F

� �r

B(
F{1

F
e{t,

F{1

F
,{r,1{n)) ð6Þ

where the Beta function is B(a,b,x,y)~
Ðb
a

ux{1(1{u)y{1du. The

dynamics of the output z shows a rise, reaches a peak zmax, and

then falls to the pre-signal steady state (Fig. 3a). At t?0 the

solution is approximately linear with a slope that depends on F, n
and r:

z(t)t?0

zst

%1zr(Fn{1)t ð7Þ

At t?? the solution decays exponentially:

z(t)t??

zst

%1ze{rtzn
F{1

F
e{t ð8Þ

As in all FCD systems, exact adaptation is found. The error of

exact adaptation, ":
zst(F ){zst(F~1)

zst(F~1)
goes as "*cn and

vanishes at c?0.

We explored how three main dynamical features depend on the

input fold change F and the dimensionless parameters n and r.

The first feature is the amplitude of the response, defined as the

maximal point in the output z dynamics, zmax. The second

dynamical feature is the timing of the peak, tpeak. The third feature

is the adaptation time, t [25,26] which we define as the time it

takes z to reach halfway between zmax and its steady state (Fig. 3a).

We denote RI as the relative change in the input signal, RI~F{1

and Rz~
zmax{zst

zst

as the relative maximal amplitude of the

response. Since r has only mild effects, we discuss it in the last

section, and begin with r~1, namely equal timescales for the two

model variables.

Figure 2. A model for the incoherent feed-forward loop
includes three dimensionless parameters. In the incoherent type
1 feed-forward loop (I1-FFL) input X regulates an internal variable Y and
both X and Y regulate Z. The repression of Z by Y is described by a Hill
function with steepness n and halfway repression point c.
doi:10.1371/journal.pcbi.1003781.g002
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A power law relation emerges when the cooperativity n
of the input function is larger than one; Logarithmic
behavior occurs when n equals one

We tested the effects of cooperativity in the input function, n, on

the dynamics of the response. Cooperativity seems to have a weak

effect on the timescales of the response: The adaptation time t and

the peak time tpeak decrease mildly with the fold F. For r~1, the

analytical solution of the time of the peak tpeak for all values of n is:

tpeak~log
RI

1zRI

1z
1

1zRzð Þ1=n{1

 ! !
(see derivation in

Methods). Substituting the corresponding relative response, Rz,

we receive a mildly decreasing function (Fig. 3b).

In contrast to the mild effect of cooperativity on timescales,

cooperativity has a dramatic effect on the response amplitude. The

maximal amplitude of the output z relative to its basal level, Rz,

increases with the fold and behaves differently for each n. For low

steepness, n~1, Rz increases in an approximately logarithmic

manner with RI (for RI&1), Rz*log(F{1)~log RI (normalized

root-mean-square deviation, RMSD~0:014 for fitting to

a log RIzb compared to RMSD~0:029 for fitting to aRI
b- see

Methods). More precisely the analytical solution is

Rz~product log RI

e
(see Methods) (Fig. 4a). The function

y~product log(x) is defined as the solution to the equation

x~yey. The productlog function is approximately linear at x%1,

and approximately log(x) at x&1.

For n~2, the peak response increases linearly Rz*F{1~RI .

For n~3, the increase is approximately quadratic,

Rz* F{1ð Þ2~RI
2 (Fig. 4b). We find that for any nw1, the

increase is approximately a power law with exponent n{1 in the

limit of large RI : Rz^
1

n{1
F{1ð Þn{1

(see Methods)

(RMSD~0:049,0:003,0:009 for fitting to
1

b
RI

b compared to

RMSD~0:191, 0:436, 0:671 for fitting to a log RIzb for

n~2, 3, 4 respectively). Note that the pre-factor in the power

law is also predicted to depend simply on the Hill coefficient for

nw1, namely to be equal to
1

n{1
(for r~1). Indeed in fitting the

numerical solution the best fit parameter is approximately

b^n{1: b~0:92, 1:99, 3:0 for n~2, 3, 4 respectively. The

dependence of output amplitude on input fold-change is thus a

power law, similar to Stevens power law, except for n~1 where

the output dependence is logarithmic.

One point to consider regarding step input functions is that

realistic inputs are not infinitely fast steps; however, a gradual

change in input behaves almost exactly like an infinitely rapid step,

as long as the timescale of the change in input is fast compared to

the timescale of the Y and Z components. To demonstrate this, we

computed the response to changes in input that have a timescale

parameter ax that can be tuned to go from very slow to very fast:

X (t)~1z F{1ð Þtanh axtð Þ (Fig. 5a). When axw*ay,az, the

behavior of the relative maximal amplitude of the response, Rz,

as a function of the relative change in the input signal, RI~F{1,

is very similar to the infinitely fast step solution (less than 5%

difference for F~50, n~r~1 and
ax

ay

~10, Fig. 5b). When the

change in input is much slower than the typical timescales of the

circuit, the response is very small, since the signal is perceived

almost as a steady-state constant. For slow changes in input, the

I1-FFL response can be shown to be approximately proportional

to the logarithmic temporal derivative of the signal [27–30].

A nonlinear integral feedback mechanism for FCD also
shows a power law behavior

In addition to the I1-FFL mechanism, a non-linear integral

feedback based mechanism (NLIFL) for FCD at small values of c
has been proposed by Shoval et al [11] (see Methods section)

(Fig. 6a). This mechanism is found in models for bacterial

chemotaxis [28]. The full model is described by:

_YY~kY (Z{Z0) ð9Þ

_ZZ~bzg(X )
Ky

n

Ky
nzY n

{azZ ð10Þ

Its dimensionless equations following dimensional analysis (fully

described in Methods) are:

_yy~y(z{
cn

cnz1
) ð11Þ

Table 1. A parameter table for the I1-FFL model.

Parameter Biological meaning Definition

by Maximal production rate of Y

ay Removal rate of Y

bz Maximal production rate of Z

az Removal rate of Z

Kyz Halfway repression point of Z by Y

n Steepness of input function

Y 0
st

Pre-signal steady state of Y by

ay

f (X ,tv0)

c Normalized halfway repression point of Z by Y (dimensionless) Kyz

Y 0
st

r Removal rates ratio (dimensionless) az

ay

doi:10.1371/journal.pcbi.1003781.t001
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1

r
_zz~Fn cn

cnzyn
{z ð12Þ

Where the new variables are: y:
Y

Yst
0
, z:

Z

Z0

cn

1zcn
and the

dimensionless parameters are defined as: c:
Ky

Y 0
st

and

r:
az

2

kbzg(X ,tv0)
(Methods). Table 2 summarizes the parameters

in the model for the NLIFL.

We solved the NLIFL model (Eqs. 11, 12) numerically for the

limit c%1 and find that the maximal response increases with the

relative change in the signal in a power-law manner, Rz%aR
b
I

(Fig. 6b). The best-fit power law exponents increase with n,

namely b~0:7, 1, 1:4, 1:8 at n~1, 2, 3, 4 for r~1. A log RI

dependence does not fit the data at n~1 (RMSD~0:01 for fitting

to aRI
b compared to RMSD~0:18,0:39,0:55,0:68 for fitting to

a log RI for n~1, 2, 3, 4 respectively). To a good approximation,

the power law is linearly related to the steepness parameter n, by

b~0:1z0:46n (Fig. 6c).

The time scales in this circuit seem to decrease faster with the

fold F for nw2 than in the I1-FFL case, tpeak,t^aRh
I where

htpeak
~{0:3,{0:6,{0:9,{1:3 and ht~{0:3,{0:7,{1,{1:5

at n~1, 2, 3, 4 (Fig. 6d, all the fits of tpeak,t have R2
w0:99).

Given the results so far, one can use the present approach to

rule out certain mechanisms. If one observes a logarithmic

dependence, one can draw at least two conclusions: (i) the NLIFL

model addressed here can be rejected, (ii) if the I1-FFL model

addressed here is at play, its steepness coefficient is n~1.

If one observes a linear dependence of input on output, the I1-

FFL and NLIFL mechanisms cannot be distinguished. The

steepness can be inferred to be about n~2 for both circuits.

Logarithmic law in eukaryotic signaling FCD
We applied the present approach to data from Takeda et al

[17] on Dictyostelium discoideum chemotaxis. In these exper-

Figure 3. The I1-FFL shows FCD in the limit c?0. a) Response to a step increase in input from I0 to I1 , which can be described by

RI:
I1{I0

I0
~F{1 where F:

I1

I0
. The output dynamics show three features of interest: the amplitude of the peak response zmax the timing of the

peak, tpeak and the adaptation time t. b) The time scales of the response, the timing of the peak tpeak and the adaptation time t, mildly decrease with
the relative change in the input signal, RI . The steepness, n, does not have a dramatic affect on this decrease.
doi:10.1371/journal.pcbi.1003781.g003
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iments, the input is cAMP steps applied to cells within a micro-

fluidic system, and the output is a fluorescent reporter for Ras-

GTP kinetics. The output showed nearly perfect adaptation

and FCD-like response to a wide range of input cAMP steps.

We re-drew the peak amplitude (Fig. 7a) and the time of peak

(Fig. 7b) as a function of the added cAMP concentrations and

find that it is well described by the analytical solution of the

maximal response and time of peak for an I1-FFL circuit with

n~1. The peak amplitude (Rz) as a function of the relative

input RI is well described by a logarithmic relationship (mean-

square weighted deviation, MSWD~0:09 for fitting the data

to a log RIzb considering the error-bars – see Methods).

Fitting it to a power law aRI
b results in a small exponent

b^0:12 (MSWD~0:11) (Fig. 7c). Such a small power law

Figure 4. The response amplitude follows an approximately logarithmic law for n = 1 and a power law at n.1. a) The numerical solution

of the amplitude of the response, Rz , with n = 1, is shown (blue dots) as well as its analytical solution Rz~product log
RI

e
(blue curve) in a log-linear plot.

A fit to Rz~a log RI zb (red curve) captures the behavior better than a fit to Rz~aRI
b (green curve). b) For n.1 the numerical solution of the

amplitude of the response, Rz , is shown (in dots) as function of RI in a log-log plot. A fit to a power law behavior Rz~
1

b
RI

b with only one parameter

(solid lines) describes the numerical results better than a fit to a logarithmic behavior Rz~a log RI zb (dashed lines). At the limit of large RI , b^n{1.
doi:10.1371/journal.pcbi.1003781.g004
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exponent can only be obtained with a negative cooperativity in

the NLIFL model considered here. Such negative cooperativity

is rare in biological systems [31,32]. If we consider only

positive cooperativity (n§1), as found in most biological

systems, the NLIFL model considered here provides a poor

fit to the data (b~0:7,MSWD~0:17) (Fig. 7c).

Thus, the present analysis is most consistent with an I1-FFL

mechanism considered here with n~1. The same is found when

plotting the observed time-to-peak (tpeak) versus the analytical solution

of the I1-FFL model (tpeak~log
RI

1zRI

1z
1

1zRzð Þ1=n{1

 ! !
)

with n~1 (MSWD~0:02 for fitting to a log

RI

1zRI

1z
1

product log
RI

e

0
B@

1
CA

0
B@

1
CA) (Fig. 7d). This agrees with the

numerical model fitting performed by Takeda et al, who conclude

that an I1-FFL mechanism is likely to be at play (they used n~1 in

their I1-FFL model, which is based on degradation of component Z

by Y, rather than inhibition of production of Z by Y as in the present

model).

In this analysis we assumed that the experimentally measured

fluorescent reporter is in linear relation to the biological sensory

Figure 5. Rapidly changing input signal leads to responses similar to a step increase in signal; slowly changing input leads to weak
response. a) Input signal with a tunable timescale, X (t)~1z(F{1)tanh(axt) with F~10, ax~2. This signal goes form level 1 to level F, with a
halfway time that goes as 1=ax. b) The relative maximal amplitude, Rz , as a function of the relative change in the input signal RI , is plotted for various
values of the input timescale ax. When the signal changes much faster than the timescale of the circuit, ax&ay,az , the response is similar to the
analytical solution for an infinitely fast step in input (Full red curve). When the timescale is slow, ax%ay,az , the response of the circuit is weak.
doi:10.1371/journal.pcbi.1003781.g005
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output, Ras activity. If this relation turns out to be nonlinear, the

conclusions of this analysis must be accordingly modified.

Effect of timescale separation between the variables
In the eukaryotic chemotaxis system, the two model variables Y and

Z have similar timescales (r:az
�
ay
*1). We also studied the effect of

different timescales (r=1), and find qualitatively similar results. A

logarithmic dependence of amplitude on F is found when n~1, and a

power law when nw1. The power law b increases weakly with r
(Fig. 8a). In the limit of very fast Z (r??), the solution approaches an

instantaneous approximation (obtained by setting _zz~0) in which the

power law is n instead of n{1 (Fig. 8b). There is a cross over from the

Stevens power law b~n{1 when F&r, to the instantaneous model

power law b~n when 1%F%r (Fig. 8c). An analytical solution that

exemplifies this crossover can be obtained at n~1, where

Figure 6. A different circuit showing FCD, the non-linear integral feedback loop (NLIFL), also exhibits a power law behavior. a) The
NLIFL mechanism. b) The amplitude of the response is a power law of the relative change in input signal. c) The power-law exponent b increases
linearly with n. d) The time-scales decrease faster with the fold change of the signal, RI , and with n than in the incoherent feed-forward loop case
(Fig. 3b).
doi:10.1371/journal.pcbi.1003781.g006

Table 2. A parameter table for the NLIFL model.

Parameter Biological meaning Definition

k

Z0 Steady state level of Z

bz Maximal production rate of Z

az Removal rate of Z

Ky Halfway repression point of Z by Y

n Steepness of input function

Y 0
st

Pre-signal steady state of Y

Ky

bzg(X ,tv0)

azZ0

{1

� �1=n

c Normalized halfway repression point of Z by Y (dimensionless) Ky

Y 0
st

r Timescale ratio (dimensionless) az
2

kbzg(X ,tv0)

doi:10.1371/journal.pcbi.1003781.t002
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Rz~rproduct log(
RI

re
) (Methods). Because of the limit behavior of

the productlog function mentioned above, at small fold values Rz*RI ,

and at large values Rz*log RI . In summary, the instantaneous

approximation, commonly used in biological modeling, must be done

with care in the case of FCD systems.

Discussion

This study explored how two common biophysical laws,

logarithmic and power-law, can stem from mechanistic models of

sensing. We consider two of the best studied fold-change detection

mechanisms, and find that a single model parameter controls which

law is found: the steepness n of the effect of the internal variable on

the output. We solved the dynamics analytically for the I1-FFL

mechanism, finding that logarithmic-like input-output relations

occurs when n~1, and power-law occurs when nw1, with power

law b%n{1, and prefactor
1

n{1
at r~1. The nonlinear integral

feedback loop (NLIFL) mechanism - a second class of mechanisms

to achieve FCD - can only produce a power law. Thus, if one

observes logarithmic behavior, one can rule out the specific NLIFL

mechanism considered here. This appears to be the case in

experimental data on eukaryotic chemotaxis [17], in which good

agreement is found to the present results in the I1-FFL mechanism

with n~1 in both peak response and timing.

This theory gives a prediction about the internal mechanism for

sensory systems based on the observed laws that connect input and

output signals. Thus, by measuring the system response to different

folds in the input signal one may infer the cooperativity of the input

function and potentially rule out certain classes of mechanism. For

example, if a linear dependence of amplitude on fold change is

observed (power law with exponent b~1), one can infer that the

steepness coefficient is about n~2 for both the specific I1-FFL and

NLIFL circuits considered here, with slight modification if the

timescales of variables are unequal. Such a linear detection of fold

changes may occur in drosophila development of the wing imaginal

disk [33–35].

The problem of finding the FCD response amplitude shows a

feature of technical interest for modeling biological circuits. In many

modeling studies, a quasi-steady-state approximation, also called an

instantaneous approximation, is used when a separation of timescales

exists between processes. In this approximation, one replaces the

differential equation for the fast variables by an algebraic equation, by

setting the temporal derivative of the fast variable to zero. This

approximation results in simpler formulae, and is often very accurate,

for example in estimating Michaelis-Menten enzyme steady states [36].

However, as noted by Segel et al [36], this approximation is invalid to

Figure 7. A mechanism of eukaryotic signaling FCD illustrates this theory. a) The response of Ras-GTP to different concentrations of added
cAMP in Dictyostelium discoideum chemotaxis is re-plotted together with the timing of the peak (b). A logarithmic function describes the data well.
The black lines are our fit to the data. c) The response of Ras-GTP is re-plotted as function of the different fold changes in cAMP concentrations. The
solid line is a fit to Rz~a log RI zb, the black dashed line is a fit to Rz~aRI

b and the green dashed line is a fit to a power law with exponent b~0:7.
d) The corresponding solution for the timing of the peak for I1-FFL with n = 1 explains well the data.
doi:10.1371/journal.pcbi.1003781.g007
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describe transients on the fast time scale. In the present study, we are

interested in the maximal amplitude of the FCD circuits. In some input

regimes, namely F&r, the instantaneous approximation predicts an

incorrect power law. To obtain accurate estimates, the full set of

equations must be solved without setting derivatives to zero.

It would be interesting to use the present approach to analyze

experiments on other FCD systems, and to gain mechanistic

understanding of sensory computations.

Methods

The two dimensional input function can be considered
as a product of one dimensional input functions

Consider a general partition function for an input function with

an activator and a repressor: G(X ,Y )~
aX n

1zbX nzcY mzdX nY m
.

The regime in which FCD applies is that of strong repression,

cY m
ww1 and non-saturated activation bX n

vv1 [10]. In this

limit, G(X ,Y )^
aX n

cY m
, and is thus well approximated by a product.

More generally, G(X,Y) is a product of two functions

whenever binding is independent, G(X ,Y )~
aX n

1zbX n

1

1zcY m
~

aX n

1zbX nzcY mzbcX nY m
, which occurs when the relation d~bc

holds. The biological meaning of the relation is that X and Y bind

the Z promoter independently so that the probability of X to bind

the promoter and the probability of Y to unbind equals the

multiplication of the probabilities:

P(Xbound ^Yunbound)~P(Xbound)P(Yunbound):

Figure 8. The instantaneous approximation does not capture the correct amplitude behavior. a) The power law for n = 1 increases mildly
with r to a value between 1 and 2. b) The instantaneous approximation (in red) and the full model solution (in black) are plotted as function of time
for F~5,n~2,r&250. c) The maximal response zmax normalized to zmax

inst
~Fn is plotted for different folds and for n = 1. The error between the

maxima of the instantaneous approximation and the full model increases with the fold F.
doi:10.1371/journal.pcbi.1003781.g008
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In the NLIFL case, one can show from the MWC model

chemotaxis by Yu Berg et al [28] that in the FCD regime it is

simply a power law.

Dimensional analysis of the full model for I1-FFL and
NLIFL

We performed dimensional analysis of the full model of the I1-

FFL (Eq. 1, 2) by rescaling as many variables as possible. The

rescaled variables:

y:
Y

Yst
0

ðM1Þ

z:
Z

bz=azg(X ,tv0)

Where Y 0
st is the pre-signal steady state of Y, derived by taking

_YY~0: Y 0
st~

by

ay

f (X ,tv0), and Zst~
bz

az

g(X )
Kyz

n

Kyz
nzYst

n is the

steady state of Z derived by taking _ZZ~0. Substituting these

rescaled variables we receive:

_YY

Y 0
st

~ay
f (X )

f (X ,tv0)
{ay

Y

Y 0
st

ðM2Þ

_ZZ

bz=azg(X ,tv0)
~az

g(X )

g(X ,tv0)

Kn
yz

Kn
yzzY n

{az
Z

bz=azg(X ,tv0)

Since we assume that f (X ) is determined by the step size in input,

we can consider merely the fold change F in input, F:
f (X )

f (X ,tv0)
.

For FCD to hold we consider Fn:
g(X )

g(X ,tv0)
. Defining the

rescaled repression threshold c:
Kyz

Y 0
st

we receive in the new

rescaled variables (lower case letters y and z):

1

ay

_yy~F{y ðM3Þ

1

az

_zz~Fn cn

cnzyn
{z

Rescaling the time to t?ayt and defining r:
az

ay

yields to Eq. 3, 4

in the main text.

We also performed dimensional analysis of the full model of the

NLIFL (Eqs. 9, 10) by rescaling as many variables as possible. The

rescaled variables:

y:
Y

Yst
0

ðM4Þ

z:
Z

Z0

cn

1zcn

Where Y 0
st is the pre-signal steady state of Y, derived by taking

_ZZ~0 and assuming Zst~Z0 : Y 0
st~Ky

bzg(X ,tv0)

azZ0
{1

� �1=n

, and

c:
Ky

Y 0
st

~
bzg(X ,tv0)

azZ0
{1

� �{1=n

. Substituting these rescaled var-

iables we receive:

1

kZ0

cn

1zcn

_YY

Y 0
st

~
Y

Y 0
st

(
Z

Z0

cn

1zcn
{

cn

1zcn
) ðM5Þ

_ZZ

Z0

cn

1zcn
~

bz

Z0

cn

1zcn
g(X )

Kn
yz

Kn
yzzY n

{az

cn

1zcn

Z

Z0

After algebraic manipulation and in the new rescaled variables

(lower case letters y and z):

1

kZ0

cn

1zcn
_yy~y(z{

cn

1zcn
) ðM6Þ

1

az

_zz~
g(X )

g(X ,tv0)

cn

cnzyn
{z

We consider here also Fn:
g(X )

g(X ,tv0)
.

Rescaling the time to t?kZ0
1zcn

cn
t~

g(X ,tv0)bz

az

kt and

defining r:
az

2

kbzg(X ,tv0)
yields to Eqs. 11, 12 in the main text.

Proof that FCD holds in the model for I1-FFL and NLIFL
Given a set of ordinary differential equations with internal

variable y, input F and output z:

_yy~f (y,z,F) ðM7Þ

_zz~g(y,z,F) ðM8Þ

According to Shoval et. al. (2010), FCD holds if the system is

stable, shows exact adaptation and g and f satisfy the following

homogeneity conditions for any pw0:

f (py,z,pF )~pf (y,z,F ) ðM9Þ

g(py,z,pF )~g(y,z,F ) ðM10Þ

In the model for I1-FFL (Eq. 3, 4) at the limit of strong repression

c?0:

f (py,z,pF )~(pF{py)~pf (y,z,F )

1

r
g(py,z,pF )c?0%(pF )n cn

(py)n {z~Fn cn

yn
{z~g(y,z,F )c?0
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Exact adaptation also holds at c?0, zst^z0. This holds also for

the NLIFL (Eqs. 9, 10).

Analytical solution for the I1-FFL
The solution for y is an exponent:

y(t)~e{tzF(1{e{t) ðM11Þ

The general solution for the ODE _zz~f (t){z with the initial

condition z(0)~z0 is:

z(t)~z0e{tze{t

ðt
0

etf (t)dt ðM12Þ

For our model Eq. M12 reads:

z(t)~cne{rtzcnre{rt

ðt
0

etFn 1

(e{tzF (1{e{t))n dt ðM13Þ

By changing the variable in the integral in Eq. M13: w~et F

F{1
we get:

z(t)~cne{rt(1zr
F{1

F

� �r ðF{1
F

F{1
F

e{t

w{r{1(1{w){ndw) ðM14Þ

Which is by definition the solution in Eq. 6.

Analytical solution for the time of peak for the I1-FFL
At the time of peak _zz~0, therefore from Eq. 5 in the main text

we get:

z(tpeak)~
Fc

y(tpeak)

� �n

ðM15Þ

From our definition of the relative response Rz:
z(tpeak){zst

zst

we

have:

y(tpeak)~
F

Rzz1ð Þ1=n
ðM16Þ

Substituting the solution of y (Eq. M11) and by algebraic

manipulation we receive the analytical solution for tpeak:

tmax~log
RI

1zRI

1z
1

1zRzð Þ1=n
{1

 ! !
ðM17Þ

Analytical solution for the maximal response
The analytical results were derived by taking the derivative of

the solution for z(t) (Eq. 6 in the main text) and substituting time

of the peak (Eq. M17),
dz(tpeak)

dt
~0. This provides an equation for

the amplitude of the maximal response, f (Rz,RI ,n,r)~0, yielding

an intractable equation:

f (Rz,RI ,n,r)~
1zRI

RI

� �r

{(1zRz) 1{
1

1zRzð Þ1=n

 !{r

z:::

:::zr({1)nB
1zRI

RI

, 1{
1

1zRzð Þ1=n

 !{1

,rzn,1{n

0
@

1
A~0

ðM18Þ

Where we used the identity:

B(a,b,{r,1{n)~({1)nB(b{1,a{1,rzn,1{n). This identity

can be easily proven by using the change of variable, w:
1

u
, in

the integral of the Beta function.

For n~1 Eq. M18 becomes:

1zRI

RI

� �r

{(1zRz)
1zRz

Rz

� �r

{rB
1zRI

RI

,
1zRz

Rz

,rz1,0

� �
~0 ðM19Þ

Using the Series function of Mathematica to expand Eq. M19 in

the limit of large RI , Rz and keeping high orders in RI , Rz yields:

1{ 1z
1

Rz

� �r

(1zRz){r log
Rz

RI

� �
~0 ðM20Þ

Using 1z
1

x

� �a

^1z
a

x
in the limit of large x we receive:

{Rz{r{r log
Rz

RI

� �
~0 ðM21Þ

Taking the exponent of this Eq. M21 yields:

RI

re
~

Rz

r
e

Rz=r

ðM22Þ

The solution for Eq. M22 is by definition the productlog function:

Rz~r product log
RI

re

� �
.

For r~1 Eq. M18 becomes:

1zRI

RI

� �
{(1zRz)

1zRz

Rz

� �
{B

1zRI

RI

,
1zRz

Rz

,2,0

� �
~0 ðM23Þ

Since B(a,b,2,0)~

ðb
a

x

1{x
dx~{(b{a){log

1{b

1{a

� �
, Eq. M23

yields:

1zRI

RI

� �
{(1zRz)

1zRz

Rz

� �
{

1

RI

{
1

Rz

zlog
Rz

RI

� �� �
~0 ðM24Þ

By algebraic manipulation Eq. M24 becomes 1zRzz

log
Rz

RI

� �
~0. Taking the exponent of this equation yields:

RI

e
~RzeRz ðM25Þ

(M18)

(M19)
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The solution for Eq. M25 is by definition the productlog function:

Rz~product log
RI

e

� �
.

For nw1,r~1 we define j: 1zRzð Þ1=n{1, substituting this

new variable into Eq. M18 we have:

1zRI

RI

{(1zj)n 1zj

j
z({1)nB

1zRI

RI

,
1zj

j
,1zn,1{n

� �
~0 ðM26Þ

Using the Series function of Mathematica for large RI and j
yields:

{(1zn)RI
nj2{RI

nz1j2zRI
2jn(1znzj)z

(n{1)RI
2j({jz(1zj)nz1)~0

ðM27Þ

Keeping the highest order in RI and j we receive:

(n{1)jn^RI
n{1. Recall that jn&(1zj)n:1zRz&Rz for large

Rz and j, and therefore Rz^
1

n{1
RI

n{1.

The instantaneous approximation does not capture the
correct amplitude behavior

For the instantaneous approximation to be true at large r, the

error,
Dzinst

zinst

(Fig. 8a), between the maximal amplitude in the

instantaneous approximation and the full model should vanish at

r??.

Dzinst

zinst

%
1

zinst(0)

dzinst

dt

� �
t~0

tpeak*(F{1)tpeak(F) ðM28Þ

Where tpeak(F ) decrease with F slower than F{1, therefore

Dzinst

zinst

*f (F ) with f(F) a monotonic increasing function of F. This

proves that even at large r, the error increases with F (Fig. 8b) and

can be very large.

Fits and numerical simulations
All the numeric simulations and fits were made in Mathematica

9.0.

The root-mean-square deviation (RMSD) [37] calculated for

comparing the goodness of fit between the two models is defined

as: RMSD~
1

�xxnumeric

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i~1

ri
2

s
,ri:xi,numeric{xi,model.

The data points from Takeda et al were extracted by using the

‘ginput’ function of MATLAB. The fits for the data were made

using the NonlinearModelFit function considering the error-bars,

Dxi, as weights, wi~
1

Dxi
2
.

The goodness of fit was tested using the mean-square weighted

deviation (MSWD) [37] which sums the residuals (r) - sum of

squares of errors with weights of 1=s:d:: MSWD~

1

n{1

Xn

i~1

wiiri
2,wii~

1

Dxi
2

.

Note on biophysical law terminology

We define logarithmic response as
Dz

z
~log

DI

I
. In contrast,

traditional definition of the Weber-Fechner law (also called the

Fechner law) in biophysics is (e.g. ref. [3]) as Dz*log I . Thus the

present definition concerns relative change in input and output,

whereas the Weber-Fechner law concerns absolute input and

output. Note also that the Weber-Fechner law is distinct from

Weber’s law, on the just noticeable difference in sensory systems,

whose relation to FCD was discussed in Ref [11].
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